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Abstract

From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but

the least understood. KS is a sophisticated molecule with a diverse structure, and unique func-

tional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in

the human body but the central and peripheral nervous systems also contain significant levels of

KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays

important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in

tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of

sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disul-

fated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated dis-

accharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also

contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose

linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and

abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its

sulfated regions for good reason. The sulfation motifs on KS convey important molecular recog-

nition information and direct cell behavior through a number of interactive proteins. Emerging

evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring

further investigation. Thus further research is warranted to better understand the complexities

of KS.
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Introduction

A historical perspective on keratan sulfate

Keratan sulfate (KS) was first identified in the cornea by Suzuki and
colleagues in 1939 (Suzuki 1939), it was identified as a mucoid type
material containing galactose and glucose in equimolar amounts,
and also acetyl and sulfate groups. Karl Meyer and colleagues

subsequently characterized this mucinous mucopolysaccharide in a
series of studies renaming it kerato-sulfate (Meyer et al. 1953, 1967;
Davidson et al. 1956; Hoffman et al. 1958, 1967; Seno et al. 1965;
Bhavanandan and Meyer 1966, 1968; Bray et al. 1967; Shulman
and Meyer 1968; Choi and Meyer 1975; Kikuchi et al. 1987;
Meyer-Puttlitz et al. 1995). Ongoing studies on the characterization
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of KS and KS-proteoglycans established the current name of this
mucopolysaccharide as keratan sulfate. Investigations on the kerato-
sulfates were initially compositional studies, and structural analyses
on the linkage region of kerato-sulfate to protein (Bray et al. 1967;
Bhavanandan and Meyer 1968; Choi and Meyer 1975; Brown et al.
1996). Most work was initially conducted on corneal KS and this
was subsequently classified as KS-I but despite this naming KS-I is
also found in tissues other than cornea as a side chain components
of members of the SLRP family members keratocan, fibromodulin
and lumican (Plaas et al. 1990, 2001; Lauder et al. 1996).
Comparative studies on corneal KS and the KS of cartilaginous tis-
sues in a number of species subsequently identified a different
O-linkage group to protein through serine or threonine residues and
variable levels of L-fucose and N-acetylneuraminic acid capping resi-
dues (Choi and Meyer 1975). Thus skeletal KS was subsequently clas-
sified as KS-II to distinguish it from corneal KS-I. Ongoing studies on
KS in brain tissues, the next richest source of KS in the human body
after the cornea, identified a further O-linkage region through D-
mannose residues in KS and this was classified as KS-III (Krusius
et al. 1986) (Figure 1). Although variations in chain length and sulfa-
tion patterns and differences in the types of linkage groups were
noted all three forms of KS were found to share common structural
elements including stretches of non-sulfated poly-N-acetyllactosamine,
and variable regions of mono- and disulfated regions of 6-sulfated
D-galactose and N-acetylglucosamine, the two glycosaminoglycans
of the characteristic repeat disaccharide unit of KS. The variable
presence of minor L-fucose and N-acetylneuraminic acid further
distinguished KS-I, II, III. While these residues conferred resistance

to the KS chain to degradation by keratanase-I, II and endo-β-D-
galactosidase (Figure 2) the full significance of these glycan com-
ponents on the interactive properties of KS are only now beginning
to be uncovered. Up till now, most GAG interactive studies have
been conducted using the CS-A, CS-B, CS-D, CS-E isomers and HS
and there is a massive literature published on these GAGs.
However, a few studies have now shown that KS also has inter-
active properties with a number of regulatory proteins. Surface
plasmon resonance studies have shown that corneal KS interacts
with SHH, FGF1 and FGF2 (Weyers et al. 2013). The core proteins
of the KS-SLRPs are also highly interactive proteins due to their
LRR motifs.

A recent study with corneal KS using a proteomics screen with a
microarray of 8268 proteins and custom array of 85 extracellular
nerve growth factor protein epitopes has uncovered a wealth of data
pointing to potential roles for KS in cell-signaling processes in neural
tissues (Conrad et al. 2010). Highly sulfated KS interacted with 217
of the microarray proteins examined including 75 kinases, several
membrane and secreted proteins, cytoskeletal proteins and a number
of nerve regulatory proteins. These interactions were confirmed
using plasmon resonance and binding constants determined. Of the
85 ECM nerve-related epitopes examined, KS bound to almost half
of these, including Slit, two Robo’s, nine ephrin receptors, eight
ephrins, eight semaphorins and two nerve growth factor receptors.
The SLIT-ROBO cell-signaling pathway has important roles to play
in axonal guidance and neural angiogenic processes (Tessier-Lavigne
and Goodman 1996; Bashaw et al. 2000; Nguyen-Ba-Charvet and
Chedotal 2002). Slit is a secreted protein which provides a repulsive
cue for the directional guidance of axons during neuronal develop-
ment and repair processes (Rothberg et al. 1990), Robo is its trans-
membrane protein cellular receptor. Vertebrates contain four Robo
receptors and three Slits (Yuan et al. 1999). Slits are modular pro-
teins containing many LRRs, 7–9 EGF repeat modules and an
Agrin, Laminin, Perlecan, Slit (ALPS) interactive domain (Howitt
et al. 2004; Hussain et al. 2006). These LRRs and EGFs have well-
known functional interactive properties with proteins. Robos are
transmembrane receptors which contain five IgG-like domains, three
fibronectin type III repeats and an intracellular cytoplasmic domain
containing up to four conserved CCO, CC1, CC2 and CC3 motifs
containing potential sites of tyrosine phosphorylation, netrin-1 bind-
ing activity and binding sites for Ena/Vasp proteins (Stein and
Tessier-Lavigne 2001). Ena/Vasp homology proteins are a family of
closely related proteins involved in cellular motility through regula-
tory properties exerted on the spatial polymerization of actin struc-
tures required to promote chemotaxis in response to attractive and
repulsive cues (Wong et al. 2002). Interactions of KS with Robo-Slit
results in downstream activation of Rho GTPases which mediate
actin depolymerization, cytoskeletal re-organization and cell signal-
ing. Ephrins are a family of protein ligands for the Ephrin recep-
tors. This is the largest subfamily of receptor protein–tyrosine
kinases. These are membrane-bound proteins, which regulate intra-
cellular signaling pathways arising from direct cell–cell interaction.
Semaphorins are secreted and membrane-bound axonal growth
cone guidance proteins which act as short-range inhibitory signals
through multimeric plexin and neuropilin receptors to regulate Rho
family GTPases and are critical to axonal guidance in neural devel-
opment and repair processes. KS research is therefore entering an
exciting era. Functional studies on KS in neural tissues are eagerly
anticipated and may yield information of application in neural
repair biology.

Fig. 1. Structural complexity of KS. Corneal KS-I, skeletal KS-II, i antigen, I

antigen.
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Tissue distribution of KS, KS–proteoglycans and

KS–glycoproteins in tissues

KS (Figures 1 and 2) is a widely distributed glycosaminoglycan
(GAG) in tensional and weight-bearing connective tissues (cornea,
bone, cartilage, intervertebral disc, tendon), epithelial tissues and the
central and peripheral nervous system (CNS/PNS) (Funderburgh
2000, 2002). KS is attached to a number of proteoglycan and glyco-
protein core proteins (Table I). KS–proteoglycans (KSPGs) display
adaptable and variable functional interactive properties in situ and
are localized within tissues in a specific spatio-temporal manner
with important roles in tissue morphogenesis. Like all GAGs the
variable but specific sulfation status of KS is an important functional
determinant encoding a significant level of information which cells
can interpret to influence cellular metabolism and behavior to effect
tissue homeostasis, modulation of tissue structure and the assembly
of key extracellular matrix (ECM) assemblies in tissue morphogen-
esis critical in the determination of tissue form and function. The
ability to perceive ion-fluxes by KS is a conduit to the sensory cap-
ability of cells which allows them to perceive and respond dynamic-
ally to biomechanical changes in their microenvironment equipping
them with the ability to modulate the synthesis and assembly of
ECM components to form a matrix which better protects them from
extrinsic forces. In some cells, the ability to sense and control ion-
fluxes is highly advanced such as in neurons which generate action
potentials (Camire and Topolnik 2014), the basis of synaptic func-
tion that has even been proposed as a mechanism whereby cognitive
memory is generated (Eccles 1983). Synaptic vesicle protein-2 (SV2)
is a transport proteoglycan for neurotransmitters (Bajjalieh et al.
1992; Feany et al. 1992; Scranton et al. 1993; Carlson 1996;
Nowack et al. 2010; Wan et al. 2010). Glial cells (oligodendrocytes,
astrocytes, Schwann cells) produce KSPGs and KS-substituted glyco-
proteins (Fryer et al. 1992; Geisert et al. 1992; Geisert and Bidanset
1993; Burg and Cole 1994; Robson and Geisert 1994; Junghans

et al. 1995; Meyer-Puttlitz et al. 1995; Jones and Tuszynski 2002;
Papageorgakopoulou et al. 2002; Dobbertin et al. 2003; Vitureira
et al. 2005; Sinouris et al. 2009; Vitureira et al. 2010), with roles in
the demarcation of functional areas of the PNS/CNS and assembly
of the myelin sheath encompassing neurons (Table I). KS has asso-
ciated Ca2+ counterions which may act as a calcium reserve for egg
shell production (Ha et al. 2007; Du et al. 2015) and in the mineral-
ization of bone in laying birds and in the generation of action poten-
tials in neurons. KS-substituted small leucine repeat proteoglycans
(SLRPs) also have roles in bone formation (Kinne and Fisher 1987;
Sommarin et al. 1998; Wendel et al. 1998; Gori et al. 2001;
Nakamura et al. 2001; Igwe et al. 2011; Nikdin et al. 2012).

The biodiversity of KSPGs

KSPGs are widely distributed and display a diverse range of func-
tional properties (Table I). In tissues, KS chains can be either N- or
O-linked to the proteoglycan core protein.

Several members of the small leucine repeat proteoglycan (SLRP)
family (fibromodulin, lumican, keratocan, mimecan, osteoadherin)
contain small N-linked KS chains (Figure 3A–F). The SLRPs contain
leucine rich repeat regions (LRRs) that provide interactive properties
with ECM proteins (Figure 3A–F). The SLRPs regulate collagen
fibrillogenesis, and interact with cytokines and growth factors which
regulate cell proliferation, cell signaling and matrix assembly
(Hocking et al. 1998; Merline et al. 2009; Dellett et al. 2012; Chen
and Birk 2013; Chen et al. 2014). Some SLRP members (PRELP,
mimecan, osteoadherin) have small minimally sulfated KS chains
and roles in the laying down of bone, cellular adhesion and anchor-
age of the basement membrane to adjacent connective tissue
(Bengtsson et al. 1995, 2002; Sommarin et al. 1998; Johnson et al.
2006).

Aggrecan is a large KS and CS substituted proteoglycan of the
lectican family which has important space filling and water imbibing
properties in cartilaginous tissues (Kiani et al. 2002) (Figure 3G).
Aggrecan in cartilage forms massive macro-aggregate link protein-
stabilized ternary structures with hyaluronan which have impressive
water trapping properties within tissues providing the tissue with a
resistance to compression (Roughley and Mort 2014). Aggrecan is
widely distributed in articular, hyaline, elastic and fibrocartilages in
diarthrodial joints, rib, nasal and tracheal cartilages as well as the
larynx, outer ear and epiglottis (Roughley et al. 2003, 2006).
Aggrecan equips these tissues with the ability to withstand compres-
sion and provides mechanical support to the elastic or collagenous
fibers that convey and control reversible tissue deformability or the
ability to withstand tensional forces as well as providing strong
interconnections between muscle and bone. In adult cartilage, aggre-
can contains ~100 CS and ~25–50 KS chains which collectively
represent ~90% of the mass of this molecule (Kiani et al. 2002). KS
is localized in a region adjacent to the CS rich region in all species
examined except rodent aggrecan which has a truncated core pro-
tein devoid of a KS-rich region (Barry et al. 1994). Small KS chains
are also found in the G1 and G2 globular domains of aggrecan and
in the interglobular domain (IGD) between G1 and G2 regions
(Barry et al. 1992, 1995; Fosang et al. 2009). The role of the KS
chains within the KS-rich region is not known; however, the other
KS chains located towards the N-terminus of aggrecan have roles in
the suppression of a T cell-mediated response to free G1 when used
as an arthritogen (Leroux et al. 1996; Glant et al. 1998;
Guerassimov et al. 1998) and also regulate aggrecanolysis by

Fig. 2. The cleavage sites of keratanase-I, keratanase II and endo-β-D-galacto-
sidase on a typical KS-I chain. For information on the KS-oligosaccharides

released, see Brown et al. (1994a, 1994b) and Tai et al. (1996, 1997).
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Table I. The biodiverse structural forms and functions of KS proteoglycans

Protein Distribution Functions Reference

KS–proteoglycans of tensional and weight-bearing connective tissues
Aggrecan lectican KS/
CSPG

Large ECM PG of cartilage,
CNS, tendon, IVD

Tissue hydration, weight bearing. Inhibits neurite
outgrowth, repulsive cue on axonal guidance

Fryer et al. (1992), Kiani et al. (2002)

Fibromodulin Widespread ECM distribution
in cornea, cartilage, tendon,
IVD, meniscus

Regulate collagen fibrillogenesis and
inflammatory cytokines/growth factors, cell
proliferation and cell signaling. Lumican is a
tumor marker

Chen and Birk (2013), Merline et al.
(2009), Schaefer and Iozzo (2008)

Keratocan Blochberger et al. (1992), Corpuz
et al. (1996), Oldberg et al. (1989),
Sommarin et al. (1998)

Lumican
Osteoadherin
(osteomodulin)

Cartilage/bone growth plate
interface

Cell binding bone KSPG, may regulate
mineralization

Sommarin et al. (1998)

Mimecan (osteoglycin) Broad distribution in
connective tissues

Corneal mimecan is sulfated but not sulfated in
other tissues. Has roles in bone induction

Corpuz et al. (2000), Funderburgh
et al. (1997)

CD44 Epidermal/CNS KS-CD44
isoform

Ubiquitous HA receptor occurring as alternatively
spliced forms substituted with KS, CS or HS

Takahashi et al. (1996)

Bone sialoprotein-II
(BSP-II)

80 kDa core protein,
substituted with sialic acid
and N- and O-linked KS
chains

BSP-II, KSPG in compact rabbit bone, BSP-II
from other species does not contain KS. Related
KSPG identified in rat calvaria BSP-II in
medullary bone in laying birds is a KSPG

Ganss et al. (1999), Hadley et al.
(2016), Kinne and Fisher (1987),
Masubuchi et al. (1975), Nakamura
et al. (2001)

KS–proteoglycans of mucinous tissues
MUC1 epithelial distribution transmembrane epithelial KSPG, heavily O-

glycosylated, sialylated forms 200–500 nm
layer on cell surface

Aplin et al. (1998), Brayman et al.
(2004)

Endometrial ECM
Mucous KSPG 220 kDa 5D4+ve KSPG KSPG of cervical mucous secretions Fischer et al. (2001)
Podocalyxcin 240 kDa 3–10G +ve Mucin-like, sialomucin cell surface KS–PG related

to CD34. Anti-adhesive. Widespread epithelial
distribution

Nielsen and McNagny (2009),
Vitureira et al. (2010)

Zona pellucida protein-3
(PZP-3)

zona pellucida An N-linked polylactosamine sulfated KS protein
with oocyte–sperm receptor interactive activity

Nakano et al. (1996), Noguchi and
Nakano (1992)

Oocyte membrane
glycoprotein

Keratinocyte perlecan Epidermis Hybrid KS-HS-CS basement membrane
proteoglycan with roles in ECM stabilization
and growth factor binding

Knox et al. (2005)

Embryoglycan Cell surface PG of Pluripotent
and early embryonic stem
cells

Highly branched polylactosamine non-sulfated
KS chains contain 3-G10, EMCA-2, 3,
TRA-1-60 and TRA-1-81, GCTM-2, SSEA
carbohydrate motifs

Dvorak et al. (1998), Muramatsu
(2017), Ozawa et al. (1985a)

KS–proteoglycans of the PNS/CNS
Abakan Astrocyte KSPG, co-

distributed with glial
fibrillary acidic protein

Provides repulsive axonal guidance cues which
regulate neuritogenesis in CNS development

Geisert and Bidanset (1993)

Claustrin/MAP1B Claustrin, ECM PG
synthesized by CNS
astrocytes. MAP1B is a
microtubule associated
protein

Claustrin, anti-adhesive neural proteoglycan
inhibits neurite outgrowth, N-terminal
truncated MAP-1B, a 225 kDa microtubule and
dendritic PG of neurons and glial cells

Burg and Cole (1994), Edelmann et al.
(1996)

Synapse vesicle protein 2
(SV2)

12 span membrane KSPG,
100/250 kDa forms and 3
isoforms SV2A, B, C

Storage/neurotransmitter transport in synaptic
vesicles/neuroendocrine cells. KS of SV2
interactive component of a smart gel delivery
system

Bajjalieh et al. (1993), Feany et al.
(1992), Scranton et al. (1993)

PG1000 KS/CS proteoglycan Electric
organ ECM

Forms 2–6 monomer complexes concentrated in
the reticular laminae of electric organ basement
membranes surrounding nerve fibers/terminals

Carlson et al. (1996), Iwata and
Carlson (1991)

Phosphacan, RPTP-β/
PTPζ, (DSD-1 in mice)

PNS, CNS KSPG also has CS
and HNK-1 substitution.
Phosphacan is the ecto-
domain of PTPζ

PTPζ is a type I transmembrane glycoprotein,
carbonic anhydrase motif interacts with
pleiotrophin and midkine to promote neurite
outgrowth activity

Faissner et al. (2006), Garwood et al.
(1999), Morise et al. (2014)

Continued
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aggrecanases (Poon et al. 2005). Although not formally considered a
KSPG, versican G1 domains also contains KS chains whose roles
await determination (Sztrolovics et al. 2002).

KSPGs and KS-substituted glycoproteins have been identified in
epithelial tissues. MUC1 is a widely distributed mucin glycoprotein
that contains small minimally sulfated KS chains. Podocalyxcin is a
240 kDa sialylated mucin-like cell membrane proteoglycan, which
contains small low sulfation KS chains in embryonic and highly sul-
fated KS chains in adult tissues (Figure 4A). Endometrial KSPG and
PZP-3 have roles in fertilization and implantation. Variants of
CD44 and perlecan have also been described bearing KS chains, the
role of these KS chains remains to be established; however, it is
likely that they may modulate growth factor binding and matrix
organization.

After the cornea, the brain is the next richest source of KS in the
human body and contains a number of large KSPGs, which contain
highly sulfated KS-III chains. Abakan is synthesized by astrocytes,
directs neuritogenesis and defines the functional boundaries of areas
of the brain. Claustrin has anti-adhesive properties and also directs
axonal growth and repair. Phosphacan is one of the most abundant
KSPGs in brain tissue and has roles in the regulation of neuronal
development and repair processes (Figure 4B). PG1000 is a large
KSPG detected in the electric organ and may have roles in synaptic
assembly processes and neurotransmission. Synaptic protein-2 (SV2)
is a 12 span proteoglycan with novel transport properties
(Figure 4C). SV-2 contains three large highly sulfated KS chains that
interact with neurotransmitters in a smart gel complex within the
synaptic vesicle which functions in neurotransmitter storage and
transmission.

Embryoglycan is a highly branched mucin-like sialylated cell sur-
face glycoprotein of embryonic pluripotent stem cells that contains a
number of developmentally regulated carbohydrate motifs and small
non-sulfated poly-N-acetyllactosamine residues similar to in corneal
KS (Figure 5).

Besides its well-documented roles in cartilaginous tissues, aggre-
can also has roles in the development of heart tissue and in the valve
leaflets (Zanin et al. 1999; Lincoln et al. 2006) and in perineural net
formation in the cortex, hippocampus, thalamus, brain stem and
spinal cord (Virgintino et al. 2009). Perineural nets are macroaggre-
gates assembled from HA, link protein and tenascin-R which sur-
round and protect neuron dendritic synaptic contact areas
(Bandtlow and Zimmermann 2000; Peal et al. 2009; Virgintino
et al. 2009). Another KSPG, SV2 has roles in the development and
function of electro-conductive tissue in the heart and PNS/CNS. SV2
occurs as a low and a high molecular weight form which reflects the

Table I. Continued

Protein Distribution Functions Reference

Miscellaneous KS-substituted proteins
Transferrin,
thyroglobulin

Associated with papillary
thyroid carcinoma

KS epitope is capped with α2-3 N-
acetylneuraminic acid

Magro et al. (2003)

Cytokeratin epidermal protein Human keratinocytes contain keratin filaments
containing KS chains

Schafer and Sorrell (1993)

Prostaglandin-D synthase 28 kDa KS-glycoprotein
produced by bovine corneal
keratocytes

Corneal retinoid transporter, also found in
seminal plasma, rat brain and spinal cord, rat
cochlea, human prostate, human and rat
epididymis and testes

Berryhill et al. (2001)

Mammallin Avian KS proteoglycan Role in egg shell production, binds Ca2+ and
maintains a Calcium reserve. Mammallin
awaits full characterization. The KS content of
egg shells correlates directly with their strength

Du et al. (2015), Ha et al. (2007)

CNS, central nervous system; SV2, synaptic vesicle protein 2; RPTPβ, receptor protein tyrosine phosphatase β; PTP ζ, protein tyrosine phosphatase ζ.

Fig. 3. Structural diagrams of some selected extracellular matrix KS-

proteoglycans. Fibromodulin (A), lumican (B), PRELP (C), Osteoadherin (D),

keratocan (E) and mimecan/osteoglycin (F). These are horseshoe-shaped

members of the small leucine rich repeat proteoglycan (SLRP) family.

Aggrecan (G) is a member of the lectican proteoglycan family. KS chains in

aggrecan occur in five regions indicated in the boxed areas in (G). These are

(1) the G1 hyaluronan binding region (HABR), (2) interglobular domain (IGD),

(3) G2 globular domain, (4) KS-rich region. (5) KS chains are also inter-

spersed throughout the CS1 and CS2 domains of the CS-rich region.
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relative size of the KS chain on each form (Figure 6A and B). SV2A
expression is down-regulated and SV2C up-regulated in epileptic
foci in humans with intractable temporal lobe epilepsy (Crevecoeur
et al. 2014). SV2 knockout mice lacking SV2A display abnormal
neurotransmission and epileptic seizures (Crowder et al. 1999;
Tokudome et al. 2016). Preclinical and clinical targeting of SV2A
with the anti-convulsant drug leveritacetam in humans and in
laboratory studies in SV2A deficient mice demonstrate the important
roles SV2 plays in normal brain function (Loscher et al. 1998;
Niespodziany et al. 2001; Margineanu et al. 2008). SV2 acts as a
calcium reservoir; Ca2+ has roles in the generation of synaptic
action potentials. SV2 also has transport properties for neurotrans-
mitters into synaptic vesicles and acts as a smart gel delivery system
important for neuron functional properties (Figure 6C). Mammallin
is another KS–proteoglycan which act as a Ca2+ reservoir in egg
shell assembly. A KS–glycoprotein in medullary bone, bone
sialoprotein-II (BSP-II) is synthesized in synchrony with the egg laying
cycle in egg laying birds. (Hadley et al. 2016). Bone sialoprotein-II

(BSP-II) from compact rabbit bone is a KSPG; however, some stud-
ies have shown that BSP-II from other species may not contain KS
(Masubuchi et al. 1975; Kinne and Fisher 1987; Ganss et al. 1999;
Hadley et al. 2016). KS chains have also been detected on transfer-
rin and thyroglobulin in papillary thyroid carcinoma where the KS
chains may be of diagnostic value and on keratin filaments pro-
duced by keratinocytes but the roles of these KS chains are
unknown.

Functional properties of KSPGs

KS occurs on proteoglycans in connective tissues that contain chon-
droitin sulfate (CS) and both of these GAGs influence tissue hydra-
tion and organization; however, some KS-specific functional
properties have also been demonstrated. Mouse macrophages
express a high-affinity cell surface receptor for the KSPG lumican;
these receptors are modified with mono-sulfated oligolactosamine.
These cells do not bind lumican that carries sulfated KS chains, nor
will they attach and spread on plastic surfaces coated with KS-
substituted lumican. Removal of KS with endo-β-galactosidase
restores attachment and spreading of these cells in vitro indicating
that low sulfation KS is involved in this process (Funderburgh et al.
1997). Human melanoma A375 cells grown on lumican coated cul-
ture surfaces undergo morphological changes apparently due to
rearrangement in their actin cytoskeletons which may underly the
inhibitory effect lumican displays on the migration of melanoma
cells (Radwanska et al. 2008). A 17 amino acid peptide derived
from LRR-9 of lumican has been isolated (lumcorin), and shown to
decrease melanoma progression (Zeltz et al. 2009; Pietraszek et al.
2013). This anti-tumor activity resides in the ability of lumcorin to
inhibit cell motility by inhibition of focal adhesion kinase phosphor-
ylation and by blocking melanoma cell interactions with α2β1 integ-
rin preventing the development of focal adhesion complexes which
are required for cell migration. Lumican also exerts angiostatic
properties on endothelial cells which provides tumor inhibitory
activity in melanoma and a number of other tumors (Brezillon et al.
2013). Furthermore, lumican inhibits the expression and activation
of MMP-9 and 14 (Pietraszek et al. 2013) which also contributes to
its anti-angiogenic/anti-tumor activity.

Anti-adhesive properties for KS have been observed in a number
of studies. KSPGs constitute a barrier to neurite outgrowth in vitro
and directs axon growth patterns during development and regener-
ation in vivo (Burg and Cole 1994; Olsson et al. 1996). This “bar-
rier” function of KS is also evident in the KS chains of aggrecan G1
domains which block development of a T cell-mediated immune
response in vivo and in vitro to the G1 domain when it is used as an
arthritogen, suppressing development of antigen-induced osteoarth-
ritis (Guerassimov et al. 1998) (Leroux et al. 1996). The KS content
of endometrial uterine lining tissues varies markedly during the men-
strual cycle, reaching a peak at the time of embryo implantation
(Graham et al. 1994). KS substitution on MUC1 and other PGs in
the endometrial lining suggests a potential regulatory role for KS in
this implantation process (Aplin and Hey 1995; Aplin et al. 1998;
DeLoia et al. 1998; Cipollone et al. 2012). A number of KSPGs have
been identified in endometrial tissue (DeLoia et al. 1998) with appar-
ent roles in tissue organization and implantation. Zona pellucida
glycoprotein-3 (PZP-3) contains low sulfation N-linked poly-N-acetyl-
lactosamine residues which promote oocyte–sperm interactions and
regulate fertilization (Noguchi and Nakano 1992; Yonezawa et al.
1995; Gupta et al. 1996; Nakano et al. 1996). The KS chains within
the IGD of aggrecan are smaller and of lower charge density than

Fig. 4. Schematic depictions of cell-associated KS-proteoglycans.

Podocalyxcin (A). Protein Tyrosine Phosphatase Receptor-β/ζ/Phosphacan (B)

and synapse vesicle proteoglycan-2 (SV-2) (C). The podocalyxcin core pro-

tein is heavily substituted with N- and O-linked oligosaccharides and these

are potential linkage sites for KS. Phosphacan is the ecto-domain of the

transmembrane Protein Tyrosine Phosphatase Receptor-β/ζ which contains

KS, CS and HNK-1 trisaccharide GAG substitution. SV-2 is a 12 span trans-

membrane KS–proteoglycan with transport functions for neurotransmitters

in synaptic vesicles and occurs as low (100 kDa) and high (250 kDa) molecu-

lar weight forms containing KS substitution on three N-linked glycosylation

sites at amino acids 498, 548 and 573. The free core protein of SV-2 is

80 kDa. SV2 occurs as three alternatively spliced isoforms SV2A, B, C of vari-

able tissue distribution in the CNS/PNS.
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the O-linked KS chains in the KS-rich region and have critical
roles to play in the aggrecanolysis process by aggrecanases (Poon
et al. 2005) (Figure 3G). The basement membrane anchoring mol-
ecule PRELP also contains small low sulfation KS chains; how-
ever, their functional roles have yet to be determined (Bengtsson
et al. 1995).

Mimecan/osteoglycin, osteoadherin and keratocan are KSPGs
with proposed roles in the laying down of bone (Funderburgh et al.
1997; Sommarin et al. 1998; Wendel et al. 1998; Tasheva et al.
2002; Igwe et al. 2011; Nikdin et al. 2012). Keratocan is expressed
by osteoblasts and can modulate osteoblast differentiation (Igwe
et al. 2011). Specific KSPGs (e.g. phosphacan) have also been
demonstrated in the CNS/PNS which contain highly charged KS
chains and which depending on cellular context can display anti-
adhesive properties on neural cells for tenascin-C and laminin which
promote neuronal/axonal repair processes (Garwood et al. 2001,
2003; Dobbertin et al. 2003; Butler et al. 2004; Faissner et al.
2006). Other brain KSPGs (Abakan, PG1000, SV2) contain highly
charged KS chains which confer interactive properties in neurotrans-
mission, brain ECM and synaptic organization and function.

KS is interactive with a number of cell stimulatory molecules
which have important roles to play in skeletogenesis and in the regu-
lation of tissue homeostasis (Osawa et al. 2006). KS chains bind the
cardiotoxins CTX A3 and T (Vyas et al. 1998) and insulin-like
growth factor binding protein-2 (IGFBP2) (Russo et al. 1997).
Surface plasmon resonance has shown that corneal KS interacts
with SHH, FGF1 and FGF2 (Weyers et al. 2013). The core proteins
of the KS-SLRPs are also highly interactive due to their LRRs.
Fibromodulin and lumican bind to collagen and regulate fibrillogen-
esis, with fibromodulin promoting the formation of thick fibers
while lumican promotes the formation of thin collagen fibers.
Fibromodulin also binds to TGF-β and controls its bioavailability

(Hildebrand et al. 1994). The core proteins of keratocan and lumi-
can interact with inflammatory cytokines such as CXCL1 (Carlson
et al. 2007). Lumican interacts with CD14 and activates the TLR-4
pattern recognition receptor as part of the innate immune response
promoting phagocytosis of invading bacteria (Wu et al. 2007; Shao
et al. 2013).

Mimecan/osteoglycin interacts with TGF-βs and BMPs (Iozzo and
Schaefer 2010), binding of mimecan to BMP2 and BMP3 provides
osteoinductive activity (Bentz et al. 1989). Mimecan acts as a carrier
molecule releasing TGFβ and BMPs into the ECM during tissue devel-
opment (Iozzo and Schaefer 2010). TGF-βs enhance chondrocyte pro-
liferation in early differentiation, but inhibit chondrocytes in their
terminal differentiation stage prior to bone formation (Zhang et al.
2004). Co-ordination of BMP2 and BMP3 with TGF-β2 activity
potentiates cartilage and bone formation (Serra and Chang 2003;
Wan and Cao 2005).

Interactive Properties of KS
GAGs interact with proteins in many different ways. Clusters of
basic amino acids have been proposed as consensus GAG binding
sites (Cardin and Weintraub 1989) while in other cases, interactions
between GAGs and proteins appear to be purely charge-mediated
(Ruoslahti and Engvall 1980) influenced by charge density due to
the proximity of multiple GAG chains on PGs (Oldberg and
Ruoslahti 1982). A microarray analysis has shown that corneal KS
interacts with a number of kinases, membrane and secreted proteins,
cytoskeletal components and a number of nerve receptors and
effector molecules (Conrad et al. 2010). Plasmon resonance studies
confirmed these interactions and binding constants were determined.
KS interacts with a number of proteins of the Slit-Robo cell-
signaling pathway which have roles in axonal guidance. Slits contain
variable numbers of LRRs and 7–9 epidermal growth factor (EGF)
repeats which are highly interactive modules with KS resulting in
downstream activation of Rho GTPases which mediate actin depoly-
merization, cytoskeletal re-organization and cell signaling. KS is
interactive with Ephrins and Ephrin receptors, the largest subfamily
of receptor protein–tyrosine kinases. These are membrane-bound
proteins, which regulate intracellular signaling pathways arising
from direct cell–cell interaction resulting in the activation of Rho
family GTPases critical to axonal guidance in neural development
and repair processes.

KS structure

KS is composed of the basic repeating disaccharide D-galactose β1–4
linked to GlcNAc-6-sulfate. The poly-N-acetyllactosamine structure
of KS is also found in glycoproteins of the N- and O-linkage families
of mucin type glycoproteins and these can also bear KS chains in
specific tissue contexts (Cooper et al. 2002; Brayman et al. 2004;
Karlsson and McGuckin 2012). Some cell surface KSPGs also have
mucin type and other developmental carbohydrate structures
(Orlando et al. 2001; Schopperle et al. 2003; Riccioni et al. 2006;
Schopperle and DeWolf 2007; Graves et al. 2016). Three forms of
KS have been identified on the basis of linkage type to PG core pro-
teins, and the structural organization of their constituent sacchar-
ides. KS type I is attached to PG core proteins via an N-glycan
linkage to asparagine via a high mannose type oligosaccharide, KS
type II is an O-linked-glycan attached to threonine or serine residues
via a mucin type structure on the core protein. A further KS type
(type III) has been identified in the PNS/CNS attached via an
O-linked 2-O mannose residue to serine residues on proteoglycan

Fig. 5. Schematic representation of the structural organization of embryogly-

can, a cell membrane associated KS–proteoglycan of pluripotent embryonic

stem cells.
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core proteins but is antigenically distinct from KS-I and KS-II
(Funderburgh 2002) (Figure 1). A related mucin-like polylactosa-
mine molecule, embryoglycan, has also been described which bears
some similarities to minimally sulfated embryonic KS chains but is a
highly branched molecule whereas KS-I is a linear molecule
(Muramatsu 2017).

In mature tissues, the poly-N-acetyllactosamine region of KS-I
can contain ~50 disaccharides and reach 20–25 kDa in size and con-
sist of a mixture of non-sulfated, mono-sulfated (Gal-GlcNAc6S),
and disulfated (Gal6S-GlcNAc6S) disaccharide units (Figure 1).
Skeletal KS-II chains also contain capping L-fucose and N-acetyl-
neuraminic acid residues to variable degree however this appears to
vary within different tissues and these confer KS with resistant proper-
ties to digestion by keratanases and endo-β-D-galactosidase (Figure 2).
Several members of the SLRP family contain small N-linked KS chains
distributed in their central LRR regions. PRELP contains several small
low sulfation KS chains however their functional roles have yet to be
defined (Johnson et al. 2006) (Figure 3A–F). The KS chains of aggre-
can from weight-bearing tissues such as articular cartilage and IVD
contain 1–3 fucose and 2–6 N-acetyl-neuraminic acid residues
(Funderburgh et al. 1990, 1991; Kiani et al. 2002); however, these
are absent in aggrecan from non-weight-bearing nasal and tracheal
cartilages (Nieduszynski et al. 1990). Aggrecan also contains a num-
ber of small N- and O-linked KS chains in the G1 and G2 domains
and within the IGD of lower sulfation to the KS chains in the
KS-rich region of the core protein (Figure 3G). Occasional proteins

such as the cytokeratins and transferrin/thyroglobulin can also be
decorated with KS chains in specific developmental contexts and
these may be of value as biomarkers of the tissue pathology status
(Table I).

Biosynthesis of KS

KS biosynthesis involves the sequential action of the β-1,3-N-acetyl-
glucosaminyltransferase (β3GnT), N-acetylglucosaminyl-6-sulfo-
transferase (GlcNAc6ST), β1,4-galactosyl transferase (β4GalT-1)
and KS galactosyl sulphotransferase (KSGalST) biosynthetic
enzymes. KS-I and II differ from other GAGs in that their biosyn-
thesis is initiated through an N-linkage between GlcNAc and
asparagine (Seno et al. 1965; Choi and Meyer 1975; Plaas et al.
1990), or O- linkage between GalNAc and serine/threonine, in KS-II
(Bray et al. 1967; Choi and Meyer 1975; Kikuchi et al. 1987).
Biosynthesis of KS-I begins in the ER where dolichol phosphate on
the ER membrane acts as a glycosyl receptor for the formation of
high mannose N-linked oligosaccharide. The complex is then trans-
ferred to the Golgi apparatus where an GlcNAc residue is added
and this is sulfated by GlcNAc6ST. The substrate donor molecule
3′-phosphoadenosine 5′-phosphosulphate (PAPS) is also required
for sulfation to proceed (Dunlevy et al. 1998; Akama et al. 2001;
Kusche-Gullberg and Kjellen 2003). If addition of GlcNAc does not
occur, the N-linked mannose may be converted to a complex N-
linked oligosaccharide (Hassell et al. 1986; Dunlevy et al. 1998). In
contrast, the biosynthesis of the KS-II linkage region and attachment
of GlcNAc does not begin until the proteoglycan protein precursor
reaches the Golgi apparatus (Hassell et al. 1986). As with KS-I,
chain elongation depends on the expression of glycosyltransferase
and sulphotransferases and the availability of UDP-sugar precursors
to alternately add GlcNAc then Gal residues to the KS poly-N-acet-
yllactosamine backbone then some of these residues are selected for
sulfation at C6.

Galactosyltransferases
Glycosyltransferases are responsible for the sequential addition of
Gal and GlcNAc to the growing KS chain (Funderburgh 2000).
Several families of galactosyltransferases (Gal-T) have been identified
(Amado et al. 1999). β4GalT-1 catalyzes the addition of UDP-Gal to
a non-reducing terminal GlcNAc acceptor, via a β1–4 glycosidic link-
age generating the non-sulfated poly-N-acetyllactosamine domains
which comprise the basic unit of the KS molecule (Brew et al. 1968;
Schanbacher and Ebner 1970). Another galactosyl transferase, β4
GalT-4, is the only galactosyl transferase which catalyzes transfer
of Gal to a non-reducing terminal GlcNAc-6-sulfate acceptor resi-
due (Seko et al. 2003) and is essential for the production of mono-
and disulfated disaccharides in the KS chain. β4 GalT-4 is also the
only GalT enzyme which generates the initial branch points found
in the 2 O-linked poly-N-acetyllactosamine regions of the KS core
structure.

N-Acetylglucosaminyltransferases
Seven β3 N-acetyl glucoaminyltransferases (β3GnT-1, 2, 3, 4, 5, 6, 7)
can catalyze the addition of GlcNAc via β3 linkage to non-reducing
terminal Gal or GalNAc (Seko and Yamashita 2004). One of these
enzymes acts most efficiently in the elongation of the linear poly-N-
acetyllactosamine region known as the “i” antigen and is designated
iGnT and has a broad tissue distribution.

Fig. 6. Schematic representation of the functional organization of SV-2 pro-

teoglycan of synaptic vesicles, low (100 kDa) and high (250 kDa) molecular

weight forms are depicted in (A) and (B). The KS chains (orange) of SV2 dis-

tributed around a synaptic vesicle (green dotted line) interact with Ca2+ and

neurotransmitters such as dopamine as illustrated in the central green high-

lighted region in a smart gel proteoglycan delivery complex (C).
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Sulphotransferases
Sulphotransferase enzymes transfer sulfate groups from the PAPS
donor to C6 of Gal or GlcNAc in KS. Gal-6-sulphotransferase
(KSGal6ST) transfers sulfate groups to C6 of Gal and GlcNAc-6-
sulphotransferase (GlcNAc6ST) transfers sulfate to the C6 of
GlcNAc. Sulfation of Gal is normally incomplete in corneal KS but
occurs at a higher level in skeletal KS whereas sulfation of GlcNAc
residues is nearly complete. Chondroitin sulfate sulphotransferase
(C6ST) catalyzes the addition of a sulfate group to GalNAc in CS,
but also to Gal in cartilage and corneal KS (Habuchi et al. 1996).
Five GlcNAc-6-sulphotransferase genes have been identified (Seko
et al. 2003). GlcNAc6ST-5 sulfates the non-reducing terminal
GlcNAc in both human (Akama et al. 2001) and mouse tissues
(Uchimura et al. 1998). KSGal6ST catalyzes the addition of sulfate
to an internal Gal residue within the KS chain (Fukuta et al. 1997).
Sulfation of Gal in unsulfated KS disaccharides is much lower than
in disaccharides where GlcNAc is already sulfated, indicating that

GlcNAc sulfation precedes and may be a prerequisite for Gal sulfa-
tion during the biosynthesis of KS. This also explains why it is only
the GlcNAc of the KS disaccharide unit which is sulfated in regions
of monosulfation along the KS chain.

KS Synthesis and Corneal Development
The cornea is the richest source of KS in the human body. Corneal
KS is N-linked to one of three proteoglycan core proteins, lumican,
keratocan or mimecan (Table I). The cornea is a tissue which is com-
posed of ~90% stroma and is covered anteriorly with epithelium
and posteriorly with endothelium. The cornea is a curved transparent
tissue that focuses light into the eye. The remarkable transparency and
optical clarity of the cornea results from the strict regularity of the
orthogonal distribution of collagen fibers of uniform diameter and
interfibrillar spacing in this tissue. Four SLRPs in the cornea, decorin,
lumican, mimecan and keratocan critically regulate collagen fibril size

Table II. KS antibodies and the epitopes they identify illustrate KS structural complexity

Antibody Epitope identified Reference

EMCA-2, 3¶ Mucin core antigens, mucin-like polylactosamine Aplin et al. (1998), Dixon et al. (1993)
TRA-1-60 Epitope sensitive to neuraminidase, keratanase-I, II and endo-β-D-

galactosidase. terminal type 1 lactosamine:
Galβ1–3GlcNAcβ1–3Galβ1–4GlcNAc and
Galβ1–3GlcNAcβ1–3Galβ1–4GlcNAcβ1–6 (Galβ1–3GlcNAcβ1–3)
Galβ1–4Glc oligosaccharide, expressed on podocalyxcin

Adewumi et al. (2007), Andrews et al. (1984), Badcock
et al. (1999), Natunen et al. (2011), Schopperle and
DeWolf (2007)

TRA-1-81 Epitope is resistant to neuraminidase but sensitive to endo-β-D-
galactosidase, keratanase-I, II. Epitope is a terminal type 1
lactosamine: Galβ1–3GlcNAcβ1–3Galβ1–4GlcNAc and
Galβ1–3GlcNAcβ1–3Galβ1–4GlcNAcβ1–6(Galβ1–3GlcNAcβ1–3)
Galβ1–4Glc oligosaccharide, expressed on cell surface podocalyxcin

Adewumi et al. (2007), Andrews et al. (1984), Badcock
et al. (1999), Natunen et al. (2011), Schopperle and
DeWolf (2007)

R-10G Low sulfation KS expressed on cell surface podocalyxcin on pluripotent
embryonic stem cells

Kawabe et al. (2013), Makanga et al. (2015), Nakao et al.
(2017)

SSEA-1¶ Cell surface glycan of murine embryonic pluripotent stem cells, epitope
expressed on proteoglycan and glycoprotein core proteins and
bioactive lipids

Ozawa et al. (1985b)

“i” antigen¶ Human autoantibody to non-branched epitope in non-sulfated poly-N-
acetyllactosamine (see Figure 1)

Feizi (1989), Feizi et al. (1979), Feizi et al. (1971), Young
et al. (2007a, 2007b)

“I” antigen¶ Human autoantibody to branched epitope in non-sulfated poly-N-
acetyllactosamine (see Figure 1)

Feizi (1989), Feizi et al. (1979), Feizi et al. (1971), Young
et al. (2007a, 2007b)

4C4 Highly sulfated KS on podocalyxcin in embryonic tumor cells Fukuma et al. (2003)
5D4 Hexa sulfated KS octa-saccharide and a linear dodecasaccharide

containing N-sulfated glucosamine
Caterson et al. (1983), Mehmet et al. (1986)

MZ15 Hepta and octa-saccharide KS oligosaccharides Mehmet et al. (1986)
1B4 Tetrasulfated hexasaccharide in linear KS Mehmet et al. (1986)
4D1 Sulfated linear poly-N-acetyllactosamine epitope B. Kerr PhD Thesis, University of Cardiff (2005).
2D3 Highly sulfated linear poly-N-acetyllactosamine epitope
3D12/H7 Trisulfated fucosylated poly-N-acetyllactosamine linkage region KS

chains interspersed in the CS1 and 2 region of aggrecan (see Figure 1)
Fischer et al. (1996)

D9B1 A sialo-KS epitope on endometrial KSPGs Aplin et al. (1998), Hoadley et al. (1990), Smith et al.
(1989)

6D2/B5 Fucosyl-KS epitope also detects fucoidan Baker et al. (1989)
SV1, SV2, SV4 High sulfation KS chains in SV2 proteoglycan Scranton et al. (1993), Sinouris et al. (2009)
EFG-11 Tri-KS disaccharides Papageorgakopoulou et al. (2002)
122 Highly sulfated KS Papageorgakopoulou et al. (2002)
1/14/16H9 Specific equine KS antibody Okumura and Fujinaga (1998), Okumura et al. (2000)
LC8.13 Lesser reactivity following keratanase pretreatment Keiser and Diamond (1987)
F1.2 Conformation dependent KS epitope on aggrecan core protein, un-

reactive with KS-peptides released into media
Keiser and Diamond (1987)

BKS-1(+) Keratanase-generated KS stub neoepitope Akhtar et al. (2008)

EMCA, epithelial mucin core antigen; TRA, Trafalgar antigen, some authors also refer to this as tumor rejection antigen; SSEA. Stage specific embryonic anti-
gen; ¶ these antibodies identify non-sulfated epitopes thus by definition these are not KS epitopes but poly-N-acetyllactosamine stretches occurring in KS.
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and interfibrillar spacing essential for the correct functional properties
of this tissue. KS synthesis in the cornea starts at early stages of fetal
development, and progressive developmental changes occur in KS anti-
genic determinants in specific regions of the cornea and conjunctiva
over time. SundarRaj et al. (1985) raised 25 monoclonal antibodies to
KS-I, and one clone to KS-II [J14] to examine the distribution of KS
epitopes in lapine corneal development. The specific epitopes identified
by each antibody clone were not reported however differences were
evident in the spatio-temporal distribution of KS epitopes in the devel-
opmental rabbit cornea and conjunctival stroma over time and an
apparent lack of KS in early stages of rabbit corneal development.
However, this was a methodological deficiency since KS antibodies
such as 5-D-4 detect highly sulfated KS epitopes only. Low sulfation
KS would not have been detected. Since MAb 1-B-4 (Mehmet et al.
1986) and MAb R-10G (Kawabe et al. 2013; Nakao et al. 2017)
which detect these were not used in this study.

The Sulfation Status of KS Chains as Regulatory Motifs in Tissue
Morphogenesis
Chick corneal KS is initially synthesized in E5–E7 as a non-sulfated
poly-N-acetyllactosamine form, sulfation occurs over E12–E18 to
form KS ensuring correct spacing of collagen fibrils essential for
optical clarity, this also fine-tunes corneal hydration as the stroma
undergoes compaction during development (Borcherding et al.
1975; Liles et al. 2010). Many antibodies have been raised to KS,
the majority of these detect highly sulfated determinants on KS
(Table II). A few antibodies have also been raised which specifically
detect low sulfation and non-sulfated epitopes in poly-N-acetyllacto-
samine located on the embryonic cell surface (Andrews et al. 1984;
Pera et al. 1988; Adewumi et al. 2007; Kawabe et al. 2013). These
antibodies were originally developed to identify pluripotent embry-
onic stem cells and human induced pluripotent cells (Adewumi et al.
2007) to differentiate these from embryonic carcinoma stem cell
populations which contain highly sulfated KS (Ozawa and
Muramatsu 1985; Ozawa et al. 1985a; Muramatsu and Muramatsu
2004). KS is synthesized by the chick cornea between E5 and E7,
but only becomes highly sulfated by E14 (Hart 1976) with a switch
in KS biosynthesis from an unsulfated form to sulfated KS between
E12 and E15 (Cornuet et al. 1994). The low sulfation form of KS in
early corneal development displays antigenic determinants in the
poly-N-acetyllactosamine chain identified by EMCA-2, EMCA-3,
TRA-1-60/TRA-1-81 and R-10G (Kawabe et al. 2013; Nakao et al.
2017). Human auto-antibodies to the blood group substances i- and
I-antigen also identify determinants in embryonic KS chains (Liles
et al. 2010). These epitopes are masked by the sulfated KS epitopes
in mature tissues (Tang et al. 1986). The glycosylation status of cell
surface KS is an important regulatory determinant in tissue develop-
ment (Ohtsubo and Marth 2006). Antibodies which detect highly
sulfated KS on the cell surface of tumor cell proteoglycans such as
podocalyxcin have found application as diagnostic biomarkers.

KS and human disease

KS in Macular Degeneration
Macular dystrophy is a relatively rare eye condition linked to inher-
ited genetic mutations. Macular dystrophy causes deterioration of
the most sensitive part of the central retina (macula), which has the
highest concentration of light-sensitive cells (photoreceptors).
Alterations in the degree of sulfation of KS through mutations in the
CHST6 gene result in corneal opacity in macular corneal dystrophy
in humans (Edward et al. 1990; Funderburgh et al. 1990; El-Ashry

et al. 2002, 2005; Liskova et al. 2008; Dang et al. 2009; Sultana
et al. 2009; Patel et al. 2011).

KS in Cornea Plana Type 2 and Keratoconus
Mutations in the KERA gene cause the disorder cornea plana type 2
(CNA2) (Liskova et al. 2007; Roos et al. 2015; Kumari et al. 2016).
In patients with CNA2 the cornea lacks the normal convex profile
which prevents the correct refraction of light through the lens.
Defective KS chain elongation occurs in keratoconus (Funderburgh
et al. 1989; Akhtar et al. 2011; Garcia et al. 2016). Keratoconus is a
disorder of the eye which results in progressive thinning of the cor-
nea leading to blurry vision, double-vision, near-sightedness, astig-
matism and light sensitivity (Funderburgh et al. 1989; Edrington
et al. 1995; Espandar and Meyer 2010; Romero-Jimenez et al.
2010). To ascertain the importance of KS sulfation on KS functional-
ity, mice with a targeted gene deletion in Chst5 have been developed
(Hayashida et al. 2006). Chst5 encodes an N-acetylglucosamine-6-
O-sulfotransferase that is integral to the sulfation of corneal KS
chains. Corneas of homozygous mutants were significantly thinner
than those of WT or heterozygous mice and lacked high-sulfated KS,
but contained the core protein of the major corneal KSPG, lumican.
The corneal stroma of the Chst5-null mouse exhibited widespread
structural alterations in collagen fibrillar architecture, decreased
interfibrillar spacing and spatially disorganized collagen arrays indic-
ating that the KS sulfation had important roles to play in collagen
matrix organization (Hayashida et al. 2006).

Aberrant KS Biosynthesis in Amyotrophic Lateral Sclerosis
ALS (Lou Gehrig’s disease), or amyotrophic lateral sclerosis, is a
progressive neurodegenerative disease that affects nerve cells in the
brain and the spinal cord.

KS chains have essential roles to play in ALS, a motor neuron
disease which rapidly targets motor neurons and is a progressive,
fatal neurological condition affecting voluntary muscle control
(Hirano et al. 2013; Foyez et al. 2015). Motor neurons are located
in the brain, brain stem, and spinal cord and are vital lines of com-
munication between the nervous system and voluntary muscle
groups. Progressive motor neuronal death results in muscle weaken-
ing, atrophy and eventually a complete inability to control voluntary
muscular movement. Respiratory failure is a common cause of death
in ALS patients (Hirano et al. 2013). Nonsense and missense muta-
tions in the CHST6 gene for Carbohydrate sulphotransferase 6
cause ALS. The CHST6 gene product, corneal N-acetylglucosamine-
6-sulfotransferase (C-GlcNac6ST), is important for the production
of sulfated KS. Lack of activity of this enzyme results in the produc-
tion of unsulfated KS, leading to a loss of transparency in the cor-
neas of affected patients (Edward et al. 1990; Akama et al. 2000;
El-Ashry et al. 2002, 2005; Iida-Hasegawa et al. 2003; Aldave et al.
2004; Patel et al. 2011).

The Role of KS in Mouse Models of COPD
A KS disaccharide ([SO3

−-6]Galβ1–4[SO3
−-6]GlcNAc) has been exam-

ined as a therapeutic agent in a murine model of elastase-induced-
emphysema and in an LPS-induced exacerbation model of cigarette
smoke-induced emphysema (Gao et al. 2017). The KS–disaccharide
treatment attenuated alveolar destruction, resulted in a reduced neu-
trophil influx and a reduced levels of inflammatory cytokines and
MMPs in lung tissues resulting in reduced inflammation and lung tis-
sue destruction. KS disaccharide also blocked the chemotactic migra-
tion of neutrophils in vitro and was as effective as dexamethasone in
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preventing the accumulation of inflammatory neutrophils in lung tis-
sues in vivo. Thus KS-disaccharide displayed potential as an agent for
the treatment of chronic obstructive pulmonary disease (COPD)
deserving further evaluation.

Alzheimers Disease
Aberrant sulfation levels of KS are found in the brains of Alzheimers
patients (Zhang et al. 2017).

The interactivity of KS with neuroregulatory effector proteins,
nerve growth factor and receptor proteins, synaptic proteins, neuro-
transmitters and cytoskeletal components (Conrad et al. 2010) sug-
gests likely effects which may explain the impact on cognitive
learning and memory associated with Alzheimers disease (Lindahl
et al. 1996; Snow et al. 1996).

KS antibodies and their use in the elucidation of KS

structural complexity

The first antibody identified that specifically recognized a native
“GAG structure-specific epitope” was 5-D-4 (Caterson et al. 1983).
Interestingly, of all four classes of GAGs, KS has the largest number
of antibodies which have been developed to various KS antigenic
epitopes lending tacit support to the importance of emerging roles
for KS in the pathobiology of connective tissues (Table II). The
range of antigenic determinants detected using these antibodies testi-
fies to the structural complexity and biodiversity of KS. GAGs are
information dense molecules which provide molecular recognition
and directive information to cells influencing cellular behavior in tis-
sue development, tissue morphogenesis and the maintenance of tis-
sue homeostasis (Melrose 2016).

EMCA is detected in early embryonic stem cells and pluripotent
stem cells particularly in the intestinal epithelium which is covered by a
continuous layer of mucus (Buisine et al. 1998). MUC-1 in the glandu-
lar endometrial endothelium carries small sulfated KS chains identified
by MAb 5D4 and the anti-sialo KS antibody D9B1 (Aplin et al. 1998).
These KS chains are believed to influence the adhesive/anti-adhesive
properties of MUC1 and may have roles in the spatio-temporal regula-
tion of embryo implantation (Smith et al. 1989; Hoadley et al. 1990;
Aplin 1991; Graham et al. 1994; Aplin et al. 1998). Endometrial
MUC1 also bears sialyl Lewis X epitope which has roles in selectin-
mediated cell adhesion and tissue morphogenesis.

GCTM-2 is an epitope on the core protein of a mucin-like KS/CS
pericellular matrix PG, podocalyxcin expressed by human pluripo-
tent stem cells (Pebay et al. 2005). MAb TRA-1-60 and TRA-1-81
also recognize epitopes on carbohydrate side chains on the same
molecule (Nakao et al. 2017). A related diagnostic MAb to EMCA
detects serum epitheliamucin epitopes arising from breast cancer
tumors (Dixon et al. 1993). EMCA is also a carbohydrate component
of embryoglycan, a branched poly-D-N-acetyllactosamine mucin-like
cell surface glycan expressed by embryonic cells. TRA-1-60 and TRA-
1-81 antigens are commonly used as markers of undifferentiated
pluripotent human stem cells (Schopperle and DeWolf 2007). Glycan
array analysis of more than 500 oligosaccharides has identified the
TRA-1-60 and TRA-1-81 epitopes as terminal type 1 lactosamine:
Galβ1–3GlcNAcβ1–3Galβ1–4GlcNAc and Galβ1–3GlcNAcβ1–
3Galβ1–4GlcNAcβ1–6(Galβ1–3GlcNAcβ1–3)Galβ1–4Glc. Effective
antibody binding requires an extended tetrasaccharide structure
where the type 1 disaccharide is β1,3-linked to type 2 lactosamine
(Natunen et al. 2011). The TRA-1-81 epitope is resistant to neur-
aminidase digestion, unlike the TRA-1-60 epitope. The “TRA”
antigen is named after “The battle of Trafalgar”; however, some

authors also refer to this as tumor rejection antigen (Schopperle
and DeWolf 2007).

The TRA-1-60 and TRA-1-81 and GCTM-2 epitopes on KS are
unique to primate pluripotent stem cells (Pebay et al. 2005; Adewumi
et al. 2007). These epitopes are sensitive to endo-β-D-galactosidase,
keratanase-I, keratanase II and N-glycanase digestion and are com-
pletely lost upon differentiation of the stem cells. Podocalyxcin, a cell
surface mucin-like stem cell KSPG bears the TRA-1-60, TRA-1-81 KS
epitopes (Andrews et al. 1984; Nakao et al. 2017). Antibody R-10G
also identifies low sulfation KS chains on podocalyxcin (Cooper et al.
2002) in induced pluripotent stem cells and embryonic stem cells dis-
tinguishing these from embryonal carcinoma cells expressing podoca-
lyxcin containing oversulfated KS chains detected using MAb 5-D-4.
Another antibody to oversulfated KS (MAb 4-C-4) also detects cell
surface KS on embryonic carcinoma cells (Fukuma et al. 2003). Thus
podocalyxcin apparently follows a similar developmental pathway to
corneal KSPGs. Corneal KS is initially synthesized in the chick embryo
as a non-sulfated chain in which the polylactosamine i-antigen can be
detected (Liles et al. 2010), with development the i-antigen becomes
obscured through branching to form the I antigenic structure.
Sulfation of the polylactosamine chain with tissue maturation pro-
duces oversulfated KS obscuring detection of the “i” epitope. The “i”
(Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Gal-) and branched “I”
antigens (Figure 2) are recognized by human cold reactive monoclonal
IgM auto-antibodies (Feizi 1977).

A related bi-, tri- or higher antennary branched 120–440 kDa
proteoglycan composed of a complex core polylactosamine
assembled from β1–3-linked D-GlcNAc and D-Gal units has also
been observed on embryonic cells (Dvorak et al. 1998; Muramatsu
2017). Embryoglycan carries a number of developmentally regulated
glycan marker molecules such as the trisaccharide Gal(β1→4)-[Fuc
(α1→3)] GlcNAc Lewis X epitope, also known as CD15/SSEA-1
(stage-specific embryonic antigen) (Son et al. 2009), a cell surface
marker of embryonic stem cells, embryonal carcinoma cells and
multipotential cells of early embryos (Muramatsu and Muramatsu
2004). These glycans mediate cell adhesion in pre-implantation
embryos, aggregation of endothelial cells (Kojima et al. 1994;
Boubelik et al. 1996) and cell–cell interaction of galactosyl transfer-
ase and N-acetylglucosamine in polylactosaminoglycans. Lewis X
acts as a recognition molecule for FGF-2 and plays an active role in
the formation of ligand–receptor complexes (Dvorak et al. 1998).
Lectin studies employing Helix pomatia agglutinin, soybean agglu-
tinin, Sophora japonica agglutinin, Ricinus communis agglutinin-1,
Griffonia simplicifolia agglutinin-I, Dolichos biflorus agglutinin and
peanut agglutinin identify N-acetylgalactosamine, N-acetylglucosa-
mine and/or galactose as components of the side chains of embryo-
glycan (Ozawa and Muramatsu 1985). Embryoglycan contains
variable levels of sialylation and fucosylation (Figure 5). The ectodo-
mains of embryoglycan regulate FGF-2 activity (Dvorak et al.
1998). Normal embryonic stem cells also synthesize low sulfation
KS detected by MAb R-10G (Kawabe et al. 2013; Nakao et al.
2017).

Antibody SSEA-1 detects stage-specific embryonic antigen-1 (CD15/
Lewis X/3-fucosyl-N-acetyllactosamine) on cell surface glycoproteins,
glycolipids and PGs on murine pluripotent stem cells and embryos at
the pre-implantation stage. SSEA-1 is also expressed as a developmen-
tal marker in Xenopus laevis in early stage embryos but appears as a
200 kDa glycoprotein in later stage embryos facilitating cell–cell adhe-
sion and interactions which promote tissue morphogenesis through
the selectin cell adhesion glycoprotein family (Yoshida-Noro et al.
1999). Multipotent haematopoietic stem cells expressing the SSEA-1
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epitope populate skin wounds and actively promote skin healing
(Muramatsu and Muramatsu 2004; Li et al. 2016).

MAbs 5-D-4, 1-B-4 and MZ-15 are highly specific for sulfated
poly-N-acetyllactosamine sequences found in KS but not non-
sulfated poly-N-acetyllactosamine sequences of I- and i-antigen
(Mehmet et al. 1986). The minimum size of KS oligosaccharide
detected by KS antibodies 5-D-4, 1-B-4 and MZ-15 is a linear hepta-
sulfated hexasaccharide, although 1-B-4 also reacts with a tetrasul-
fated analog (Mehmet et al. 1986). MZ-15 reacts with hepta and
octa-saccharide KS oligosaccharides. Antibody 5-D-4 differs from
the 1-B-4 and MZ-15 antibodies in that it reacts strongly with a
hexa sulfated octa-saccharide, and most strongly with a linear dode-
casaccharide which may contain N-sulfated glucosamine residues
(Mehmet et al. 1986). A sialo-KS epitope in sulfated KS is also
recognized by Mab D9B1 (Aplin et al. 1998). MAb 4-C-4 detects a
sialyl fucosyl-KS proteoglycan containing highly sulfated KS on
embryonic carcinoma cells (Fukuma et al. 2003). Monoclonal anti-
body, 6D2/B5, recognizes a fucosyl-KS epitope in cartilage proteo-
glycans and also detects fucoidan (Baker et al. 1989). A novel
anti-KS antibody 3D12/H7 identifies KS chains interspersed within
the CS rich region of the aggrecan core protein in articular cartilage
and to a significantly lesser extent in tracheal cartilage aggrecan and
corneal extracts (Fischer et al. 1996). MAb 3D12/H7 does not identify
the KS chains from the KS-rich region on aggrecan. The 3D12/H7 KS
antibody does not recognize fragmented KS species released by kerata-
nase I/keratanase II digestion of the intact KS chains. It does, however,
identify intact KS chains from the CS-rich region of aggrecan isolated
by chondroitinase ABC and papain digestion. The specific KS epitope
identified by 3D12/H7 is within the oligosaccharide linkage region of
the KS chain which contains three sulfate groups and two fucose resi-
dues on the GlcNAc residues in this region of the KS chain. These KS
chains are preferentially expressed within the CS-rich region on the
aggrecan core protein (Fischer et al. 1996).

Further KS antibodies have been developed to a moderately sul-
fated (MAb 4-D-1) and a highly sulfated epitope in linear poly-N-
acetyllactosamine (MAb 2-D-3); however, these still require detailed
characterization (B. Kerr PhD Thesis, University of Cardiff,
University of Cardiff, 2005). A number of KS antibodies identify tri-
KS disaccharides (BVD-4, EFG-11) or ill-defined highly sulfated KS
epitopes (122, LC8.13, F1.2) (Table II). MAb F1.2 is claimed to
identify a conformation dependant KS epitope on the aggrecan core
protein but not in small KS-peptides.

Variation in GAG chains on cell-associated and tissue

KSPGs

In common with other PGs, KSPGs are important ECM and cell-
associated components which provide hydration, stabilization and
organization, and facilitate cell adhesion, cell migration and prolifer-
ation, neurotransmitter processing, synaptic function and neuro-
transmission. KSPGs and their GAG side chains act as a cell
recognition and information biosensor system which regulates cellu-
lar behavior (Melrose 2016). The information contained within the
sulfated sugars and poly-N-acetyllactosamine residues of KS regulate
growth factor and morphogen binding and through interactions
with FGF, IGFBP2, Wnt, Shh and BMPs they regulate essential
physiological and developmental processes (Russo et al. 1997;
Weyers et al. 2013). The interaction of KS with IGFBP2 may be sig-
nificant. The Cdk4 pathway is operative in neuritogenesis and is
activated by insulin. This induces neural cell proliferation and ter-
minal differentiation (Chirivella et al. 2017). Microarray studies

with corneal KS demonstrate that it also interacts with the Ephrin 4
receptor and may promote neuronal cell proliferation and differenti-
ation through Ephrin tyrosine kinase activity (Liu et al. 2017).

Podocalyxcin
Podocalyxcin is a cell surface mucin-like 250 kDa sialo KSPG
expressed by stem cells which is also associated with pluripotency
and bears the TRA-1-60 and TRA-1-81 KS epitopes (Andrews et al.
1984). GCTM-2 Ab also identifies 240 and 415 kDa KSPGs on the
surface of embryonal carcinoma cells (Pera et al. 1988). A novel
antibody to KS (R-10G) does not identify oversulfated KS (Kawabe
et al. 2013) but identifies low sulfation KS chains on podocalyxcin
(Cooper et al. 2002). Thus podocalyxcin follows a similar develop-
mental pathway to corneal KSPGs. Corneal KS is initially synthe-
sized in the chick embryo as a non-sulfated chain in which the
polylactosamine i-antigen can be detected (Liles et al. 2010). As
embryonic development ensues the i-antigen becomes obscured due
to branching to in the I-antigenic structure and progressive sulfation
of components of the poly-N-acetyllactosamine epitopes occurs with
tissue maturation leading to an accumulation of highly sulfated KS.
Normal embryonic stem cells synthesize low sulfation KS chains
detected by MAb R-10G (Kawabe et al. 2013; Nakao et al. 2017).
This is carried by the cell surface mucin-like KS–proteoglycan podo-
calyxcin. Embryonal carcinoma cells or mature human tissues also
express podocalyxcin but it contains an oversulfated form of KS, the
sulfation status of podocalyxcin correlates with the invasiveness,
metastatic and growth potential of tumor cells (Lin et al. 2014a,
2014b). The sulfation motifs on KS represent an important molecu-
lar switch which regulates cellular behavior. When this occurs in an
appropriate ordered fashion the tissue progresses from an embryonic
phenotype containing low sulfation KS to a normal functional adult
tissue containing highly sulfated KS. When this process is dysregu-
lated with the occurrence of early oversulfated KS in embryonic tis-
sues tumor development occurs. The form of lumican expressed by
tumor cells also bears oversulfated KS and correlates with the meta-
static potential of these cells (Lu et al. 2002; Naito et al. 2002;
Holland et al. 2004; Seya et al. 2006; Ishiwata et al. 2007; Matsuda
et al. 2008; Brezillon et al. 2013; Coulson-Thomas et al. 2013;
Nikitovic et al. 2014; Cappellesso et al. 2015).

Organization of KS Saccharides Effect the Functional Properties
of Intact KS Chains
As noted earlier, three types of KS chains have been categorized on
the basis of linkage type to PG core proteins, internal saccharide
organization and the presence or absence of internal or non-
reducing terminal α1-3 fucose or α2,3 neuraminic acid capping sac-
charides. A number of monoclonal antibodies have been developed
which identify the sulfation status of the KS chains. MAbs such as
5-D-4, MZ-15, EFG-4, EFG-11, 122, SV-1, SV-2, SV-4, 3D12/H7
and 4-C-4 detect highly sulfated KS sulfation epitopes (Table II).
MAb 1-B-4, 2-D-1, 2-D-3, LC8.13 and R-10G detect lower sulfa-
tion KS sulfation epitopes. MAbs to non-sulfated epitopes within
the poly-N-acetyllactosamine regions of KS chains including anti “i”
(Tho), anti-I (Den) antigens have also been identified. A KS neoepi-
tope antibody to KS has also been developed, BKS-1(+) (Akhtar
et al. 2008). This antibody detects a keratanase-generated “stub epi-
tope” on the KS chains. The susceptibility of the KS chains to deg-
radation by depolymerizing enzymes such as keratanase-I,
keratanase-II and endo-β-D-glycosidase (Figure 2) have been used to
confirm the sulfation status of the KS chains and undertake their
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structural characterization, GAG sequencing and estimations of
GAG chain size.

KSPGs Associated with Oocyte Implantation and Fertilization
The KS content of endometrial uterine lining tissues varies markedly
during the menstrual cycle, reaching a peak at the time of embryo
implantation (Graham et al. 1994). KS substitution on MUC1 and
other PGs in the endometrial lining suggests a potential role for KS
in this implantation process. A number of large KSPGs have been
identified in endometrial tissue (DeLoia et al. 1998) with roles in tis-
sue organization and in uterine mucous secretions however the fine
structure of their KS chains have not been determined. PZP-3 is one
such KS-substituted protein containing low sulfation N-linked lacto-
samine residues with roles in the promotion of oocyte–sperm inter-
actions which regulate fertilization (Noguchi and Nakano 1992;
Yonezawa et al. 1995; Gupta et al. 1996; Nakano et al. 1996).

Variation in the Sulfation of KS Chains of Other Proteoglycans
in Normal Tissues
Fibromodulin from young articular cartilage, contains KS chains
(Lauder et al. 1997) devoid of non-reducing terminal (α2–6)-linked
N-acetylneuraminic acid or fucose (α1–3)-linked to sulfated N-acet-
ylglucosamine residues (Lauder et al. 1998). An age-related increase
in the abundance of both (α2–6)-linked N-acetylneuraminic acid
and (α1–3)-linked fucose occurs on the KS chains of fibromodulin in
articular cartilage. KS isolated from non-articular tissues does not
contain these capping structures irrespective of tissue age.

PRELP is a further “non-GAG” member of the SLRP family con-
taining low sulfation KS chains. PRELP contains four potential N-
linked glycosylation core protein sites as are present in the related
KSPGs lumican and fibromodulin. Shorter low sulfation KS chains
may however be present in PRELP. A study in 1995 by Bengtsson
and colleagues showed that keratanase digestion of PRELP pro-
duced a small size shift on SDS-PAGE, suggesting the presence of
either small KS chains or non-sulfated poly-N-acetylactosamine.
Attempts to identify KS chains on the intact protein and on peptide
fragments using several monoclonal KS antibodies, however, were
inconclusive but it was not reported whether antibodies capable of
detecting low sulfation KS epitopes were employed (Bengtsson et al.
1995). PRELP has also been identified as a component of the cornea
and sclera where it was present as a 60–116 and 55–60 kDa protein,
respectively. Digestion with endo-β-D-galactosidase converted the
corneal PRELP to 45–50 kDa in size and the scleral PRELP to a pro-
tein with a molecular weight of 50 kDa (Johnson et al. 2006).
Digestion with N-glycanase resulted in a further reduction in size to
42–45 and 45KDa in the corneal and scleral PRELP samples demon-
strating N-linked KS chains of low sulfation. Keratanase-I and II
were ineffective in depolymerizing the PRELP KS chains confirming
that they were not highly sulfated. Thus PRELP can occur as a KS-
substituted glycoprotein in these tissues and contains small low sul-
fated KS chains (Johnson et al. 2006).

Variation in Highly Sulfated KS Levels in Connective Tissues with
Ageing
Although there is a generalized decline in connective tissue GAG
levels with ageing, the relative KS content of these tissues increases
with tissue maturation particularly in tissues subjected to high com-
pressive load such as the IVD (Olczyk 1993, 1994; Scott et al.
1994). Highly sulfated KS is absent in the fetal IVD, detectable in
the newborn and its levels progressively increase with the maturation

of the IVD (Melrose et al. 1998, 2000). Fibromodulin was more
abundant in the AF than in NP at all ages, its levels were elevated
in the adult NP (Sztrolovics et al. 1999). With increasing age, the
glycoprotein form of fibromodulin lacking KS was the predomin-
ant molecular form present in IVD tissues. The abundance of
fibromodulin increases with disc degeneration (Sztrolovics et al.
1999). Lumican is more abundant in the NP than AF juvenile
IVD; however, in the adult it was present at comparable levels in
both tissues.

KS Structure and Function in Aggrecan
Aggrecan is a major KS–proteoglycan which equips tissues with the
ability to resist compression. KS substitution in aggrecan occurs at
several locations (i) individual small N- and O-linked KS chains are
attached to the N-terminal G1 and G2 domains, (ii) small N- and
O-linked KS chains are also located in the IGD between G1 and G2,
(iii) a KS-rich region is located between the G2 and CS1 domains
which contains O-linked KS chains and (iv) occasional isolated sin-
gle or doublet KS chains also occur in the CS1 and CS2 domains of
aggrecan (Figure 3G).

KS Chains in the G1 Domain Inhibit a T Cell-Mediated Response
When Aggrecan G1 is Used as an Arthritogen
A KS side chain in adult aggrecan G1 domain obscures the recogni-
tion of arthritogenic T cell epitopes (Leroux et al. 1996). A cross-
reactive and arthritogenic T cell epitope in the G1 domain of human
and murine aggrecan (Glant et al. 1998) elicits an immune response
in RA when the KS chains in the G1 domain are absent (Leroux
et al. 1996, Guerassimov et al. 1998). In aggrecan isolated from
mature articular cartilage the G1 hyaluronan binding region con-
tains a small KS chain attached to Threonine 42 within loop A. This
is not present in the immature G1 domain. A small N-linked KS
chain is attached to Asn 220 in the B loop of the G1 domain in
immature and mature aggrecan, but in the immature G1 the KS
chain is shorter. Asn 314 of the B’ loop of mature G1 domain con-
tains KS, however immature G1 does not. The versican G1 domain
also contains KS chains; however, these have not been characterized
and it is not generally referred to as a KSPG (Sztrolovics et al.
2002). The aggrecan G2 domain contains a KS chain located close
to the MAb 1-C-6 HABR epitope. This KS chain obscures antibody
binding to the 1-C-6 epitope (Fosang and Hardingham 1991). The
biological significance of this KS chain is un-determined.

KS Substitution in the Aggrecan IGD Effects MMP and ADAMTS
Cleavage
The aggrecan interglobular domain (IGD) can be cleaved by a num-
ber of proteinases including aggrecanase-1 and 2 and MMPs
(Fosang et al. 1996; Lark et al. 1997; van Meurs et al. 1998; 1999;
Chambers et al. 2001; Struglics et al. 2006a, 2006b). The KS attach-
ment sites in the IGD of porcine and bovine aggrecan are located in
a 32 amino acid sequence between the MMP and ADAMTS cleavage
sites (Barry et al. 1992, 1994, 1995). This amino acid sequence is highly
conserved and has functional roles in the modulation of aggrecanase-1
and 2 activity (Fosang et al. 2008). KS chains are also located in close
proximity to the IGD aggrecanase cleavage site (Fosang et al. 2009).
In cartilage, proteolysis in the IGD releases the entire CS-rich region of
aggrecan. Cleavage at E373↓374A in the IGD is a signature feature of
the aggrecanases but is not actually the preferred cleavage site which is
in the CS-2 domain (Tortorella et al. 2000, 2002). ADAMTS-1,
ADAMTS-4 and cathepsin B can also cleave at the MMP IGD
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cleavage site N341↓342F (Mort et al. 1998; Rodriguez-Manzaneque
et al. 2002; Westling et al. 2002).

Differences in the KS Chains in the KS-Rich Region, IGD and G1,
G2 Domains
The GAG chains in the KS-rich region have been extensively studied
in human and bovine aggrecan (Tai et al. 1991, 1993, 1994,
Dickenson et al. 1992, Brown et al. 1998). However, there is only
one study published on the KS microstructure in the IGD (Fosang
et al. 2009) and a handful of studies on the G1 and G2 KS chains
(Barry et al. 1995). The KS chains in the IGD of pig aggrecan are
significantly less sulfated than the KS chains from the KS-rich region
(Fosang et al. 2009). KS in the KS-rich region has a high proportion
of disulfated disaccharides (55%) and a low proportion (11%) of
unsulfated disaccharides, whereas KS in the IGD has less disulfated
disaccharides (33%) and a significantly higher proportion of unsul-
fated disaccharides (33%) (Fosang et al. 2009).

Species Differences in KS Substitution in Aggrecan
While Swarm rat chondrosarcoma aggrecan contains KS oligosac-
charides, these do not undergo elongation and sulfation into mature
KS chains. The KS-rich region in rodent aggrecan is spliced out
(Oegema et al. 1975; Venn and Mason 1985) but KS is present in
the IGD (Fosang et al. 2008) and of low sulfation as seen in pig and
rat chondrosarcoma (Oegema et al. 1975), and not detected by anti-
bodies to highly sulfated KS epitopes such as 5D4 (Caterson et al.
1983, Mehmet et al. 1986) and MZ-15 (Zanetti et al. 1985).

Variation in KS Substitution in Aggrecan with Ageing
In humans, the KS content of aggrecan increases from a minimal
level at birth to a value of ~25% of the total GAG in adulthood
(Brown et al. 1998). The microstructure of KS in the KS-rich region
of aggrecan undergoes age-dependant changes (Brown et al. 1998).
KS from young articular cartilage (0–9 years) has low sulfation
levels compared to KS from adult articular cartilage (18–85 years).
Skeletal KS-II in aggrecan isolated from adult articular cartilage is
also more highly modified by fucosylation and sialylation than KS
from immature tissue. The KS chains of aggrecan from weight-
bearing tissues such as articular cartilage and IVD contain 1–3
fucose and 2–6 N-acetylneuraminic acid residues (Kiani et al. 2002),
these are absent in aggrecan isolated from non-weight-bearing nasal
and tracheal cartilages (Nieduszynski et al. 1990). Increased fucosy-
lation and sialylation of KS confers an increased resistance to
depolymerization by keratanase-I and II and endo-β-D-galactosidase
(Melrose and Ghosh 1988). KS substitution on aggrecan increases
with ageing (Barry et al. 1995, Pratta et al. 2000) and in the IGD of
aggrecan (Barry et al. 1995). The IGD of aggrecan in aged tissues
may be more susceptible to proteolysis by aggrecanases (Pratta et al.
2000).

Functional roles for KS–proteoglycans in brain tissue

Role of the ECM in Brain Tissue Development
The ECM of the brain, a supportive scaffolding network and plat-
form for cellular attachment, is a source of intuitive cues which dir-
ect cell behavior. KSPGs also have key functional roles to play in
brain tissue (Table I). The ECM provides cues for the assembly and
repair of functional network structures where secreted molecules
produced by glial cells and neurons are used to assemble transmitter
and effector receptors and ion channels which effect brain function

and neuronal control over tissues throughout the human body.
Significant inroads have been made on specific molecules which
modulate the incorporation of effector molecules into network
assemblies in the brain or the shedding of transmembrane activity
molecules through proteolytic release of signaling messengers. The
ECM is plastic and responsive to such network activity.
Dysregulation of the brain ECM is linked to major psychiatric and
neurodegenerative diseases.

Proteoglycans play important regulatory roles in the development
and function of the brain. Perineural nets are prominent structures
formed by interaction of the lectican family of CS–proteoglycans, link
protein, hyaluronan and tenascin-R. The perineural nets surround
and protect neurons; however, the charge localization provided by
the CS-A and CS-C side chains in these assembled structures pro-
vides repulsive cues which inhibit neuronal outgrowth in cases of
axonal damage. The charge properties of the GAG chains of other
brain proteoglycans, however, can promote repair processes and its
functional organization. The brain contains several KSPGs (Table I)
including Abakan, PG1000, claustrin, phosphacan and SV-2 with
important functional roles to play in the CNS/PNS. In contrast to
the CS-A and CS-C chains of the lectican proteoglycan family which
inhibit neural repair, the KS chains of phosphacan provide anti-
adhesive cues to neuronal cells preventing their interaction with
tenascin-C fostering neurite outgrowth following injury and pro-
mote axonal repair (Dobbertin et al. 2003).

Roles for the SLRPs in Neuro-regulation
The SLRP family contains a number of KSPGs which regulate sig-
naling pathways in neural development and in neural maintenance
(Dellett et al. 2012). A distinguishing feature of the SLRPs is their
central LRRs which adopt a horseshoe-like configuration which
facilitates protein–protein interactions (Kobe and Deisenhofer 1994;
Scott 1996; Iozzo 1997) and molecular recognition processes,
including cell adhesion, signal transduction and DNA repair
(Hocking et al. 1998; Schonherr and Hausser 2000; Wei et al. 2008;
Winther and Walmod 2014) (Figure 3). LRRs are present in more
than 6000 proteins (Wei et al. 2008) and approximately 140 genes
encode extracellular LRR proteins (Winther and Walmod 2014).
The GAG chains of SLRPs function in the maintenance of the spa-
cing of collagen fibers, normal tissue hydration, and interact with
growth factors and their receptors (Kobe and Deisenhofer 1994;
Scott 1996; Iozzo 1997; Schonherr and Hausser 2000). Many mem-
bers of the SLRP family exist without GAG chains and are con-
sidered as “part time” proteoglycans but may still have anchoring
roles in the ECM due to their LRR containing core proteins (Iozzo
1997; Hocking et al. 1998). The SLRPs also act as matricellular pro-
teins co-ordinating a number of signaling pathways to regulate the
development of the neural system through secreted signaling mole-
cules such as Nodal, FGFs, Wnts and Shh (Dellett et al. 2012). A
number of LRR proteins of the SLRP family have been identified in
brain tissues including Tsukushi, decorin, biglycan and fibromodulin
(Snow et al. 1992; Stichel et al. 1995; Kappler et al. 1998; Ito et al.
2010). Cultured meningeal cells and astrocytes synthesize biglycan
(Koops et al. 1996, Kikuchi et al. 2000). Biglycan stimulates growth
of microglial cells (Kikuchi et al. 2000), has neurotrophic activity
(Junghans et al. 1995) and supports the survival of neocortical neu-
rons (Koops et al. 1996). Decorin is developmentally regulated in
postnatal rat brains (Kappler et al. 1998). Decorin and biglycan are
differentially expressed after injury in the adult rat brain (Stichel
et al. 1995), decorin has also been immunolocalized in plaques and
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neurofibrillary tangles in Alzheimers disease (Snow et al. 1992).
Fibromodulin has been detected in the hippocampus of a mouse
model of Alzheimers disease (Alvarez-Lopez et al. 2013). Biglycan
and Fibromodulin have both been detected in the hypothalamus and
hippocampus in a transcriptomic epigenomic study demonstrating
roles for these proteoglycans in gene networks regulating cell meta-
bolism, cell communication, inflammation and neuronal signaling of
relevance as genetic causal risks in metabolic, neurological and psy-
chiatric disorders in humans (Meng et al. 2016).

SV2 Proteoglycan
SV2 proteoglycan has critical neuroregulatory and synaptic regula-
tory roles via its ability to regulate presynaptic Ca2+ and neuro-
transmitter levels, malfunctioning of SV2 is implicated in epilepsy
(Wan et al. 2010). SV2 is phosphorylated on serine and threonine
thus is a substrate for serine/threonine kinases (Pyle et al. 2000)
which have downline effects on cytoskeletal organization, cell sig-
naling and interactions with neurotransmitters. KS in SV-2 proteo-
glycan occurs as a large GAG side chain up to 50Da in size
(Figure 4C). SV-2 occurs as 3 isoforms (SV2A, SV2B, SV2C) of vari-
able distribution in the CNS/PNS and as low (100 kDa) and high
molecular weight forms (250 kDa). SV-2 has a 80 kDa core protein
and contains three N-linked KS substitution sites at amino acids
498, 548 and 573 (Bajjalieh et al. 1992, 1993, 1994; Feany et al.
1992). The KS chains of SV2 interact with neurotransmitters form-
ing a smart gel storage matrix within synaptic vesicles.

Phosphacan
Phosphacan is the enzymatically released proteoglycan ecto-domain
of receptor-type protein tyrosine phosphatase beta (RPTP-β) and is
one of the principal ECM proteoglycans of the CNS promoting neu-
ron–glial interactions, neuronal differentiation, myelination and
axonal repair (Figure 3B). RPTP-β is expressed in the developing ner-
vous system and contains an extracellular carbonic anhydrase and
fibronectin type III repeat domain which foster protein–protein inter-
actions. RPTP is expressed in 3 alternatively spliced forms RPTP-γ,
RPTP-β/ζ and a truncated form. The transient nature of cell signaling
by phosphorylation requires specific phosphatases in order to control
and regulate this process. The complexity of this regulatory system is
well illustrated by the many protein tyrosine phosphatases spatially
and temporally expressed in specific regions of the developing brain.
The carbonic anhydrase (CAH) domain of RPTP-β promotes protein–
protein recognition inducing cell adhesion and neurite outgrowth of
primary neurons, and differentiation of neuroblastoma cells.
Contactin is a neuronal receptor for RPTP-β and its interaction with
phosphacan generates unidirectional/bidirectional neural signaling and
promotes axonal repair.

Podocalyxcin
Podocalyxcin is an anti-adhesive transmembrane neural KS-polysia-
lylated-proteoglycan/glycoprotein with essential roles to play in
neural development (Vitureira et al. 2005, 2010) and is also a
marker of human embryonic and induced pluripotent stem cells
(Toyoda et al. 2017). Podocalyxcin is up-regulated in glioblastomas
and astrocytomas (Hayatsu et al. 2008b; Toyoda et al. 2017), lead-
ing to its use diagnostically in the detection of various cancers
(Nielsen and McNagny 2009; Wang et al. 2017) including esopha-
geal and gastric adenocarcinoma (Laitinen et al. 2015; Borg et al.
2016), colorectal (Larsson et al. 2013, 2016), breast (Sizemore et al.
2007; Snyder et al. 2015; Graves et al. 2016), hepatocellular

(Flores-Tellez et al. 2015), pancreatic ductal (Heby et al. 2015;
Saukkonen et al. 2015), oral squamous cell (Lin et al. 2014b),
urothelial bladder (Boman et al. 2013), ovarian (Ye et al. 2012),
renal (Hsu et al. 2010), thyroid carcinoma (Yasuoka et al. 2008)
and lymphoblastic and myeloid leukemia (Kelley et al. 2005;
Riccioni et al. 2006; Nielsen and McNagny 2009). KS chains on
podocalyxcin in normal embryonic cells are of low sulfation
detected by MAb R-10G (Kawabe et al. 2013; Nakao et al. 2017;
Toyoda et al. 2017) while tumor cells produce a high sulfation KS
chain detected by antibodies such as 5-D-4 or MZ-14 (Caterson
et al. 1983; Saphos et al. 1993; Yoon et al. 2002). Two cytosolic
adapter proteins, Na+/H+-Exchanger Regulatory Factor 2
(NHERF2) and Ezrin, interact with the cytoplasmic tail of podoca-
lyxcin exerting regulatory effects on cell signaling and downline
effects on neural behavior during the development and repair of the
CNS/PNS. Neural migration and axonal guidance are governed by
cues from many ECM molecules (Netrins, Semaphorins) which exert
either attractive or repulsive cues. Podocalyxcin is not essential for
neural migration to occur but can modulate this process. Cell–cell
contact and adhesion to the ECM contribute to neural assembly
processes. Adhesion molecules such as NCAM and L1 have import-
ant roles to play in axonal growth, neural migration and synapse
formation. Podocalyxcin has essential roles to play in neuritogenesis
and synaptogenesis (Kiss and Rougon 1997; Eckhardt et al. 2000;
Angata et al. 2007). Podocalyxcin co-localizes with synapsin and
synaptophysin in synapse vesicle formations (Vitureira et al. 2010).
Synaptophysin is a major synaptic vesicle protein which co-ordinates
the endocytosis of synaptic vesicles during neural stimulation (Kwon
and Chapman 2011), synapsin tethers synaptic vesicles to cytoskeletal
components preventing premature vesicle release into the synaptic gap
co-ordinating neurotransmitter release from the synaptic vesicles to
communicating neurons (Cesca et al. 2010; Fornasiero et al. 2010;
Valtorta et al. 2011; Song and Augustine 2015). Podocalyxcin is
related to the sialomucins CD34 and endoglycan (Horvat et al. 1986;
Delia et al. 1993; Kershaw et al. 1997; Sassetti et al. 1998; Hara et al.
1999; Miettinen et al. 1999; Sassetti et al. 2000; Doyonnas et al.
2005; Nielsen and McNagny 2008, 2009).

Abakan
Abakan is a large brain KSPG with at least one CS side chain and
one additional carbohydrate chain containing a terminal 3-sulpho-
glucuronic acid (HNK-1) (Geisert et al. 1992). Abakan is up-
regulated during corticol injury in neonatal rats and is associated
with astrocytes in the optic nerve and developing brain. At birth,
Abakan levels are low in the sensory cortex but its levels steadily
increase with tissue maturation reaching maximal levels in the adult
brain (Seo and Geisert 1995). Abakan blocks neural attachment and
neurite outgrowth in culture and marks the boundaries of structural
regions of the developing brain (Geisert and Bidanset 1993; Robson
and Geisert 1994).

Conclusions

KSPGs are a biodiverse multifunctional group of molecules. KS has
a widespread distribution in the cornea, cartilage and brain, how-
ever, compared to other GAGs relatively little is known of its func-
tional properties (Table I). KSPGs of widely differing modular
design such as aggrecan and fibromodulin occur in hyaline cartilage
and fibrocartilage, lumican and keratocan in cornea, SV2 proteogly-
can in synaptic vesicles and claustrin, abakan, phosphacan and
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aggrecan in brain (Iozzo and Schaefer 2015). One isoform of CD44
(epican) contains KS and the perlecan synthesized by HEK 293 kid-
ney keratinocytes also contains KS. A number of molecules have
been demonstrated to contain small low sulfation KS chains
(PRELP, transferrin, thyroglobulin, early embryonic KSPGs, podo-
calyxcin); however, the functional significance of these KS chains is
not known. The uniform spacing between collagen fibrils provided
by lumican and keratocan in cornea points to their well-established
roles in collagen fibrillogenesis, fibril spacing and ECM organiza-
tion. Roles for brain KSPGs in neurotransmission, synapse organiza-
tion and nerve regeneration have also been elucidated. Endometrial
and uterine KSPGs have roles in implantation and fertilization.
Highly sulfated KS chains on a number of cell surface and secreted
KSPGs have found diagnostic utility and prognostic capability for
the assessment of a number of tumors. KSPGs act as Ca2+ reser-
voirs in egg shell assembly, bone mineralization and in the gener-
ation of action potentials in neurons. SV2 is a transport
proteoglycan and forms a smart gel complexes with neurotransmit-
ters within synaptic vesicles. KS is interactive with a large number of
protein kinases and nerve associated proteins and new evidence
shows KS regulates a number of growth factors, morphogens and
inflammatory cytokines in tissue morphogenesis, remodeling and
development. It is remarkable that these properties are achieved by a
relatively simple GAG. The KS structure is based on the N-acetyl-
polylactosamine backbone -Galββ(1–4) GlcNAcβ(1–3)-, GlcNAc is
normally 6-O-sulfated and the Gal disaccharide component can also
be 6-O sulfated but this varies with tissue location, age and species.
α1–3 linked L-fucose on GlcNAc in the main lactosamine repeat
region occurs in articular cartilage but rarely in non-articular tissues
(e.g. nasal septum, trachea). Skeletal KSII has two major capping
sequences α2–3 and α2–6 linked N-acetylneuraminic acid whereas
corneal KS has over seven different sugar/linkage combinations
involving N-acetyl, N-glycolyl-neuraminic acids, GalNAc and α-Gal
(Whitham et al. 1999; Prydz 2015). The significance of these cap-
ping structures in terms of molecular recognition is not known but
they do confer resistance to depolymerization to KS by keratanase-I/II
and endo-β-D-galactosidase.

The identification of a range of molecules with low sulfation small
KS chains points to an area of the KS molecule which is poorly investi-
gated. While the charge density of the highly sulfated KS chains is a
driving force for many KS-mediated interactions, a high charge density
in glycans is not essential for these to impart important recognition
and directional cues to cells and the regulation of a number of physio-
logical processes through interactions with lectins and pattern recogni-
tion receptors in the human body (Melrose 2017). It may well be that
such interactions with low sulfation KS chains afford a more subtle
level of cellular control than the high charge density mediated interac-
tions provided by oversulfated KS chains such as those detected by
MAb 5-D-4. There is still a lot to understand about KS and this area
of glycobiology is entering an interesting era.
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natural killer antigen-1; IGD, interglobular domain; IGFBP2, insulin-like
growth factor binding protein-2; KS, keratan sulfate; KSPGs, keratan sulfate
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