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Abstract

Purpose: Medulloblastoma is known to be associated with multiple cancer-predispo-

sition syndromes. In this article, we explore a possible association among a patient’s

Aarskog-Scott syndrome, development of medulloblastoma, and subsequent brainstem

radiation necrosis.

Case Presentation: A 5-year-old male with Aarskog-Scott syndrome initially presented

to his pediatrician with morning emesis, gait instability, and truncal weakness. He was

ultimately found to have a posterior fossa tumor with pathology consistent with group 3

medulloblastoma. After receiving a gross total resection and standard proton beam

radiation therapy with concurrent vincristine, he was noted to develop brainstem

radiation necrosis, for which he underwent therapy with high-dose dexamethasone,

bevacizumab, and hyperbaric oxygen therapy with radiographic improvement and

clinical stabilization.

Conclusion: Based on several possible pathologic correlates in the FDG1 pathway,

there exists a potential association between this patient’s Aarskog-Scott syndrome and

medulloblastoma, which needs to be investigated further. In patients with underlying,

rare genetic syndromes, further caution should be taken when evaluating chemotherapy

and radiation dosimetry planning.

Keywords: brainstem radiation necrosis; medulloblastoma; Aarskog-Scott syndrome;

hyperbaric oxygen therapy

Introduction

Medulloblastoma is the most common pediatric central nervous system malignancy [1].

The mainstay of treatment is surgical resection, followed by radiation therapy and

adjuvant chemotherapy [2, 3]. The emergence of proton beam radiation has been critical

for medulloblastoma therapy because of its ability to spare damage to healthy tissue,

resulting in a reduction in both short-term and long-term side effects [3, 4]. Brainstem
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radiation necrosis, however, has occurred in the settings of both photon and proton radiotherapy [5].

Medulloblastoma is associated with several cancer predisposition syndromes, including Li-Fraumeni syndrome, nevoid

basal cell carcinoma syndrome, and familial adenomatous polyposis [6]. Newer sequencing technologies allow identification of

underlying cancer predispositions or other syndromes that would have been missed historically [7, 8]. In this case report, we

present a patient with Aarskog-Scott syndrome who developed medulloblastoma with subsequent brainstem radiation

necrosis.

Case Presentation
A 5-year-old male with Aarskog-Scott syndrome, gastroesophageal reflux, and beta thalassemia minor initially presented with

a 2-month history of morning emesis and decreased oral intake. He had subsequent difficulties with balance, truncal and

extremity weakness, and a wide-based gait. His medical history, as part of his Aarskog-Scott syndrome, was significant for

small stature and decreased weight, tracking under the first percentile for his age. His family history was significant for a father

with history of childhood seizures and a younger brother who also has Aarskog-Scott syndrome.

Initial exam was significant for 4/5 strength in all extremities, truncal ataxia with a wide-based gait, and dysmetria. Magnetic

resonance imaging (MRI) showed a 4.1 3 5.7 3 6.3-cm, heterogeneously enhancing tumor in the fourth ventricle, with

obstructive hydrocephalus. An MRI of the spine and a lumbar puncture showed no signs of distant disease. The patient

underwent gross total resection of the tumor. Pathology showed medulloblastoma, classic variant, World Health Organization

grade IV, MYC/MYCN non-amplified, with loss of heterozygosity secondary to copy number gains of chromosome band 1q, 7,

9, and 14, as well as a copy number loss of chromosome band 16q, overlapping with the group 3 subtype [9].

Four days after the surgery, the patient was diagnosed with severe posterior fossa syndrome with poor global muscle tone,

ataxia, mutism, and dysphagia. Subclinical seizures were confirmed by video electroencephalogram. A literature search

revealed no contraindication or increased sensitivity to radiotherapy associated with Aarskog-Scott syndrome. His

radiotherapy consisted of 23.4 GyRBE to the craniospinal axis (Figure 1) with an additional 30.6 GyRBE to the tumor bed, for

a total dose of 54 GyRBE (Figure 2) with weekly vincristine at 1.5 mg/m2. Maximum and D50 (median) doses to the patient’s

brainstem were 54.4 GyRBE and 53.7 GyRBE, respectively, well within published guidelines for healthy brainstem tolerance

[10–13]. Modest improvements were made in strength, mobility, and mutism with intensive rehabilitation.

He received his first 6-week cycle of maintenance chemotherapy with cisplatin, lomustine, and vincristine per ACNS0331

[14], cycle A prior to being discharged to home. Adjuvant chemotherapy continued with another A cycle, and then a 4-week B

cycle comprising cyclophosphamide with Mesna and vincristine. Routine MRI, at 21 weeks after radiotherapy completion,

revealed new, rim-enhancing lesions with central necrosis and surrounding edema in the left upper, middle, and lower pons, as

well as in the right medulla and cervicomedullary junction, measuring up to 1 cm (Figure 3A–3C). All lesions were within the

tumor-bed boost portion of the radiotherapy field and were judged to be consistent with radiation injury, although the patient

had not manifested any neurologic deterioration. Further chemotherapy was held, and the patient was started on

dexamethasone.

An MRI performed 6 weeks later showed lesion progression (Figure 3D). The patient developed worsening hemiparesis in

the following days. Dexamethasone was continued, and bevacizumab was initiated at 10 mg/kg every 2 weeks for 6 doses [15,

16]. Mild improvement in symptoms occurred, and radiographic stability was observed on the following MRI 2 months later.

Radiographic improvement continued after completion of bevacizumab therapy, with enhancing lesions subsequently

subsiding (Figure 3E and 3F); however, his neurologic deficits persisted.

Daily hyperbaric oxygen therapy was initiated 6 weeks later [17–20]. During this treatment, mild clinical improvement was

reported. To date, the patient continues to have slow clinical improvement.

Methods and Results
Genomic DNA of the patient, his father, mother, and younger brother was isolated from blood, and whole-exome sequencing

was performed, as previously described [21]. Exon capture was performed using the IDT xGen Exome capture kit (Integrated

DNA Technologies, Coralville, Iowa), followed by 101 base paired–end sequencing on the HiSeq 4000 platform (Illumina, San

Diego, California). Sequence reads were aligned to the human reference genome GRCh37/hg19 using the BWA-MEM

software and further processed to call variants, following the GATK best practices workflow [22, 23]. Variants annotated with

ANNOVAR and MetaSVM software were used to predict the deleteriousness of nonsynonymous variants (herein, referred to
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as D-mis) [24, 25]. All variants covered by independent-aligned sequencing reads with a depth of 83 or greater were visualized

in silico to eliminate false-positives.

To identify potential causal mutations for the disease phenotypes in the affected siblings, we filtered for rare, damaging

mutations shared by both individuals. A non–frameshift deletion (c.2729_2746del, p.910_916del) in FGD1 was identified in

both siblings, which was transmitted from their unaffected mother. FGD1 encodes ‘‘FYVE, RhoGEF and PH domain containing

1.’’ X-linked recessive variants in FGD1 have been associated with Aarskog-Scott syndrome (OMIM: 305400) [26], which is

consistent with the phenotype and the inheritance model observed in this family. Variants in this domain have previously been

associated with Aarskog-Scott syndrome [27–29].

Discussion
Despite radiotherapy dosimetry being well within published brainstem constraints for healthy tissue, this patient suffered

radiation-related injury causing neurologic decline [10–13]. Dose heterogeneity in a radiation plan is unavoidable, but in this

case, there were very few and mild hot spots.

Importantly, the pediatric radiation oncology community is increasingly recognizing that brainstem tolerance may be less

with proton radiotherapy than it is with photon radiotherapy. The current Children’s Oncology Group ependymoma study

(ACNS0831) [30] uses lower brainstem dose constraints for proton radiotherapy compared with photon radiotherapy, a topic

Figure 1. Craniospinal irradiation phase dosimetry. The radiation

target is the whole brain and spinal canal (dark green line) inclusive

of the thecal sac. The doses received by these regions are shown by

a series of isodose lines for the 5 Gy (dark purple), 20 Gy (light

purple), 23 Gy (dark blue), and 23.4 Gy (light blue) dose levels. Note

the lack of low-dose radiation received by structures anterior to the

spinal canal when using a proton beam that enters from the posterior

surface.
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recently addressed at a workshop sponsored by the National Cancer Institute [10]. Nonetheless, this patient was treated with

doses meeting those newer and lower brainstem dose constraints and still suffered symptomatic brainstem injury.

Integral to this discussion is consideration of the linear energy transfer (LET) and relative biologic effectiveness (RBE)–

weighted dose distributions. The LET distribution here is typical for patients treated with this technique. The RBE depends

heavily on the a/b ratio, which was 3 in this case (Figure 4). This RBE model attempts to account for the biological effective

dose. Although it appears that the injury occurred in regions of higher RBE, it does not occur in the region of highest LET, and

previous reports have been inconclusive. However, the LET differences across the proton-dose distribution may partially

account for these unexpected findings. Better models for LET or RBE are needed to truly understand the potential effect on the

patient. Newer radiation-planning systems are testing the incorporation of LET into the model, which could help diminish the

apparent increased biological effective dose seen in certain parts of the dose distribution.

Many patients are treated with similar RBE/LET dose distributions and do not develop injuries. Thus, factors contributing to

host radiosensitivity are also likely contributory. It behooves us to consider those factors that may have predisposed this

patient to radiation sensitivity or injury and to consider those factors moving forward as we treat patients with genetic

syndromes, blood dyscrasias, nutritional deficiencies, or other comorbidities that may impair growth and healing [31].

In this case, it is unclear what genetic components of Aarskog-Scott may have had a role in sensitivity. The FGD1 gene

implicated in Aarskog-Scott syndrome codes for a protein that activates Cdc42. This GTPase is important in cell signaling and

is involved with many functions, including remodeling of the extracellular matrix and regulation of cell growth [32, 33]. The

upregulation of Cdc42 is also associated with increased invasion of medulloblastoma, potentially making these tumors more

aggressive [34, 35]. Review of the literature did not reveal any cases of patients with Aarskog-Scott who received proton or

photon radiation.

This patient’s relatively poor radiotherapy tolerance could also be related to phenotypic manifestations of his underlying

syndrome, namely, his nutritional status and growth delay. He was , 1% of expected weight and height for his age, and

patients with an impaired nutritional status may be predisposed to injury and have more difficulty repairing any sustained injury

[36].

Figure 2. Boost phase

dosimetry. (A–C)

Representative magnetic

resonance imaging (MRI)

contrast-enhanced T1 (A) and

T2 (B) images of the tumor in

the preoperative setting and

tumor bed in the postoperative

setting (C, light purple). Note

the extensive contact between

the tumor and brainstem in the

axial plane accompanied by

brainstem displacement and

compression. A margin was

added to the known at-risk

tissue volume to account for

microscopic disease spread,

also known as a clinical target

volume (CTV; dark purple).

(D–F) The doses received by

the brainstem (cream) and

neighboring tissues at the level

of the superior and inferior

lesions (dark blue) are shown

by a series of isodose lines in

transverse (D and E) and

sagittal (F) views for the 45 Gy

(aqua), 50 Gy (green), 53 Gy

(yellow), 54 Gy (orange), and

54.5 Gy (red) dose levels.
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Conclusion

It is likely that multiple factors, including an underlying syndrome and poor nutritional and growth status, contributed to this

patient’s high toxicity to treatment. When treating a child with a genetic syndrome, failure to thrive, and/or nutritional

deficiencies, additional care must be taken in developing the radiotherapy plan. If radiation-related injury develops during

adjuvant chemotherapeutic treatment, we recommend that treatment be halted immediately with early initiation of anti-

inflammatory agents to avoid neurologic decline, regardless of symptoms at the time. Chemotherapy administration can cause

further deterioration. Only when imaging findings of brainstem radiation necrosis resolve and there is no further clinical

Figure 3. Development of rim

enhancing lesions within the

brainstem 5 months after

radiation therapy. (A–C)

Postgadolinium T1-weighted

imaging approximately 5

months after radiation. (D)

Postgadolinium T1-weighted

imaging 6 weeks after initial

imaging. (E and F)

Postgadolinium T1-weighted

imaging after completion of

bevacizumab therapy.

Figure 4. Relative biologic

effectiveness (RBE) modeling

overlay using a/b ¼ 3. The

brainstem (lime green) and

superior contrast-enhancing

brainstem lesion (royal blue)

are outlined. The RBE

contours are shown for 20 Gy

(lime green), 30.6 (orange), 33

(aqua), 34 (magenta), and 35

(yellow). The area of brainstem

injury partially overlaps the

modeled area of highest RBE

that, when added to the

craniospinal irradiation (CSI)

dose, equates to 57.4–58.4

Gy.
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deterioration should chemotherapy be reinstated, if at all. Prolonged steroid and bevacizumab use is typically needed when

clinically significant injury is present. Interestingly, hyperbaric oxygen therapy appears to have had some benefit for this patient

and merits consideration going forward.
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