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Experimental test of genuine 
multipartite nonlocality under the 
no-signalling principle
Chao Zhang1,2, Cheng-Jie Zhang3,4, Yun-Feng Huang1,2, Zhi-Bo Hou1,2, Bi-Heng Liu1,2,  
Chuan-Feng Li1,2 & Guang-Can Guo1,2

Genuine multipartite nonlocality (GMN) has been recognized as the strongest form of multipartite 
quantum correlation. However, there exist states that cannot violate the Svetlichny inequality derived 
from the standard definition of GMN, even though they possess GMN properties. The reason is that 
the standard definition of GMN allows correlations that permit signalling among parties, which is 
inconsistent with an operational definition. Here, for the first time, we present an experimental test 
of GMN in the no-signalling scenario, with a three-photon pure state |ψs〉 and a noisy W state. The 
experimental results show that these states cannot violate the Svetlichny inequality. However, our 
results also demonstrate that they do violate a new inequality derived from the definition of GMN based 
on the no-signalling principle, i.e., these states can exhibit GMN under the requirement of no-signalling. 
Our results will be useful for the study and applications of GMN in quantum communications and 
quantum computation.

Quantum theory troubled many prominent physicists in the early twentieth century, including Albert Einstein. 
In 1935, Einstein and his colleagues Boris Podolsky and Nathan Rosen designed a thought experiment to demon-
strate that quantum theory was incomplete1 and should be replaced by a more complete theory using local hid-
den variables. Almost thirty years later, Bell proved his famous theorem2,3, which states that no physical theory 
of local hidden variables can ever reproduce all of the predictions of quantum mechanics, by showing that the 
predictions of quantum theory for some bipartite quantum states are incompatible with those of deterministic 
local hidden-variable models and that these quantum states are therefore nonlocal. Quantum nonlocality offers 
advantages in quantum information tasks3, such as those related to quantum cryptography4,5, communication 
complexity6, randomness generation7, and measurement-based quantum computation8.

In studies of bipartite quantum nonlocality, Bells nonlocality was thoroughly investigated in the early years9–17. 
In recent years, the concept of quantum steering18, which refers to the asymmetric nonlocal correlations between 
the two subsystems, has attracted increasing attentions19,20, because of its unique asymmetric features and possi-
ble applications in one-way quantum key distribution21 and quantum subchannel discrimination22.

Compared with the bipartite case, multipartite quantum nonlocality has a much richer and more complex 
structure, because of the wide variety of classes of hierarchical nonlocality in multipartite systems. Among all 
forms of hierarchical multipartite nonlocality, genuine multipartite nonlocality (GMN) is the strongest. The 
notion of genuine multipartite nonlocality was first introduced and studied by Svetlichny in 1987, and he derived 
a Bell-type inequality, i.e., the Svetlichny inequality, for testing genuine tripartite nonlocality23. Furthermore, 
the tripartite notion of Svetlichny inequality has since been generalized to arbitrary N-partite system24 and 
higher-dimensional multipartite system25. Moreover, several experiments have been conducted26–28 to test GMN. 
However, it has recently been shown29 that according to Svetlichny’s definition, genuine N-partite nonlocality can 
be established by m (m ≤​ (N −​ 1)) collaborating parties through local operations and classical communications, 
which is inconsistent with an operational framework for GMN. Thus, a new definition of genuine multipartite 
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nonlocality under the no-signalling principle has been proposed29–34, since allowing signalling is incongruous 
with a physical perspective.

Besides the consideration of physical congruousness, the definition of GMN based on no-signalling principle 
would also benefit the study of quantum information processing in a practical way. One example is that, with 
the help of such definition, completely connected graph states are shown to be genuine multipartite nonlocal31. 
Other examples refer to device-independent multipartite quantum information processing protocols, such as 
communication complexity problems6, device-independent quantum cryptography4, randomness expansion7, 
etc. To be concrete, lets consider the device-independent quantum secret sharing protocol35: In this protocol, the 
multipartite state used is required to exhibit GMN for the device-independent purpose, even when noises are 
unavoidable in practical environment. Thus, one would prefer using the no-signaling definition of GMN when 
checking the GMN property of the employed multipartite state, because comparing with the Svetlichny definition,  
this definition will enable wider range of noisy states to be demonstrated as genuine multipartite nonlocal, which 
will be shown in our experiment.

In this paper, we experimentally prepare a specially designed three-photon pure state and a noisy W state, 
and reconstruct their density matrices via quantum state tomography. Numerical calculation with these density  
matrices shows that these two states can not violate the Svetlichny inequality. However, experimental testing 
of these states using the new inequalities derived for detecting genuine multipartite nonlocality under the 
no-signalling principle reveals obvious violations, i.e., these states can still exhibit GMN although they can-
not violate the Svetlichny inequality. Such contrasting experimental results clearly reveal the advantage of the 
no-signalling-based definition for detecting GMN.

Results
Theory of genuine multipartite nonlocality under the no-signalling principle.  Consider a multi-
partite system of n parties, which are labelled by the index set = …I n{1, 2, , }. Each subsystem is measured by 
one observer. For the k-th subsystem (k ∈​ I), the measurement setting and the outcome are denoted by Mk and rk, 
respectively. The joint outcome probabilities can be written in the form P(rI|MI), where = …r r r( , , )I n1  and 
= …M M M( , , )I n1 . In a standard local hidden variable model, the (weakest form of) nonlocality implies that the 

joint outcome probability cannot be written as ∫ λ λ λ| = ∏ |=P r M q P r M( ) ( ) ( , )dI I k
n

k k k1 , where λ is a shared 
local hidden variable, ∫​q(λ)dλ =​ 1 for q(λ) ≥​ 0, and Pk(rk|Mk, λ) is the probability of the k-th observer measuring 
observable Mk with outcome rk for a given local hidden variable λ. By contrast, the GMN introduced by Svetlichny 
implies that the joint outcome probability cannot be written as

∫∑ λ λ λ λ| = | |
α

α α α α α α αP r M q P r M P r M( ) ( ) ( , ) ( , )d ,
(1)I I

where α ≠​ ∅, α ⊂​ I, α α= I\ , and α α≤ . We divide the set I into two arbitrary nonempty subsets α and α. For 
every proper nonempty subset α = …i i{ , , }m1 , we denote its measurement settings by = …αM M M( , , )i im1

 and 
its outcomes by = …αr r r( , , )i im1

, and Pα(rα|Mα, λ) denotes the joint probability of all observers k ∈​ α measuring 
observable Mk with outcome rk for a given local hidden variable λ. To discuss GMN in the no-signalling scenario, 
the no-signalling condition should be satisfied by all Pα(rα|Mα, λ) and λα α αP r M( , ) in Eq. (1), i.e.,

∑ ∑λ λ| = | ′β β β β β βP r r M M P r r M M( , ) ( , )
(2)r

k k k k
r

k k k k\ \ \ \
k k

for all k ∈​ β, β =​ α or α, and |β| ≥​ 2.

Experimental scheme and results.  To illustrate the difference between the Svetlichny inequality and the 
new inequalities derived based on the no-signalling principle34, we experimentally tested two cases: one was a 
special three-photon pure state ψ = + +000 110 111s

3
2

3
4

1
4

, as proposed in ref. 34, and the other was a 
noisy W state.

For the pure state |ψs〉​, we find that it belongs to the Greenberger-Horne-Zeilinger (GHZ) class, and that it  
can be generated similarly to the standard GHZ state. Thus, it can be prepared by starting from the product  
of a single-photon state +( )0 13

2
1
2 1

 (where |0〉​ and |1〉​ represent the |H〉​ and |V〉​ polarization states,  

respectively) and a two-photon entangled state ψ = + +( )00 10 1123
2

2
6

4
2

4 23
 and then applying a 

parity check gate between photons 1 and 2, which can be achieved by causing them to interfere on a  
polarizing beam splitter (PBS). Through Schmidt decomposition, |ψ23〉​ can be rewritten in terms of two  
orthogonal bases as follows: ψ α β α β= +− + ⊥ ⊥

23
6 2

4 2 3
6 2

4 2 3 , where α = − +( )0 11
2

1
2

, 

β = −− +( )0 16 2
4

6 2
4

, and the superscript ⊥​ denotes the orthogonal state. This state is equal to 

ψ ′ = −− +( )00 1123
6 2

4
6 2

4 23
, through several single-qubit rotations. The ratio between the modular 

square of the two coefficients for |00〉​ and |11〉​ is approximately 14:1. We have optimized the polarization direc-
tion of photon 1 to minimize this ratio. The experimental setup for the |ψs〉​ case is shown in Fig. 1. In the experi-
ment, we used two spontaneous parametric down-conversion (SPDC) sources with beamlike phase-matching36,37 
type-II β-barium borate (BBO) crystals to prepare the single-photon and two-photon states. To prepare the state 
ψ ′23 , we used a sandwich-like source of entangled photon pairs similar to that in ref. 38. The only differences were 
that the thicknesses of the two BBO crystals here were 0.6 mm and 2 mm, respectively, and the temporal and 
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spatial compensation crystals were a 6.58-mm quartz plate and a 3.2-mm LiNbO3 crystal, respectively, for 
extraordinary photons and a 8.43-mm quartz plate with no spatial compensation for ordinary photons.

We characterized the prepared state via quantum state tomography. The experimental data were obtained 
through measurements corresponding to 27 joint measurement settings, which included all possible combina-
tions of the three Pauli operators for each qubit. To prepare |ψs〉​ with high fidelity, it is important to suppress the 
noise from the higher-order emission of photon pairs; thus, we used a pump power of only 15 mW, and we 
obtained a fourfold coincidence counting rate of 0.27/s. The total duration of the tomography measurements was 
18 hours. We used the maximum likelihood approach to reconstruct the density matrix ρs

exp. The result was well 
consistent with the target state, which can be quantitatively characterized by the state fidelity 

ψ ρ ψ= = . ± .F 0 982 0 003s s
exp

s . The real and imaginary parts of ρs
exp are shown in Fig. 2 (see Supplementary 

Information B for the raw tomography data). All of our experimental data have been corrected for the different 
detection efficiencies of the two single-photon detectors in each polarization analyzing system (PAS).

Using the reconstructed density matrix ρs
exp, we can numerically optimize the measurement settings in the 

Svetlichny inequality to achieve its maximal possible value (calculated via quantum mechanics). The Svetlichny 
inequality is written as follows:

+ +
− + −
− − ≤

A B C A B C A B C
A B C A B C A B C

A B C A B C 4, (3)

0 0 0 0 0 1 1 0 0

1 0 1 0 1 0 0 1 1

1 1 0 1 1 1

where A, B, C denote the three particles, and the subscripts 0, 1 denote two different measurements. With the 
optimized measurement settings (see Supplementary Information A), the maximal value of the left-hand side of 
the above inequality is calculated to be 3.77 ±​ 0.03, which is certainly less than 4. Thus, it is clear that our prepared 
state ρs

exp cannot violate the Svetlichny inequality.

Figure 1.  Experimental setup for the preparation and test of the tripartite pure state |ψs〉. A femtosecond 
pulsed mode-locked Ti:Sapphire laser (with a central wavelength of 780 nm, a pulse duration of 90 fs and 
a repetition rate of 76 MHz) first passes through a frequency doubler. The emitted ultraviolet pulses are 
then used to pump two type-II SPDC sources. The first SPDC source produces a non-maximally entangled 
state. The compensation crystals are used to compensate for the spatial and temporal differences between 
the two orthogonal polarizations. The second source produces a product state. Single-mode fibers are used 
to further spatially filter the down-converted photons to be used as source outputs. Three half-wave plates 
(HWP1, HWP2, and HWP3) are placed at angles of (15°, 65.7°, −​37.5°) to impose single-qubit rotations. Two 
extraordinary photons then interfere on a polarizing beam splitter (PBS) for a parity check operation. When 
there is one and only one photon in each of the spatial modes 1, 2, 3, and 4, the target state is generated via 
post-selection. Finally, each photon is measured by a polarization analysing system (PAS), which consists of one 
HWP, one quarter-wave plate (QWP), one PBS and two single photon detectors. The three terms of the target 
state have two independent relative phases, which can be tuned by two tiltable quarter-wave plates (TQWP1 and 
TQWP2).



www.nature.com/scientificreports/

4Scientific Reports | 6:39327 | DOI: 10.1038/srep39327

Therefore, to detect the genuine tripartite nonlocality of ρs
exp, we can try to directly test a new inequality based 

on the no-signalling principle in experiment. We chose the class 16 inequality presented in ref. 30, which is rather 
robust against noises. This inequality is given below:

− + + − −
− + +
+ + + ≤ .

A B A B A B A B C
A B C A B C A B C
A B C A C B C

2

2 2 4 (4)

0 0 1 0 0 1 1 1 0

0 0 0 1 0 0 0 1 0

1 1 0 1 1 1 1

The expectation values can be calculated as 〈​AX〉​ =​ ∑​a(−​1)aP(a|X), 〈​AXBY〉​ =​ ∑​ab(−​1)(a+b)P(ab|XY), etc., 
where a, b ∈​ {0, 1} denote the binary outputs of the measurements. To test this inequality, we optimized the pro-
jection measurement basis (see Supplementary Information A) by numerical search (corresponding to |ψs〉​〈​ψs| 
instead of ρs

exp) and then measured each photon in these basis with the PAS system, which used motorized wave 
plates to define the projection state. The motorized rotations of the wave plates had a high absolute accuracy of 
less than ±​ 0.05° and a good repeatability of less than 0.05°, which is important in such ‘black-box’ experiments. 
Our experimental result for this inequality was 4.34 ±​ 0.04, which is very close to the ideal value of 4.37 predicted 
by quantum mechanics and violates the inequality by 8 standard deviations. Note that the typical loopholes in 
Bell-type test are not closed here.

For mixed states, it is easier to find such states that cannot violate the Svetlichny inequality but can exhibit 
GMN in the no-signalling scenario. Similar to genuine multipartite entanglement, there is a threshold fidelity for 
noisy states to exhibit genuine multipartite nonlocality. Here we use the term “fidelity” to denote the fidelity 
between the ideal state and the noisy state. As an example, we experimentally generated a noisy three-photon W 
state and tested it using the inequality based on the no-signalling principle. The ideal W state without noise has 
the form of = + +W ( 001 010 100 )3

1
3

. Similar to the case of the pure state, we also characterized the 
prepared state with state tomography and calculated its value for the Svetlichny inequality given the optimized 
measurement settings (see Supplementary Information A).

To generate the W state, we first prepared a four-photon Dicke state with two excitations, 
= + + + + +D ( 1100 0110 0011 1001 1010 0101 )4

2 1
6

. By projecting one photon into the state 
|V〉​, the other three photons were prepared in the state |W3〉​39. The experimental setup is shown in Fig. 3. We used 
two photon pairs generated in the second-order emission from one beamlike type-II SPDC source, and merged 
them into a single spatial mode with a PBS. The four indistinguishable photons were then randomly  
distributed into four different spatial modes by three 50:50 beam splitters (BSs). The superposition of the six  
possible distributions formed the state D4

2 . The four photons were spectrally filtered using interference  
filters (IFs) with bandwidths of 3 nm. The fidelity with which D4

2  was prepared was measured to be 
ρ= = . ± .F D D 0 978 0 008D

exp
4
2

4
2 . The density matrix ρD

exp was obtained via quantum state tomography with a 
pump power of 35 mW and a four-photon coincidence rate of 0.1 Hz.

A useful advantage of the new inequality based on the no-signalling definition is that it has stronger ability in 
finding GMN than the Svetlichny inequality. In particular, considering of the noisy W state, when its fidelity with 
the ideal W state is lower than a certain threshold, it cannot exhibit GMN using the Svetlichny inequality. 
However, using the no-signalling inequality, we still can demonstrate its GMN. To show such advantage, it is 
necessary to prepare a noisy W state with suitable fidelity. The method we used to add noise was simply to increase 
the pump power, thereby increasing the noise from higher-order photon pair emission, i.e., the noise caused by 

Real Imag

Figure 2.  The real (left) and imaginary (right) parts of the density matrix ρs
exp of the generated tripartite 

state |ψs〉. The largest element of the imaginary part is less than 0.015.
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the emission of more than two photon pairs in our SPDC system. When the pump power was 210 mW, the fidelity 
was measured via quantum state tomography to be ρ= = . ± .F W W 91 2% 0 4%W W

exp
3 3 , and the four-photon 

coincidence rate was 2.1 Hz after projection. Figure 4 shows the reconstructed density matrix ρW
exp of the noisy W 

state (see Supplementary Information B for the raw tomography data). From ρW
exp, the maximal value of the 

Svetlichny inequality can be calculated to be 3.85 ±​ 0.04, which obviously shows no violation. It is worth to note 
that, although the noise introduced by high pump power is typically not a white noise, but a colored noise, the 
conclusion that this noisy W state cannot violate the Svetlichny inequality will not be affected. The reason is that 
the maximal Svetlichny inequality value obtained here was evaluated with numerically optimized measurement 
settings according to the measured density matrix ρW

exp.
Then we chose to test the following new inequality (labelled as class 138 in ref. 30):

Figure 3.  Experimental setup used to prepare the noisy three-qubit W state. The success probability of 
detecting one and only one photon in each spatial mode is 3/32. Each photon is ultimately measured by a PAS.

Real Imag

Figure 4.  The real (left) and imaginary (right) parts of the reconstructed density matrix ρW
exp of the noisy W 

state.
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− + − + +
+ + − − −
+ − +
+ + +
− − + +
+ + −
+ − − ≤ .

A A B A B A B
B A B A B C A C

A C B C A B C
A B C B C A B C
A B C C A C A C

B C A B C A B C
B C A B C A B C

2
2

2 2
2

2
2 4 2

2 10 (5)

0 1 0 0 0 1 0

1 0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1

1 1 0 1 1 1 1 1

Again, with the numerically optimized measurement settings (see Supplementary Information A) corre-
sponding to ρ = . + .W W I0 90W 3 3

0 10
8

 instead of ρW
exp, where I is a 8 ×​ 8 identity matrix, we tested this ine-

quality and obtained a value of 11.30 ±​ 0.07, which violates the bound of 10 by about 17 standard deviations. Note 
that, in the test of |ψs〉​ and here, we used an idealized state (|ψs〉​) or noise (the white noise I) as the target states for 
the numerical searches. The reason was to ensure that our experimentally prepared states can violate the inequal-
ities, even in the absence of accurate or complete knowledge of their real density matrices. Moreover, because the 
experimental test of GMN is substantially a “black-box” experiment, when we experimentally obtain a violation, 
GMN is really demonstrated, even though the selected measurement settings are not optimal with respect to the 
practically generated state.

Discussions
The dominant noise in our experiment was the temporal distinguishability between different photon pairs, which 
primarily depends on the ratio between the coherence length of the interfering down-converted photons and the 
pulse duration of the pump laser. We have finely adjusted the mode-locked Ti:Sapphire laser to minimize this 
parameter. It is done by finely tuning the position of the compensation prism in the laser to achieve a shorter out-
put pulse width. We also use narrow-band spectral filters to increase the coherence length of the down-converted 
photons. In particular, in the experiment conducted to test the state |ψs〉​, state preparation with rather high purity 
was required for violation of the inequality. So we use 2-nm bandwidth Ifs for the extraordinary photons to 
achieve a higher visibility of interference, and 3-nm IFs for ordinary photons to achieve better efficiency photon 
pair collection. The pulse duration of the Ti:sapphire laser was measured to be 90 fs using an auto-correlator. 
With this measurement configuration, we observed the two-independent-photon Hong-Ou-Mandel (HOM) 
interference with a rather high visibility of 97.5% ±​ 0.6% (see Fig. 5), which to our knowledge is the highest 
two-independent-photon interference visibility ever reported.

In conclusion, we experimentally studied GMN in the no-signalling scenario with the |ψs〉​ state and the noisy 
W state. Our results clearly demonstrate that, although these states cannot violate the standard Svetlichny inequal-
ity, they can nevertheless violate the newly derived no-signalling-based inequalities, i.e., the multipartite correla-
tions obtained from these states cannot be explained by any no-signalling local realism models. From the resource 
perspective, these results should be useful in achieving a substantial savings in multipartite nonlocal resources for 
various practical applications in multipartite quantum communication tasks. The results of this work are expected 
to be helpful for guiding the study and application of multipartite nonlocality in quantum information processing.
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