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Despite all the efforts acquired in four years of the COVID-19 pandemic, the path to a full 
understanding of the biological mechanisms involved in this disease remains complex. This is 
partly due to a combination of factors, including the inherent characteristics of the infection, socio-
environmental elements, and the variations observed within both the viral and the human genomes. 
Thus, this study aimed to investigate the correlation between genetic host factors and the severity 
of COVID-19. We conducted whole exome sequencing (WES) of 124 patients, categorized into severe 
and non-severe groups. From the whole exome sequencing (WES) association analysis, four variants 
(rs1770731 in CRYBG1, rs7221209 in DNAH17, rs3826295 in DGKE, and rs7913626 in CFAP46) were 
identified as potentially linked to a protective effect against the clinical severity of COVID-19, which 
may explain the less severe impact of COVID-19 on the Northern Region. Our findings underscore the 
importance of carrying out more genomic studies in populations living in the Amazon, one of the most 
diverse from the point of view of the presence of rare and specific alleles. To our knowledge, this is 
the first WES study of admixed individuals from the Brazilian Amazon to investigate genomic variants 
associated with the clinical severity of COVID-19.
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Throughout the four-year duration of the pandemic, extensive research has been dedicated to understanding 
COVID-19. As a result, non-genetic factors within the host, such as advanced age, male sex, and comorbidities 
such as hypertension, diabetes, and cardiovascular diseases, have already been associated with a worse prognosis 
in COVID-19.

However, these identified risk factors do not fully account for the diverse spectrum of clinical manifestations 
observed in the disease. It is noteworthy that severe forms of the disease, marked by poor oxygen saturation 
and lung damage, have not been confined solely to individuals within the aforementioned high-risk groups. 
Rather, they have also manifested in young individuals, with or without comorbidities1–4. These features suggest, 
according to Novelli et al., several hypotheses, including a breakdown of immunological tolerance, the viral 
load, an innate immune inefficiency, and the presence of common or rare risk alleles in protein-coding genes 
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important for the biological cycle of the virus5. Therefore, genetic host factors may influence the complexity of 
the virus-host interaction.

In Brazil, there remains a scarcity of exomes-wide sequencing (WES) studies conducted on individuals 
infected by COVID-19 to date. From the exome analysis of 83 Brazilian couples of the Southeast region, with one 
partner infected and symptomatic, and the other uninfected, Castelli et al. (2021) demonstrated an association 
between alleles of HLA-A and HLA-DRB1genes and the susceptibility to symptomatic infection6. Another study 
by the same group observed missense variants in MUC22gene that may act as a protective factor against severe 
COVID-19. These variations were found with a higher prevalence in 87 individuals older than 90 years with mild 
symptoms or asymptomatic when compared to 55 individuals younger than 60 years who had a severe disease 
or died due to COVID-197.

Moreover, Secolin et al. (2021) detected rare variants in COVID-19-related genes, including SLC6A20, 
LZTFL1, XCR1, and FURIN, exclusive to the 88 exomes of Brazilians from the Southeast region8. Another 
Brazilian exome study for COVID-19 comes from Santos-Rebouças et al. (2022), which identified rare variants 
in FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2genes related to a higher risk of Multisystem 
Inflammatory Syndrome in Children (MIS-C) development, a complication of severe COVID-19, in 16 children 
living in Southeast Region9.

Importantly, these exomes are restricted only to the South and Southeast regions (which have a high level of 
European genetic contribution). However, it is known that the Brazilian population has a high degree of ethnic 
admixture influenced mainly by three parent populations: Europeans, Africans and Native Americans, resulting 
in an extremely heterogeneous genetic structure that is unevenly distributed between regions, especially in the 
Northern region. Another challenge is the application of GWAS in this country, since due to the high rate of 
miscegenation, genetic findings associated with diseases may vary between different countries and within Brazil 
and within Brazilian regions10–12.

Considering that SARS-CoV-2 infection and the progression of COVID-19 are influenced by host proteins 
(and the exome precisely investigates protein-coding genes), the significance of using this technique to evaluate 
potential genetic factors linked to the severity of this pathology becomes evident.

Here, we emphasize the importance of identifying genetic protective and risk factors within the human 
host in the pathogenesis of SARS-CoV-2. Therefore, investigating the association between genetic factors and 
the severity of COVID-19 within an Amazonian population from Northern Brazil is imperative. Such studies 
are crucial for enhancing our understanding of the clinical progression of this disease, thereby enabling 
improvements in the healthcare system and facilitating efforts to reduce mortality rates, especially in populations 
that are underrepresented in genomic worldwide studies and databases, such as ours.

Results
Clinical results
The demographic and clinical profiles of the patients are outlined in Table  1. Our analysis comprised 124 
individuals, categorized into two groups based on their clinical status: 68 with a severe form of COVID-19 
(sCOV) and 56 with a non-severe form (nsCOV).

The average age of the sCOV group was 56 (± 14.2), whereas in the nsCOV group was 39 (± 14.6), with a 
significant association being observed between age and the clinical severity of COVID-19 (p < 0.01). Regarding 

Variables sCOV (n = 68)
nsCOV
(n = 56) OR (95% CI) p-value

Age* 56 (± 14.3) 39 (± 14.6) < 0.01

Sex** 0.28

Female 40 27

Male 28 29

Lineage***

B.1.1 22 15 1.19 (0.50–2.8) 0.6

P.1 31 20 1.36 (0.61–3.08) 0.4

Comorbidities*** 58 19 14.8 (5.4–46.3) < 0.01

SAH 37 4 16.2 (5.49–59.7) < 0.01

Obesity 15 5 2.91 (0.91–11.05) 0.05

Chronic Heart Disease 4 4 2.80 (0.78–12.7) 0.10

Overweight 26 3 19.5 (4.40–176.5) < 0.01

Ancestry

European 0.628 0.608

African 0.109 0.110

Native American 0.263 0.281

Table 1.  Bioanthropological and clinical data of patients with COVID-19. sCOV: severe form of COVID-19; 
nsCOV: non-severe form of COVID-19; SAH: systemic arterial hypertension. OR: Odds Ratio. *Wilcoxon test. 
** Chi-squared test. *** Fisher test.
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gender distribution, there was a predominance of females in the severe group (54,8%); however, no statistically 
significant difference was observed (p = 0.28).

Among the 21 strains identified in our study, two emerged as more prevalent: P.1 (p = 0.4; OR = 1.36; 95% 
CI = 0.61–3.08) and B.1.1 (p = 0.6; OR = 1.19; 95% CI = 0.50–2.8). However, neither demonstrated a significant 
association with the clinical severity of COVID-19.

Regarding comorbidities, a significant association with pre-existing medical conditions was found, indicating 
a 14-fold increase in the risk of developing severe COVID-19 (p < 0.01; OR = 14.8; 95% CI = 5.4–46.3) among 
individuals. Among the comorbidities analyzed, hypertension was associated with a 16-fold greater risk (p < 0.01; 
OR = 16.2; CI 95% 5.49–59.7) while overweight exhibited a 19-fold greater risk (p < 0.01; OR = 19.5; CI 95% = 
4.40–176.5) of severe COVID-19.

Population structure analysis
Genomic data obtained through WES allowed for the evaluation of population structuring patterns present 
within the sample of COVID-19 patients. For the Admixture software analyses, a supervised approach was 
employed in a three-hybrid model. This model considered samples of individuals belonging to three distinct 
groups: Europeans, represented by the populations of the Iberian Peninsula (IBS − 1kG); Africans, represented 
by the Yoruba people (YRI/AFR − 1kG); and Native Americans, represented by indigenous populations from 
Brazil, Guatemala and Colombia (AMR - HGDP) (Fig. 1).

In addition, PCA was also performed to verify patterns of genetic diversity and population structuring of 
COVID-19 patients in relation to populations from different biogeographical regions. For this purpose, all the 
populations from the 1,000 Genomes, HGDP and COVID patients’ datasets were used. As seen in Fig. 2, patients 
affected by COVID-19 (in orange/lilac) show a genetic diversity pattern similar to that of Latin American 
individuals deposited in the 1,000 Genomes panel database. Although there is great diversity in the contribution 
of Native Americans, European, and African populations in American populations, Brazilian individuals from 
the Amazon region affected by COVID-19 show a greater contribution from the indigenous populations (Native 
Americans) and Europeans, with a low African contribution, a phenomenon also observed in other Latin 
American populations.

Genomic association analyses
Variant calling in the exome data identified 2,291,530 variants among all subjects. We performed a quality filtering 
using vcftools filters --missing-site and --missing-indv lower than 10%. After this filtering, 20,546 variants were 
identified, comprising 15,369 SNPs and 5,177 INDELs. Table 2 illustrates the distribution of variants between 
patients with sCOV and nsCOV, as well as their corresponding putative impact, class, and types defined by 
SnpEff. While the overall variation in variant counts was minimal, few observations emerged: six high-impact 
variants were found only in the nsCOV group, and six missense and three frameshift variants were present only 
in the sCOV group.

Among these, 445 were classified as damaging according to the following computer prediction algorithms 
FATHMM, MutationAssessor, MutationTaster, SIFT, MetaSVM and PROVEAN and their characteristics 
regarding their putative impact, class, and types defined by SnpEff are described in Table 3. No difference was 
observed between clinical groups.

Due to our sample size, we considered a less restrictive p-value (p < 5 × 10-4) with FDR correction. Therefore, 
the single association analysis results represent candidate variants that will require further studies for validation 
of their role in the clinical severity of COVID-19. Regarding the exome-wide gene-based association analysis, no 
gene was found with a statistically significant p-value.

Through single association analyses, while considering population structuring, age and comorbidities as 
covariates, we identified four variants (rs1770731 in CRYBG1, rs7221209 in DNAH17, rs3826295 in DGKE and 
rs7913626 in CFAP46) potentially linked to a protective effect against the clinical severity of COVID-19 (as 
illustrated in Fig.  3 and detailed in Table  4). These associations reached a suggestive significance threshold, 
denoted by the red horizontal line in Fig. 3.

Moreover, in terms of metabolic processes, it becomes apparent that certain genes potentially implicated in 
the severe pathogenesis of COVID-19 are acting in the cilium movement involved in cell motility (DNAH17 and 
CFAP46) and platelet activation (DGKE). These findings suggest an association with a pathogenic mechanism of 
SARS-CoV-2 that has not been fully characterized.

To investigate the distribution of these variants within our study population, we selected 95 individuals from 
13 Indigenous of America populations living in the Northern Region of Brazil. These included Araweté (ARW), 
Zo’é/Poturujara (ZOE), Wayãpy (WPI), and Awa-Guajá (AWA) from the Tupi-Guarani language group; Asurini 
do Koatinemo (AKW), and Asurini do Trocará (AST) from the Asurini language group, which belong to the 

Fig. 1.  Supervised analysis of the population structuring patterns present in the study sample. WAFR - West 
Africa (YRI), EUR - Europe (IBS), AMI - Indigenous of America and COV - COVID-19 affected patients.
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Tupi-Guarani language truck; Arara/Arara do Iriri (ARA), Tiriyó (TYR) and Hixkaryana (HIK) from the Karib 
language group; Kayapó (KAY) and Xikrin (XIK) from the Macro-Jê language group; Munduruku (MND) from 
the Munduruku language group, belonging to the Tupi-Guarani language truck; and Palikur (PL) from the 
parikwaki language group.

The allelic frequencies of the variants observed in the study populations (COVID-19 patients and Indigenous 
of America) and the five continental populations are presented in Table 5. We also performed a Fisher’s Exact 
Test with Bonferroni Correction to verify whether there was a statistical difference between the frequencies 
observed.

The rs1770731 polymorphism exhibits a similar frequency in our cohort (87%) compared to other 
populations (AMR: 89%; EUR: 88%; EAS and EAS: 87%), except for AFR (77%) and our Indigenous of America 
population (AMI: 96%). The rs7221209 frequency is considerably higher in our cohort (COV: 82% and AMI: 
81%) compared to other continental populations, especially EAS (64%) and varied significantly when compared 
to COVID patients and the EUR population (padj < 0.05).

The rs3826295 variant is higher in our cohort (COV: 84% and AMI: 94%) compared to AMR (79%), EUR 
(72%) and with a significant difference to AFR (60%, padj = 0.0004). Regarding the rs7913626 frequency, 
it is greater in COVID-19 patients (76%) and Indigenous of America (81%) compared to other continental 
populations and statistically different from the populations EUR (padj = 0.0002) and SAS (padj = 0.01).

As shown in Fig. 4, a varying distribution of the PRS of the four associated variants in different populations 
was found (oneway ANOVA, F (7, 3369) 18.19, p < 2e-16). Based on this, it was possible to observe that the PRS 
of the non-severe COVID patients (nsCOV) had a significant difference when compared to the other populations 
(Tukey, p adj < 0.01), including severe COVID patients (sCOV) (Tukey, padj = 0.002), except for the Indigenous 
of America population (AMI) (Tukey, padj = 0.99).

Fig. 2.  PCA analysis of genomic ancestry based on allele frequency present in the study subjects and in the 
following subjects: CAS - Central Asia, EAFR - East Africa, OCE - Oceania, EUR - Europe, MDL - Middle 
East, ADMX - Mixed Populations of the Americas, EAS - East Asia, AMR - Amerindians, WAFR - West Africa, 
SAS - South/Southeast Asia, COV - COVID-19 patients.
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Discussion
In the Modern Age, few diseases have had such a profound impact as to isolate entire human populations across 
multiple fronts - socioeconomic, scientific, and within health systems -, unequivocally exposing the inequalities 
among countries worldwide. The COVID-19 pandemic stands as a poignant example. Despite the substantial 
and ever-expanding understanding of the virus´ biology and associated host risk factors, critical aspects of its 
pathogenesis and clinical progression remain to be uncovered. Furthermore, there is a pressing need to explore 
the host genetic factors that influence populations living in poorly represented regions.

Despite having great biological heterogeneity distributed between traditional and admixed populations, 
the Brazilian Amazon population is one of the least represented from a genomic point of view in the world’s 
databases13–15. Hence, investigating individual and/or population genetic variability holds significant promise, 
particularly concerning the health outcomes of diverse populations. This approach identifies unique responses 
and metabolic pathways to drugs, critical in populations with heightened susceptibility to genetic, inflammatory, 
and infectious diseases. Moreover, it sheds light on potential resistance or adverse effects of treatment16.

ALL

Impact

 High 19

 Low 11

 Moderate 393

 Modifier 66

Class

 Missense 395

 Nonsense 4

 Silent 11

Type

 Exon 2

 Intron 59

 Non synonymous coding 393

 Synonymous coding 11

 Stop gained 4

 Start lost 2

Table 3.  Distribution of damaging variants in all COVID-19 patients according to functional impact, 
functional class, and type defined by SnpEff.

 

All sCOV nsCOV

Impact

 High 170 51 57

 Low 4.886 3.334 3.275

 Moderate 3.177 2.514 2.502

 Modifier 13.633 7.930 7.827

 Class

 Missense 3.012 2.446 2.440

 Nonsense 16 13 13

 Silent 3.219 2.761 2.706

Type

 Exon 148 111 115

 Frameshift 59 18 15

 Intron 13.334 7.077 7.156

 Non synonymous coding 3.003 2.431 2.437

 Synonymous coding 3.218 2.705 2.760

 Stop gained 17 13 13

 Stop lost 7 7 7

Table 2.  Distribution of variants in all COVID-19 patients and between the severe (sCOV) and non-severe 
(nsCOV) groups according to functional impact, functional class, and type defined by SnpEff.
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Fig. 4.  The PRS distribution of the associated variants among the study populations (sCOV, nsCOV and AMI) 
and continental populations (AFR, AMR, EUR, EAS, and SAS).

 

Fig. 3.  Manhattan plot of the WES of 130 participants (non-severe (n = 56) vs. severe (n = 68)), highlighting 
four peaks with possibly association signals for severe cases of COVID-19. The WES analysis results are shown 
on the y-axis as -log10 (p-value), and on the x-axis is the chromosomal location. The red horizontal line 
illustrated the suggestive genome-wide association threshold (p < 5 × 10-4).
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In agreement with the results of non-genetic factors associated with a worse COVID-19 prognosis obtained 
in other studies3,17,18, a significant association was observed in the present study between age (p < 0.01) and the 
presence of comorbidities (p < 0.01; OR = 14.8; 95% CI = 5.4–46.3).

Among the various comorbidities that are associated with COVID-19, we observed that individuals 
with systemic arterial hypertension have a 16-fold greater risk of developing the severe form of this disease, 
probably due to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS) which increases the 
inflammatory response and the recruitment of cytokines, causing endothelial damage19,20.

Another comorbidity associated with severe COVID-19 was overweight, with a 19-fold greater risk (p< 0.01; 
OR = 19.5; CI 95% = 4.40–176.5). This is possibly due to obesity impairment of pulmonary function characterized 
by a decline in expiratory reserve volume and functional capacity, and due to the release of inflammatory 
cytokines TNF-α and IL-6 that already occurs in obesity and could exacerbate the severe cases of COVID-1921,22.

The viral sequencing was performed to find out if the viral strains influenced clinical severity. No significant 
association was found between the most prevalent strains [P.1 (p = 0.4; OR = 1.36; 95% CI = 0.61–3.08) and 
B.1.1 (p = 0.6; OR = 1.36; 95% CI = 0.50–2.8)], suggesting that the host genetics may have a major influence on 
COVID-19 clinical severity.

Given the diverse genetic composition of the Brazilian population, shaped by multiple ancestral groups, it 
becomes imperative to assess population structuring patterns to control possible biases of miscegenation and to 
discover more about the genetic variability of these populations10,11. Therefore, a supervised analysis was carried 
out using the Admixture software, focusing on the three main ancestries that have contributed to the formation 
of the Brazilian population: Europeans, Africans, and Indigenous of America.

Figure 2 shows a notable prevalence of genetic ancestry tracing back to the original peoples of the Americas 
among COVID-19 patients, possibly due to the Brazilian formation process, which was highly heterogeneous 
and where indigenous communities are still prominently situated. Furthermore, a binomial GLM analysis was 
performed to investigate whether genetic ancestry has an influence on the clinical severity of SARS-CoV-2 
infection. However, no significant association was found (Table 1).

Nevertheless, studies such as Shelton et al. (2021) and Mathur et al. (2021) have already observed variations 
in the clinical progression of COVID-19 among individuals with different predominant ancestries. Specifically, 
individuals with a greater contribution of African American ancestry were more likely to be hospitalized, while 
those with Asian and African ancestry exhibited elevated risks of hospitalization, both compared to populations 
with greater European ancestry, after accounting for differences in sociodemographic, clinical, and household 
characteristics23,24. Despite these findings, studies associating individual genetic ancestry with COVID-19 
susceptibility or severity remain scarce.

The genetic architecture of COVID-19 regarding pathogenicity mechanisms and host response is complex 
and remains unclear. In our study, we identified four variants potentially linked to a protective effect against the 
clinical severity of COVID-19, which have not been previously explored in GWAS studies of COVID-19.

Regarding their consequence type, we identified two intron variants with modifier impact (rs1770731 and 
rs7913626), one synonymous variant with low impact (rs7221209) and a 3 prime UTR variant with modifier 
impact (rs3826295). Because of this, it was not possible to predict the regulatory effects of the variants, however, 
they may be involved in the expression in some tissues, such as testis and hypothalamus (rs1770731); pancreatic 
islets and substantia nigra of the brain (rs7913626); cortex, lung left ventricle of the heart and Th1 memory 
(rs7221209) and colon, esophagus and small intestine (rs3826295).

dbSNP variant pos (hg38) EA COV AMI
gnomAD
AFR

gnomAD
AMR

gnomAD
EUR

gnomAD
EAS

gnomAD
SAS

rs1770731 6:106553581 T 0.876 0.969 0.77 0.88 0.90 0.85 0.86

rs7221209 17:78539866 C 0.827 0.810 0.78 0.71 0.76 0.78 0.73

rs3826295 17:56862376 A 0.842 0.94 0.62 0.81 0.70 0.88 0.61

rs7913626 10:132851371 G 0.767 0.818 0.84 0.72 0.66 0.44 0.65

Table 5.  Comparison of allelic frequencies of variants observed between study populations (COV and AMI) 
and continental populations (AFR, AMR, EUR, EAS, and SAS) described in gnomAD database. *pos: position; 
EA: effect allele.

 

pos
dbSNP 
variant EA Consequence type genes p-value* AF OR gene’s associated metabolic processes gene’s associated disorders

6:106553581 rs1770731 T intron variant CRYBG1 3,19E + 4 0.876 -3.68 carbohydrate binding Melanoma

17:78539866 rs7221209 C synonymous variant DNAH17 6,31E + 4 0.827 -3.20 cilium movement involved in cell motility Infertility

17:56862376 rs3826295 A 3 prime UTR variant DGKE 5,03E + 4 0.842 -3.5 platelet activation Hemolytic uremic syndrome

10:132851371 rs7913626 G intron variant CFAP46 7,77E + 4 0.767 -2.98 cilium movement involved in cell motility B-Cell Adult Acute 
Lymphocytic Leukemia

Table 4.  Genetic variants possibly associated with COVID-19 severity. *GLM; pos: position; EA: effect allele; 
OR: OddsRatio.
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To our knowledge, the genes CRYBG1 and CFAP46 have not been previously associated with COVID-19 or 
other respiratory diseases, apart from DNAH17 and DGKE. Nevertheless, it is important to be aware of their 
roles in other disorders, so we can better understand their functions and pathways in COVID-19.

The rs177073 variant is in the CRYBG1 (Crystallin Beta-Gamma Domain Containing 1, alias AIM1) gene, 
a tumor suppressor in melanoma and a potential oncogene in triple-negative breast cancer cases due to novel 
fusion genes25. Besides that, the CRYBG1  gene was associated with the actin cytoskeleton and suppressed 
cytoskeletal remodeling and invasive properties in non-malignant prostate epithelial cells26. Therefore, a higher 
frequency of this gene can influence a non-aggressive form of certain diseases.

Fig. 5.  Flowchart of the study methodology. DNA extraction and Whole Exome Sequencing (WES) were 
performed in 124 samples, divided in two groups: 68 patients with severe COVID-19 (sCOV) and 56 patients 
with non-severe COVID-19 (nsCOV). The figure also shows the main steps used in the exome’s pipeline. 
In dark blue, reads’s quality treatment by trimming and filtering. In lilac, mapping reads using a reference 
genome. In red, variant calling by DeepVariant pipeline. In orange, samples’ quality treatment. In gray, 
population structure analysis. And in light blue, association tests analysis in R software.
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Besides this, COVID-19 has been increasingly recognized as a disease that primarily affects the elderly, 
resulting in higher mortality in this age group. It has been hypothesized that this happens especially because the 
coronavirus has a specific tropism for senescent cells in the lungs, which are more common in older people27,28. 
In our study, we found a variant in the DNAH17 (Dynein Axonemal Heavy Chain 17) gene that protected our 
population from more serious forms of the disease. This gene encodes a dynein heavy chain protein that is 
normally observed in individuals with isolated male infertility due to several morphological anomalies of sperm 
cells since this gene is involved in cilium movement in cell motility29.

Furthermore, the DNAH17 gene is frequently mutated in hepatocellular carcinoma patients30, and since the 
incidence of hepatic abnormalities significantly increases after COVID-19 infection due to SARS-CoV-2 effects 
on liver and/or kidney, deAndrés-Galiana et al. (2022) observed DNAH17 overexpressed in a genetic signature 
between healthy controls and COVID-19 patients31.

Nevertheless, in 2024, Andrawus and collaborators stated that the expression of the DNAH17 gene decreases 
with advancing age and that this gene is associated with longevity32. With this information in mind, it is 
reasonable to state that the effects of this gene on COVID-19 are still not fully understood. This gene may act 
differently in our study population, since it has a high indigenous genetic contribution and there are few genomic 
and epigenomic studies on its composition. Thus, further studies are needed to clarify the specific mechanisms 
by which DNAH17 is involved in SARS-CoV-2 infection.

The DGKE gene phosphorylates diacylglycerol to phosphatidic acid, ultimately activating protein kinase C 
that may induce a hypercoagulable state with platelet activation and developing thrombosis33,34. A novel likely 
pathogenic variant was observed in severe patients with COVID-19 from the WES of Bulgarian patients35.

This gene is associated with atypical hemolytic uremic syndrome (aHUS), a disease similar to COVID-19 
since both lead to venous thromboembolism, microvascular thrombosis, and multi-organ damage due to 
hyperactivation of the complement system36. The loss of the gene in aHUS may cause modifications of the 
vascular tone actin cytoskeleton, secretion of prothrombotic and antithrombotic factors, and the activation of 
platelets37.

From this, we can hypothesize that the DGKE gene is preventing one of the most severe forms of COVID-19, 
characterized by thrombosis and organ damage due to hyperactivation of the complement system, since: (1) 
COVID-19 and aHUS have similar complications; (2) the lack of the DGKE gene aggravates aHUS and (3) the 
rs3826295 variant is quite frequent in our populations study, 84% in COVID-19 patients and 94% in Indigenous 
of America.

Another gene functionally impacted by the rs3826295 variant is the TRIM25 (Tripartite Motif Containing 
25) gene, which is involved in innate immune defense against viruses, including SARS-CoV-2, by mediating 
ubiquitination of RIG-I and subsequent type-I interferon production38. This gene has a direct interaction 
with SARS-CoV-2 ORF6 protein, causing its degradation, and as a result Tavakoli et al. (2024) observed that 
when hypoexpressed, this gene is associated with increased disease severity of COVID-19 in individuals and 
when overexpressed in vitro the TRIM25 gene partly counteracted viral inhibition, benefiting beta-interferon 
induction39,40.

The CFAP46 (cilia and flagella associated protein 46) gene is part of the central apparatus of the microtubule-
based cytoskeleton of the cilium and is expressed in tissues that contain cilia, such as the testis, lung, and brain41,42. 
Thus, cilia in the lung are involved in lung repair processes and in regulating the production of cytokines and 
antimicrobials, as well as possibly having a functional role in innate immunity in the airways against bacterial 
infections by boosting innate immune defenses in response to bacterial antigens43,44, which can be associated 
with the rs7913626 role in our study population.

Furthermore, the protective nature of these variants, whose allelic frequencies are higher in our region 
compared to other continental populations, may explain the relatively less severe impact of COVID-19 observed 
in our Indigenous population, even with the inadequate public policies implemented by the government.

In the wake of the emergence of the COVID-19 pandemic in 2020, initial predictions suggested a potentially 
devastating impact on Brazilian indigenous communities. This anticipation stemmed from the understanding 
that indigenous populations are more susceptible to various infectious diseases and pathogens because of their 
reduced genetic diversity at the major histocompatibility complex (MHC) locus45–47.

Contrary to the initial predictions, data from the Ministry of Health and the Special Secretariat for Indigenous 
Health (SESAI) revealed that most COVID-19 cases of the people living in Indigenous territories in the state of 
Pará, in Northern Brazil, were asymptomatic or mild.

Moreover, even before the start of the vaccination campaign, a high prevalence of IgG anti-SARS-CoV-
2antibodies was observed among indigenous groups, suggesting that this population may have reached a state of 
collective immunity in a relatively short period of time after the virus was introduced into the region48,49.

In addition to the allele frequencies, another observation that could explain the impact of COVID-19 on the 
populations of the Northern Region is the PRS calculated for each individual in the study populations (sCOV, 
nsCOV, and NAT) and the continental ones (AFR, AMR, EUR, EAS, and SAS).

Our results reveal that the PRS of the non-severe COVID-19 patients and the Indigenous of America are 
significantly similar, which indicates that the four associated variants observed in the study, when combined, 
act in a similar way among these populations, probably protecting them from the COVID-19 severity. Besides, 
a significant difference was observed between the severe and non-severe COVID-19 patients’ groups (Tukey, 
padj = 0.002), corroborating our hypothesis.

Furthermore, the genes associated with COVID-19 best known in the world literature as SARS-CoV-2 
receptor genes SLC6A20, LZTFL1, and FYCO1 and the chemokine receptors CCR9 and CXCR650,51 and in 
the national literature HLA-A, HLA-DRB1, XCR1 and FURIN6,8 did not show a significant association in our 
sample, further reinforcing the idea that the Brazilian genetic architecture as a whole differs from other world 

Scientific Reports |        (2024) 14:27332 9| https://doi.org/10.1038/s41598-024-78170-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


populations and the genetic landscape of the Amazon has a strong substructure of indigenous peoples, which 
makes it different from other regions of Brazil.

Limitations
We encountered some limitations in our study, such as the sample size and the low coverage and depth obtained 
by the WES sequencing, resulting in a large amount of missing data. Due to this, we had to perform with more 
restricted quality parameters, in order to decrease the risk of false positives, and adopted a less stringent p-value 
in the genome-wide association analyses. This study also lacks a replication cohort to validate our identified 
suggestive associations, therefore, the next steps in our exploratory study are to increase the sample size and 
validate our findings in populations similar to ours in order to make future comparisons with results obtained 
by other studies and increase knowledge about the genomic architecture of individuals living in the Brazilian 
Amazon.

Conclusion
To characterize genomic markers linked to SARS-CoV-2 infection and its clinical severity, we performed whole 
exome sequencing of individuals affected by COVID-19 spanning both severe and non-severe forms of the 
disease. Based on this, we identified four variants (rs1770731 in CRYBG1, rs7221209 in DNAH17, rs3826295 
in DGKE  and rs7913626 in CFAP46) potentially linked to a protective effect against the clinical severity of 
COVID-19 – a novel discovery not previously explored in the literature. These loci are hypothesized to represent 
specific markers within our Northern Brazilian population.

While the strides made during the four years of the COVID-19 pandemic are commendable, it is crucial 
to acknowledge the complexity and challenges inherent in unraveling the biological mechanisms involved in 
illness. Collaboration within the scientific community is imperative to bridge the gap between cosmopolitan 
populations and neglected communities.

To our knowledge, this is the first whole exome sequencing (WES) study of admixed individuals from 
the Brazilian Amazon, representing a pioneer investigation into genomic variants associated with the clinical 
severity of COVID-19. Our results reinforce the importance of further genomic studies in populations living in 
the Amazon region, renowned for their extraordinary genetic diversity and the presence of rare, specific alleles.

Methods
Design and samples
This is a population-based retrospective observational study using genomic and COVID-19 surveillance data 
collected from the state of Pará in North Brazil. We sequenced 124 naso-oropharyngeal swab and saliva samples, 
being 56 individuals with asymptomatic or mild cases (nsCOV) and 68 individuals with the severe form of 
COVID-19 (sCOV), from January 2021 to July 2022. The selection criteria for the samples in the severe group 
were in accordance with the World Health Organization (WHO), which classifies severe symptoms as difficult 
breathing (dyspnea), loss of speech or mobility, and chest pain; in addition to these, we included individuals who 
had oxygen saturation below 95% and hospitalized individuals (hospitalized in a normal bed and in the ICU). 
Individuals who did not meet the above criteria were classified as non-severe, whose main symptoms were fever, 
cough and sore throat. Swab samples were collected and transferred to viral transport media and saliva samples 
were collected in sterile plastic collection tubes. After collection, both sample types were stored at -80 °C until 
further analysis. Figure 5 describes the methodology workflow used in this study, from sample collection to the 
association tests carried out in the R software.

This study was approved by the Barros Barreto Hospital Research Ethics Committee (CAAE: 
50865721.1.0000.0017). The patients/participants provided their written informed consent to participate in this 
study and all methods were performed in accordance with the relevant guidelines and regulations.

DNA isolation and WES
The biological material was isolated from naso-oropharyngeal swab and saliva samples using MagMAX Viral/
Pathogen Nucleic Acid Isolation Kit (Thermo Fisher Scientific) at KingFisher System (Thermo Fisher Scientific). 
DNA purity was assessed by spectrophotometry (Nanodrop 1000—Thermo Fisher Scientific, Waltham, MA) and 
concentration was assessed by fluorometry (Qubit—Life Technologies, Foster City, CA, USA). Whole-exome 
sequencing (WES) libraries were constructed across 150 bp paired reads using Illumina DNA Prep with Exome 
v2 (Illumina) and checked for quality using 2200 TapeStation (Agilent Technologies), following manufacturer’s 
recommendations. The libraries were sequenced on NextSeq 500 Sequencing System (Illumina) using NextSeq 
500/550 High Output Kit (300 cycles - Illumina).

Fig. 6.  Formula used to calculate the population polygenic risk score. PRS: Polygenic Risk Score; p: 
population; e: effect allele; OR: OddsRatio; i: individual.
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Read processing and variant calling
Initially, the quality and coverage of the generated reads were analyzed using the FASTQC tool. Low-quality 
sequences were removed using Trimmomatic v0.3652, which was employed to filter and trim the sequences. 
Adapter sequences, reads shorter than 50 bp, and low-quality reads based on PHRED score (average Q < 20) 
were identified and removed. Only reads where both pairs met the quality criteria were retained for further 
analysis.

The filtered reads were then aligned to the GRCh38 reference genome using the BWA-MEM v0.7.12 aligner53,54, 
generating SAM files. These files were sorted by genomic position using SAMtools v1.755 and then marked for 
duplicates using Picard-tools MarkDuplicates v2.27.3 (broadinstitute.github.io/picard/). The resulting SAM files 
were converted into BAM files using SAMtools and processed using the RealignerTargetCreator from GATK 
to create a target interval file for IndelRealigner (GATK), which directs the local realignment of reads. This 
realignment was performed to correct misalignments caused by indels.

The next step involved using BaseRecalibrator (GATK) to identify systematic errors in base quality scores 
exported by the sequencer, calculating a recalibration model to appropriately adjust these scores. After processing, 
the BAM files were input into DeepVariant for variant calling, resulting in the generation of VCF files.

We used DeepVariant v1.15.0 with the publicly available Whole Exome Sequencing (WES) model to perform 
single-sample variant calling. A single-line command to run DeepVariant on each sample, using a pre-built 
Docker container, is available in the public DeepVariant repository (https://github.com/google/deepvariant). 
The variant calls made by DeepVariant followed standard single-sample variant calling methods56, using 
sequence reads aligned to a reference genome to identify and genotype positions that differ from the reference. 
Throughout the study, we used the human GRCh38 reference genome without ALT contigs.

The variants in the VCF files were annotated using SnpEff v5.1 and dbNSFP v4.2 to assess the impact and 
predict the function of the variants. Additionally, we used ClinVar57to identify associations with known diseases 
and determine the clinical relevance of the variants, while ExAC and gnomAD58,59 were used to provide allele 
frequency annotations.

Damaging variants were classified according to the following computer prediction algorithms: Functional 
Analysis through Hidden Markov Models (FATHMM)60, MutationAssessor61, MutationTaster62, Sort Intolerant 
from tolerant (SIFT)63, MetaSVM64 and PROVEAN65. The ClinVar database was also used for this classification57. 
A report of WES statistics is available in Supplementary File.

Data merging
Due to our higher missing data rate, we performed the following vcftools filters: --missing-site and --missing-
indv lower than 10%. After quality control of reads, we merged our population data of 124 newly sequenced 
samples with previously published population dataset by 1,000 Genomes and HGDP projects, summing up to 
4,281 individuals. Quality control of these data was performed using BCFTools v1.4, VCFTools v0.1.13 e PLINK 
v1.90b6.15 softwares with the variant filtering conditions -maf: 0.05, -hwe: 0.0001, -mind: 0.1, and -geno: 0.01. 
Variants and individuals with missing data above 0.1 were excluded. Therefore, in addition to quality control of 
variants, we chose the closest individuals that compose the Brazilian admixture, due to its influence on Brazilian 
colonization (Iberian − 1kG, Yoruba − 1kG and Native Americans - HGDP), obtaining a dataset containing 527 
individuals with 2,172 SNPs to perform the following population genetic analysis.

Population structure
To further explore the ancestry composition and genetic similarity of our studied group, we carried out model-
based clustering analysis using ADMIXTURE 1.2 and Eigenstrat v8.0 softwares. For Admixture analysis, we did 
an unsupervised ADMIXTURE approach (Supplementary Fig. 1), in which allele frequencies for unadmixed 
ancestral populations are unknown and are computed during the analysis with the populations from datasets 
1,000 Genomes (1kG), HGDP and our samples (patients with COVID-19), varying the number of ancestral 
populations between K = 2 and K = 16; and a supervised approach with tri-hybrid model with the populations: 
Iberian (IBS − 1kG), Yoruba (YRI/AFR − 1kG) and Indigenous of America (AMI - HGDP).

The identity-by-descent (IBD) analysis and the calculation of the genetic relationship matrix were obtained 
by the PC-relate method in the GENESIS v2.26.0 R package. From the genetic relationship matrix (GRM), 
corrected principal component analysis (PCA) was performed for COVID patients.

Variant associations analyses
The GENESIS v2.26.0 package was used to calculate kinship coefficients, inbreeding coefficients and IBD sharing 
probabilities. From the kinship analysis, three individuals of a pair with kinship values higher than 0.004 were 
excluded. To predict covariates associated with disease severity, a generalized linear model (GLM) involving sex, 
age, Indigenous of America, African and European ancestries was performed. To mitigate potential errors, we 
employed False Discovery Rate (FDR) correction.

A power calculation was performed considering a sample size of 124 participants, a significance level of 0.05, 
and an effect size of 0.5, resulting in a power of 0.80. Given our sample size, we were only able to identify variants 
with high impact and were unable to find rare variants with smaller effects or other variants previously reported 
in the literature as associated with COVID-19 severity. The limited sample size may have constrained our ability 
to detect more subtle genetic effects.

Exome-wide association analysis, both individual and aggregate by genes, was performed using GLM in the 
GENESIS v2.26.0 package, where the first five PCAs, age and the comorbidities hypertension and overweight 
were added as covariates, and p-values were corrected with Bonferroni to minimize false positive results. All 
variants with their respective p-values are available in Supplementary Reports.
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Polygenic risk score (PRS)
PRS of each participant was calculated by computing the sum of risk alleles of the associated variants weighted by 
the risk allele effect sizes and PRS for a population was calculated by taking the median PRS of all the individuals 
in that population as shown in the formula below, using R v.4.2.1. Population wise statistical significance was 
calculated using one-way ANOVA, with a post-hoc Tukey multiple comparisons means test. We decided to focus 
on population PRS rather than individual PRS due to our statistical and sampling limitations.

Statistical analyses
Clinical characteristics were analyzed using Fisher’s or Chi-squared test for categorical variables, and Wilcoxon 
test for continuous variables (age). All graphs and statistical analyses were made using R (v.4.2.1). P-values ≤ 0.05 
were considered to be statistically significant.

Data availability
The WES datasets have been deposited with links to project PRJEB75518, in ENA database from EBI ​(​h​t​t​p​s​:​/​/​w​
w​w​.​e​b​i​.​a​c​.​u​k​/​e​n​a​/​b​r​o​w​s​e​r​/​v​i​e​w​/​P​R​J​E​B​7​5​5​1​8​)​. For better replication, clinical data is available in Supplementary 
Reports.
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