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Does gastrin stimulate gastric acid secretion by direct action on oxyntic cells, by releasing
histamine, or by being potentiated by histamine? Previous studies in the mouse pointed to
gastrin-regulated histamine release. Guinea pig and rat are well known to vary in their
sensitivity to histamine. Therefore, the effects of histamine and pentagastrin were compared
quantitatively on isolated, lumen-perfused, stomach preparations from these species in the
absence and presence of histamine Hy-receptor blockade. The loss of potency of histamine in
the rat was mirrored by a loss of potency of pentagastrin consistent with the idea that
pentagastrin acts by releasing histamine. In the rat, a well-defined pentagastrin curve was
obtained in the presence of histamine Hj-receptor block as though pentagastrin acts both
directly on the oxyntic cell and indirectly by releasing histamine. It was not necessary to invoke a
potentiating interaction between histamine and pentagastrin at the oxyntic cell; the two effects
appeared simply to add. Potentiation was observed, however, between other combinations of
stimuli, for example, between vagal nerve and pentagastrin stimulation. The physiological
consequences of these results are discussed.

INTRODUCTION

There are currently two hypotheses which describe the regulation of gastric acid
secretion by the three primary secretagogues: gastrin, histamine, and acetylcholine
(Fig. 1). The first hypothesis was formulated by Grossman and Konturek [1] and
subsequently developed by Soll [2]. In this hypothesis, the three secretogogues are
imagined to act directly on the oxyntic cell to stimulate acid secretion. The finding
that histamine H,-receptor antagonists can, under certain experimental conditions,
block all forms of stimulated secretion is accounted for by the existence of potentiat-
ing interactions beyond the oxyntic cell receptors. Previously, we have referred to this
model as the “permission hypothesis” because gastrin and acetylcholine effectively
work by permission of histamine [3]. In the alternative hypothesis, initiated by
Maclntosh [4], revived by Code [5], and further developed by Kahlson and Rosen-
gren [6], gastrin and acetylcholine act indirectly by releasing histamine from cells
located adjacent to the oxyntic cells. In this “transmission hypothesis” [3], histamine
transmits the actions of gastrin and acetylcholine. Although the permission model
recognizes the importance of histamine, only the transmission hypothesis provides a
description of the control of histamine.

We have previously investigated the regulation of gastric acid secretion using
isolated, lumen-perfused, whole-stomach preparations from young adult mice [7].
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These assays have the advantage of retaining the gastric mucosal architecture, and
the three primary stimulants act in a way which is compatible with their behavior in
intact animals. Pharmacological models of agonist and antagonist action can be
reliably applied because fixed and known concentrations of pharmacological re-
agents can be used in these in vitro assays.

The isolated-stomach preparations can be made to secrete an unregulated basal
level of acid by, for example, prior fasting and adjusting of the intragastric pressure
[7]- This fact is important for the interpretation of experimental data. The fact that
histamine H,-receptor antagonists, like tiotidine (0.1 nM, 1,000-fold above its Kg at
histamine Hj-receptors [8]), do not inhibit basal secretion means that free, endoge-
nous histamine can only be present in these assays at sub-threshold levels. For
example, the mouse stomach assay concentration-effect curves to pentagastrin, used
as an experimentally amenable surrogate for native gastrin, were progressively
shifted to the right and the upper asymptote depressed in the presence of increasing
concentrations of the histamine H,-receptor antagonist, tiotidine. These data were
quantitatively consistent with a model describing the competitive antagonism of
endogenous histamine released by pentagastrin [9]. According to the model, the
depression of the upper asymptotes of the pentagastrin concentration-effect curves
by the competitive histamine H,-receptor antagonist is due to the inability of
pentagastrin to release supramaximal quantities of histamine, which would be
required to surmount the receptor blockade. In the absence of suprathreshold
background endogenous histamine, these data were consistent with the transmission
model for the regulation of gastric acid secretion. Pentagastrin was apparently acting
by releasing endogenous histamine, and, under these particular experimental condi-
tions, there was no evidence of a significant direct action of pentagastrin on the
oxyntic cell in the mouse.

We now report the extension of these studies on isolated, lumen-perfused,
stomach assays prepared from immature rats and guinea pigs.

METHODS
Immature Rat and Mouse Isolated, Lumen-Perfused, Stomach Assays

Isolated, lumen-perfused, stomach assays from mice, guinea pigs, and immature
rats were prepared as described previously [7,10]. Briefly, whole stomachs from mice
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(22-30 g) and rats (32-37 g) were emptied and placed in a 40 ml organ bath
containing buffered serosal solution and perfused with unbuffered mucosal solution
at 1 ml min~1. This solution was passed over a pH electrode system set at 12 cm above
the preparation to distend the stomach wall.

Guinea Pig Stomach Preparation

Stomachs were removed from guinea pigs (180-220 g). The forestomach was
removed, and the remaining section resealed around the perfusion cannula. In all
other respects, the assay was identical to the immature rat and mouse stomach
assays.

Field Stimulation

Electrical field stimulation of the vagus was achieved by placing a pair of platinum
ring electrodes (ring diameter, 2 mm; wire diameter, 0.5 mm) on either side of the
stomach preparations to stimulate the region of the fundic glands [13]. Square-wave
pulses of 0.5 ms duration and 10 V measured intensity were applied over the
frequency range 1-7 Hz.

ANALYSIS

Six preparations were used simultaneously and, after an initial 60-minute stabiliza-
tion period, those not producing a stable basal acid secretion (approximately 5
percent) were discarded. All drugs were added directly to the organ bath (serosal
side) and, where appropriate, following a further 60-minute period, a single cumula-
tive agonist concentration effect was obtained to histamine or to pentagastrin.

Experimental treatments were allocated on a block design such that, as far as
possible, all organ baths received each treatment during the course of an experiment.

Acid secretion was expressed as pH of the lumen perfusate. Individual responses
to drug treatments were measured as the change in pH (ApH) from that immediately
prior to drug addition. Agonist concentration-effect data were fitted to a logistic
function of the form:

__ oAl
" [As]? + [A]7

where E = effect (ApH), [4] = agonist concentration, and a, [4s], and p are the
upper asymptote, midpoint location, and slope parameters, respectively.

For display purposes, the individual computed parameter estimates for each
treatment group were expressed as means and a single logistic curve generated and
superimposed upon experimental data.

E

DRUGS

Drugs were freshly prepared and diluted in distilled water with the exception of
tiotidine (a gift from ICI), which was initially dissolved in 1 N HCl. Molar stock
solutions of histamine dihydrogen chloride (Sigma) were neutralized by the addition
of sodium hydroxide [11]. Pentagastrin was purchased in Peptavlon® ampoules from
ICI. The total volume added to the 40 ml organ bath did not exceed 400 p.l.
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FIG. 2. (a). Upper panel: Pentagastrin (@) and histamine (O) concentration-effect curves obtained on
isolated, lumen-perfused stomach preparations prepared from immature guinea pig, mouse, and
immature rat. The curves drawn through the mean experimental data points (n = 5/7) were obtained by
logistic curve-fitting. Error bars show SE mean. (b). Lower panel: Pentagastrin concentration-effect
curves (n = 5/7) obtained on isolated, lumen-perfused stomach preparations prepared from immature
guinea pig, mouse, and immature rat in the absence (@) and presence (O) of histamine H,-receptor
blockade (100 uM tiotidine or 30 pM famotidine, pre-incubated for 60 minutes).

RESULTS

Control histamine and pentagastrin concentration-effect curves were obtained on
each of the three assays (Figure 2a and Table 1). Histamine was equipotent in the
mouse and guinea pig but tenfold less potent in the rat. These potencies were
quantitatively paralleled by the potencies of pentagastrin in the three species. In the
guinea pig and mouse, pentagastrin behaved as a partial agonist with respect to
histamine, only producing about 50 and 70 percent, respectively, of the maximum

TABLE 1
Logistic Function Curve-Fitting Parameters (n = 6/8 + SEM) Derived from Histamine and Pentagastrin
Control Concentration-Effect Curves Obtained on Isolated, Lumen-Perfused, Stomach Assays
(standard errors shown in parentheses)

Guinea Pig Mouse Rat

Histamine = Pentagastrin  Histamine  Pentagastrin ~ Histamine  Pentagastrin

PlAs) 5.67(0.12)  829(0.08)  536(0.10)  859(0.10)  4.78(0.13)  7.39(0.11)
Maximum  0.66 (0.02)  0.36(0.07)  0.69(0.08) 049 (0.06) 044 (0.05)  0.42(0.06)
(ApH)

Slope 1.40(0.19) 096 (0.11)  1.02(0.03)  0.67(0.07)  148(0.18)  0.89 (0.10)
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response obtained with histamine. In the rat, however, pentagastrin and histamine
produced the same maximal acid secretion.

We have previously shown that the histamine Hj-receptor antagonists, tiotidine
and famotidine, produce a parallel rightward shift of histamine concentration-effect
curves in these assays [12], consistent with a selective, competitive mechanism of
action. In the presence of concentrations of these antagonists which are sufficient to
produce a 3 log unit rightward shift of histamine concentration-effect curves, the
pentagastrin response was abolished in both the guinea pig and the mouse, but, in
the rat, pentagastrin still produced a significant, fully definable, concentration-effect
curve (Fig. 2b).

Pentagastrin concentration-effect curves in the rat were obtained following pre-
incubation (30 minutes) with increasing concentrations of histamine (Fig. 3). As
judged by the values of the upper asymptotes, there was no increase in the amplitude
of the curves, nor any sign of potentiation as judged by the midpoint location
parameters. Similar experiments using other combinations of secretagogues, how-
ever, produced evidence for both potentiation and amplification (not all data
shown). The example given (Fig. 4) is the interaction between pentagastrin and
electrical field stimulation of the vagus nerve in the rat assay. In the presence of
background vagal stimulation, the pentagastrin curves were progressively shifted to
the left and amplified.

DISCUSSION

The fact that the potency of histamine was quantitatively paralleled by the potency
of pentagastrin in the three species, guinea pig, mouse, and rat, might be intuitively
expected if pentagastrin acts by releasing histamine. Comparison of the upper
asymptotes of the pentagastrin concentration-effect curves between and within
species suggested, however, a discontinuity in pentagastrin’s mechanism of action
between the rat and the other two species. It was as though pentagastrin was acting
solely by the release of histamine in the mouse and guinea pig but was unable to
release sufficient endogenous histamine to produce the same magnitude of effect as
could be achieved by the addition of exogenous histamine. This finding agreed with
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the previous model deduction made from the observed non-surmountable antago-
nism of pentagastrin by tiotidine in the mouse [10]. If pentagastrin was acting in the
rat as it does in the guinea pig and mouse, then we might have expected that it would
only produce 50-70 percent of the histamine maximum as well; however, pentagas-
trin produced the same maximum as histamine in the rat. Pentagastrin was either
more efficient at releasing histamine, even though it was less potent in this species
(Table 1), or was acting by an additional or different mechanism. The latter
conclusion was supported by the finding that, in the rat, pentagastrin still produced a
significant, fully definable concentration-effect curve in the presence of histamine
H,-receptor blockade, presumably due to a direct action of pentagastrin on the
oxyntic cell (Fig. 2b), which would be independent of histamine release.

These results indicate that in the rat stomach assay the action of pentagastrin,
under control conditions, is due to both an indirect, histamine-mediated action and a
direct action on the oxyntic cell, as though both the transmission and permission
models (Fig. 1) were in play. There is only one effector in the experimental system,
namely, oxyntic cell acid secretion; therefore the gastrin and histamine receptor-
transduction pathways must ultimately converge prior to, or at the level of, activation
of the H*/K*-ATPase, the enzyme ultimately responsible for acid secretion [14]. We
tried to characterize the behavior of the interaction between histamine and pentagas-
trin at the oxyntic cell in the immature rat isolated whole-stomach assay, looking for
the potentiating interactions described in the permission model. The effect of the
background histamine was simply to frameshift the pentagastrin curves upward until
an apparent maximum effect was achieved, as though the effects of the two pathways
simply added (Fig. 3).

As exemplified by the interaction between pentagastrin and electrical field stimu-
lation of the vagus nerve in the rat assay (Fig. 4), however, similar experiments, using
other combinations of secretagogues, produced evidence for both potentiation and
amplification. In the presence of background vagal stimulation, the pentagastrin
curves were progressively shifted to the left and amplified. This potentiation may be
indicative of the enhancement of the informational content of hormones which can
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be achieved by convergent action. In this case, for example, the primary regulator of
the cephalic phase of secretion, the vagus, has the effect of pepping up the response
of the system to the regulator of the gastric phase of secretion, gastrin. Thus, in this
particular experiment, low concentrations of pentagastrin (sub-nanomolar) only
produced a significant secretory response in the presence of background vagal tone.

The apparent absence of potentiation with histamine and pentagastrin in the rat
may indicate that histamine’s main role is not for the local regulation of oxyntic cell
activity but rather to produce synchronized vasodilation to satisfy the increased
oxygen demand of the stimulated oxyntic cell.

In conclusion, the histamine dependence of the pentagastrin response is variable
across species. We have evidence that this variation can also be true between
stomach preparations of the same species, as might be expected from a system in
which the hormone receptor density, a recognized biological variable, can be
regulated by the gastrointestinal hormones themselves. In the rat, direct and
indirect, histamine-mediated responses to gastrin have been exposed consistent with
both the permission and transmission hypotheses. It is as though both methods of
acid secretory regulation are operating. Histamine release by vagus and gastrin
integrates circulatory and secretory processes; potentiating interactions between
vagus and gastrin integrate the physiological control of oxyntic cell activity.
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