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The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architec-
turally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell
differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical com-
position. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting
to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chem-
ical heterogeneity and specific functionalities of ECM components has attracted attention because of their
potential biotechnological applications, from agriculture to the water and food industries. This review
compiles information on the most relevant bacterial ECM components, the biophysical and chemical fea-
tures responsible for their biological roles, and their potential to be further translated into biotechnolog-
ical applications.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

The extracellular matrix (ECM), both in eukaryotes and prokary-
otes, is a mixture of high-molecular-weight polymers that are
secreted to the external medium and are produced by nearly all
types of cell (Dragos and Kovacs, 2017). By definition, the eukary-
otic ECM can be understood as the non-cellular three-dimensional
macromolecular network composed of a mixture of components
such as collagens, proteoglycans/glycosaminoglycans (PGs), elas-
tin, fibronectin, laminins, and several other glycoproteins. This
structure can be found in tissues and organs providing support to
the cellular components and providing biochemical and biome-
chanical cues for tissue morphogenesis, differentiation and home-
ostasis [1,2].

Fibril-forming collagen type I and II are the major constituents
of the extracellular matrix of eukaryotic tissues, which can be
found associated to other ECM proteins, collagens and PGs thus
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constructing large fibrilar structures [3]. These structures, in com-
bination with other ECM molecules, define the 3D matrix network
[2,4]. It is thus conceivable that the composition and structural
organization of the ECM influences relevant biological processes
such as adhesion, migration, proliferation and differentiation of
eukaryotic cells [5]. Indeed, the ECM has been described as a
reservoir for the localization and concentration of growth factors
and signalling molecules, which form gradients critical for the
establishment of developmental patterning during morphogenesis
[6,7].

In contrast to eukaryotes, in which cells are intrinsically
grouped forming tissues and organs, bacterial cells live as indepen-
dent individuals or forming multicellular communities, known as
biofilms, growing over surfaces and providing several benefits as
the better adaptation to different environmental conditions,
improved attachment to hosts and to the access to nutrients
[8–11]. Analogous to eukaryotic tissues, bacterial cells within bio-
films are embedded in a secreted and multifunctional ECM that
provides i) structural support to the community, ii) improved cel-
lular adhesion, iii) regulation of the flux of signals and nutrients to
ensure cell differentiation [12,13], and iv) a formidable physico-
chemical barrier against external assaults [14,15]. The microbial
ECM is heterogeneously composed of proteins, exopolysaccharides,
nucleic acids, lipids and secondary metabolites, each of which pre-
serves similar functionality but is chemically variable across bacte-
rial taxa. In this mini-review, we introduce the main components
of the prokaryotic ECM, their functions in the maturation of the
biofilm structure and bacterial interactions with the environment,
and we highlight the biophysical peculiarities that allow their
biotechnological exploitation.
Fig. 1. Applicability of microbial biofilms to different branches of the biotechnological
involved in biocontrol, bioremediation and plant health. In addition, they can be found
production of nanotubes and nanowires, in the food and chemical industries and also in

2797
2. Biotechnological applications of biofilms

Bacterial biofilms are widely distributed in nature and largely
contribute to the modification of the environment in a variety of
ways. However, the fact that bacterial biofilms have been exten-
sively studied with human bacterial pathogens has led to biased
negative perceptions associated with contamination and
pathogenicity [16]. Water, food and agricultural industries, sus-
tainable agriculture, and the production of recombinant proteins
and chemicals are examples of biotechnology research fields that
benefit from the unique properties of bacterial biofilms (Fig. 1)
[17–19]. In addition, the possibility of combining diverse strains
in multispecies biofilms expands their biotechnological applica-
tions, diversifying the variety of products that would be impossible
to obtain with single strain cultures.

Bacterial biofilms can be immobilized in bioreactors using dif-
ferent strategies such as adsorption, entrapment, or covalent bond.
Adsorption based on cell fixing is the most commonly used method
in biofilm reactors (fluidized bed reactors, continuous stirred tank
reactors, airlift reactors, and packed bed reactors), and it is proba-
bly the most natural method because it leverages the inherent abil-
ity of bacterial cells to adhere to any given support [18,20,21].
Immobilization of cells on alginate beads is also interesting for
industrial bioprocesses and has been successfully used in the
preservation of cell viability, the degradation and biotransforma-
tion of pollutants, and the production of enzymes, probiotics and
other valuable products [22,23]. The water industry was the first
to implement biofilm reactors, including the use of biofilters or
moving bed biofilm reactors for wastewater treatment [24].
Recently, the development and use of biofilm-based systems has
industry. Microbial biofilms are currently used in different agricultural techniques
in wastewater treatment plants, in the nanobiotechnology industry involved in the
areas of the pharmaceutical and medical industries. Created with BioRender.com.
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increased to produce a variety of valuable chemicals, although
many steps need to be completely understood to optimize the pro-
duction and reach the highest yield [17,25].

Bacterial biofilms have also shown great potential in the food
industry and the implementation of sustainable agricultural prac-
tices. In food industry, for instance, biofilms formed by probiotics
in the gut epithelial mucosal surface have shown advantages and
health benefits. Biofilms formed by probiotic bacteria such as
Lactotoccus reuteri lead to the accumulation of bacteriocins which
provides protection against foodborne pathogens [26,27]. In the
agriculture field, biofilm-forming microbes have been shown to
contribute to crop yield in multifaceted ways, including the
promotion of plant growth and protection from abiotic disorders
(dissection or high salinity) and microbial pathogens [28–30].
Root-colonizing bacteria, such as Azotobacter spp., Azospirillum
spp., Bacillus spp., Beijerinckia spp., Pseudomonas spp., Rhizobium,
and Bradyrhizobium spp. are known to enhance the growth of
plants by improving the availability of phosphorous, potassium
and zinc, fixing atmospheric di-nitrogen, or triggering the produc-
tion of hormones such as auxins, gibberellins, and cytokinins [31].
Effective colonization and the establishment of biofilms on diverse
plant organs create protective microbial barriers that reduce the
growth of pathogens by limiting the availability of essential
nutrients and micronutrients for growth and pathogenicity or by
producing a variety of antimicrobials (i.e., 2, 4-diacetylphloroglucinol,
cyclic lipopeptides, tropolone, pyrrolnitrin, pyoluteorin, phenazine,
zwittermicin A, xanthobaccin, oligomycin A, or kanosamine) to effec-
tively eradicate or reduce the population density of pathogenic com-
petitors [32–38]. Novel strategies in biocontrol are using
nanoparticle-entrapped biofilms to fight against bacterial and fungal
pathogens [39]. This methodology has shown promising results as
those observed by the combination of ZnO nanoparticles and P. chloro-
raphis O6 inhibiting Fusarium growth [40], and the combination of
nano-silica and Pseudomonas sp. enhancing the biocontrol activity
against maize pathogens [41].

A benefit of bacterial biofilms to agriculture is their use in soil
bioremediation [42]. It has been demonstrated that cyanobacteria
are able to accumulate high concentrations of toxic compounds
such as insecticides or heavy metals that persist in crop soils after
their application. This ability can be used for the immobilization of
cyanobacteria forming biofilms on alginate and silica gel, thus
increasing their resistance to toxic compounds and a series of pro-
cedural advantages such as a less water requirement for cultivation
and easy harvesting [43]. Pseudomonas putida and other bacterial
species are very interesting from the environmental and industrial
points of view due to their remarkable ability to tolerate high con-
centration of toxic compounds and to degrade pollutants as xeno-
biotics, an effect that can be increased when bacterial cells are
forming biofilms [44–47]. Accumulation of toxic compounds sup-
poses a substantial threat to public health and the environment
and the above-mentioned species are attracting attention as very
promising microorganisms to be implemented in the bioremedia-
tion of contaminated soils and waters [48]. Finally, complex multi-
species biofilms are of great interest for biotechnological
applications as many possible combinations of diverse microbes
can improve bioprocesses through cooperative methods, including
metabolic cross-talk and sharing of resources. Examples are the
degradation of crude oil [49] and the desulphurization of diben-
zothiophene (DBT) to form sulphur-free 2-hydroxybiphenyl [50].

During biofilm lifestyle, bacterial cells also produce a wide array
of secondary metabolites (lipopeptides, bacteriocins, antibiotics,
amino acids, toxins, etc) which play critical roles in the ecology
of bacterial communities, either as inhibitors of competitors
growth or acting as signal molecules that modulate microbial
interspecies or interkingdom communication and behaviour [51–
53]. The diversity of secondary metabolites and their functionali-
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ties are reasons for their enormous biotechnological interest in a
variety of fields of industry (medical, food industry or agricultural).
Deeper review of the utilization of secondary metabolites as
antimicrobials in medicine can be found in these works [54–56].
Different than antimicrobial therapies, secondary metabolites pro-
duced by microbial species (daunomycin, mitomycin C, adri-
amycin, etc.) are also applied in the treatment of different types
of cancer [57], as anti-malarial compounds (gliotoxin) [58] or
antiplasmodials (trichodermol) [59]. In addition, it should be spe-
cially mentioned how diverse bacterial secondary metabolites are
contributing to plant health and crop yield by targeting microbial
pathogens: i) Lipopeptides not only inhibit fungal and bacterial
pathogen growth, but also trigger the plant immunity system or
promote plant growth [55,60]; ii) small molecules as bacillaene,
difficidin and macrolactin, produced by B. amyloliquefaciens, inhibit
Gram-positive and Gram-negative pathogens such as Erwinia amy-
lovora [61]. Food and flavour industries are also prominent areas
where secondary metabolites are gaining interest. Examples of that
are 3-octanone, 1-octen-3-ol and 3-octanol produced by Tricho-
derma spp. in mushroom flavour and aroma [62], and the use of
probiotics for the production of antioxidant compounds [63,64].
3. Extracellular matrix components in bacterial biofilms

Biofilms are chemically complex and diverse, which may define
their extensive impact in the environment. Thus, the knowledge on
the individual structural components of this bacterial megastruc-
tures are essential to potentiate the aforementioned benefits of
biofilms and to discover unprecedented biotechnological uses for
each component.
3.1. Exopolysaccharides (EPSs).

The extracellular matrix of bacterial biofilms is commonly com-
posed of proteins, exopolysaccharides, nucleic acids, lipids and
other minor biomolecules such as secondary metabolites. EPSs
are probably the most abundant component of the ECM and are
considered important elements related to the virulence of bacterial
pathogens or for bacterial protection [12,65]. The formation of bio-
films is the result of a highly coordinated developmental pro-
gramme; thus, different structural and regulatory elements are
spatially and temporally expressed. Studies with diverse bacterial
species have shown the importance of EPS in different stages of
biofilm development, from the initial cellular adhesion to surfaces
to the formation of complex structures and the final dispersion of
the biofilm. Thus, it is not surprising that EPSs are important con-
tributors to the architecture of biofilms composed of largely
diverse bacterial species, as seen in E. coli, S. mutans, Vibrio, B. sub-
tilis and Pseudomonas, among others [65]. In addition to this well-
known structural function, the physicochemical properties of EPSs
provide biofilms with a very effective impenetrable barrier that
prevents or delays the entrance of antimicrobials into the biofilm,
which gives ample time to initiate the expression of resistance
genes by individual cells [66,67].

The staphylococcal polysaccharide intercellular adhesion (PIA)
and PIA-related polymers in Staphylococcus and other
Gram-negative species, cellulose in Pseudomonas, Vibrio and Sal-
monella, or alginate, Psl, Pel in Pseudomonas are common bacterial
EPS that can be found in different bacteria [68,69]. The production
of several EPSs with different compositions by the same strain, as
exemplified by P. aeruginosa, allows for the adaptation to environ-
mental changes, for the colonization of diverse niches, or for the
fight against other microorganisms. P. aeruginosa isolated from
cystic fibrosis patients overproduces alginate, leading to mucoid
colonies; however, this EPS is not essential for biofilm formation
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and mainly relies on the production of Pel and Psl in laboratory
strains [70,71]. The EPS produced by S. mutants is one of the main
contributors to the virulence of these strains and the formation of
dental biofilms. The EPSs produced by glucosyltransferases
encoded by gtfB, gtfC and gtfD and fructosyltransferases (Ftfs) leads
to the synthesis of a mixture of different types of soluble and insol-
uble glucans and fructans thus promoting the local colonization of
microorganisms on the teeth while forming a protective extracel-
lular matrix [72–74]. The EPS produced by B. subtilis is encoded
by the epsO-A operon which is mainly regulated by sinI-sinR,
and is mainly composed of glucose, galactose, and
N-acetylgalactosamine. At the genomic level, EpsA and EpsB con-
stitute a sensor tyrosine kinase system, and they participate in
the activation of other protein targets important for EPS synthesis,
such as the glycosyltransferase EpsE [75]. EpsE, located in the cell
membrane, seems to be involved in the inhibition of flagellar rota-
tion through a clutch-like mechanism [76]. EpsC, EpsM and EpsN
have been implicated in the synthesis of N,N’-diacetylbacillosa
mine, while EpsHIJK are involved in the synthesis of poly-N-
acetylglucosamine [77]. Together, the EPSs of B. subtilis are directly
involved in the formation of the wrinkles typical of in vitro biofilms
formed by this strain [78] and are also involved in population
motility [79]. In closely related B. cereus, different eps regions are
found, and these regions appear to have complementary or specific
roles. In the B. cereus type strain ATCC14567, EPS1 is orthologous to
the EPS of B. subtilis and is more relevant in terms of social bacterial
motility; however, EPS2 is involved in bacterial adhesion to sur-
faces, cell-to-cell interaction, cellular aggregation and biofilm for-
mation [80]. The diversity of EPSs is interpreted as bacterial
ecological adaptations to the different niches in which each strain
is found during the different stages of the bacterial life cycle. Some
of the most studied EPSs in Bacillus strains are levan type I and II,
which consist of b-2,6-linked D-fructose units and a fructose poly-
mer with a glucose residue linked to the terminal fructose by a a-
glycoside bond, respectively, and they can be synthesized outside
the cell following the extrusion of the extracellular enzyme levan-
sucrase [81,82]. For example, these levan-based EPSs participate in
the assembly of a levan capsule in Pseudomonas that protects cells
against attack from bacteriophages or avoids desiccation of the
cells and also as a polysaccharide that helps the aggregation of
Paenibacillus on root-adhering soil on wheat plants [83].

In recent decades, the physicochemical characteristics and vari-
ability in the structure of EPSs have received special attention for
their industrial and medical applications (Table 1). Industrial use
of EPSs can be found in many different areas such as the food
industry, agriculture, and cosmetics. Examples of the most relevant
EPSs routinely considered in the food industry are chitosan, xan-
than gum, kefiran and inulin. These polymers are used as
viscosity-increasing agents, gelling agents, stabilizers in multi-
phase solutions, additionally to their use as lubricants, flocculants,
or flavour enhancers contributing to increase food quality [84–86].
Gelrite and xanthan gum are used in agriculture as sprays and pes-
ticides, in the biodegradation of gasoline and in the transportation
of gel-encapsulated bacteria for bioaugmentation of contaminated
aquifers [86,87]. In addition, EPSs are also interesting in the agri-
cultural field given that they can potentiate beneficial effects such
as the increase in root water retention, the improvement of salt tol-
erance or the avoidance of the toxicity provoked by flocculants
derived from aluminium, polyacrylamide derivatives and poly-
ethyleneimine used in water treatment plants [88]. In the cosmet-
ics industry, EPSs such as xanthan gum, pullulan and kelcogels are
also used as rheological stabilizers and fragrance carriers.

In addition to the above-mentioned fields, EPSs are also
exploited for medical and pharmaceutical applications. The phys-
iochemical properties of EPSs as xanthan, pullulan, dextran,
hyaluronan, levan, alginate, cellulose and gellan (Table 1), in addi-
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tion to chemical modifications such as acetylation or oxidation,
have contributed to extend their utility [86]. For instance, alginate
is used in the formation of nanoparticles for controlled drug release
and it is also used as adjuvant for vaccines; pullulan, dextran, or
bacterial cellulose are employed for the development of new
micelle systems that can improve drug solubility and stability;
and bacterial cellulose is also applied in the field of wound healing
due to its permeability [86,89,90].

3.2. Proteins

In addition to the EPS, proteins are also important components
of the ECM with very interesting roles and prospective biotechno-
logical applications. Proteins in biofilms can be classified roughly
into two main groups based on functionality: adhesins and func-
tional amyloids. Adhesins are proteins that can be found in
gram-negative and gram-positive species [91–93]. These proteins
are cell-surface exposed proteins that promote cell-to-cell contacts
within a biofilm or adhesion of bacterial cells to biotic or abiotic
surfaces. Examples of adhesins are the biofilm-associated proteins
Bap and SasG and fibronectin binding proteins EnBPA and EnBPB of
S. aureus [94,95]; adhesin p1 of Streptococcus mutans [96], and
members of the antigen-43 family of autotransporter adhesins in
E. coli, such as TibA, and the autotransporter AIDA-I, are involved
in the adherence of E. coli to human cells [97–99]. The adhesion
proteins LapA and LapF and the recently discovered MapA in Pseu-
domonas strains have also been described as key elements in the
colonization of surfaces, seed adhesion and biofilm development
and maturation [91,100,101].

The other main group of proteinaceous components of biofilms
is functional amyloids. These proteins, synthesized as monomers,
progress timely into aggregates to finally render insoluble fibers
with a common quaternary structure characterized by a cross-b
pattern, in which hydrogen-bonded b-strands run perpendicularly
to the axis of the fibril [102]. Amyloids were initially associated to
diverse human disorders (Alzheimer, Parkinson and Huntington,
among others) [103], however, amyloid fibres were later found in
bacteria associated with the ECM of both gram-positive and
gram-negative bacterial species. Functions of amyloids in microbes
include the involvement in adhesion and biofilm formation, spore
coating and protection, or in the dissemination of virulence factors
and evasion of the host immune system, among others [104–106].
Examples of these proteins are the curli amyloid fibres of E. coli and
Salmonella spp. [107], the Fap amyloid fibrils found in Pseudomonas
spp. Biofilms [108], TasA of B. subtilis and B. cereus [109,110] and
the harpins found in gram-negative pathogenic strains of Erwinia
amylovora and P. syringae, among others [111–113]. Along with
the curli fibres of E. coli, one of the best characterized functional
amyloids is TasA produced by B. subtilis [114–117]. TasA is encoded
by the tapA-sipW-tasA operon and needs the activity of TapA and
SipW for correct fibre assembly in vivo. In fact, SipW is a bifunc-
tional signal peptidase in charge of processing and translocating
TasA and TapA to the exterior of the cell, and in addition, SipW
seems to act as a regulatory element in the expression of the tapA
and eps operons [118]. In addition, TapA is required for biofilm for-
mation and polymerization of TasA fibres in vivo [115]. However,
as exemplified in other amyloids, TasA has the intrinsic ability to
form amyloid fibres in vitro in the absence of TapA, which also pre-
serves the structural peculiarities of amyloid proteins but fails to
form structurally defined fibres [110].

Although not included in the two main groups of proteins
described above, BslA is another protein component of the ECM
of B. subtilis with the outstanding ability to self-polymerize into a
structural polymer. This protein is a cell surface-associated amphi-
philic protein that forms a protective hydrophobic coat on the sur-
face of the biofilm to prevent the penetration of hydrophobic



Table 1
Properties and applications of exopolysaccharides.

Properties Applications Refs.

Exopolysaccharides
Xanthan Coating

Emulsifying properties
Thickening agent
High viscosity at low shear rates
Freeze-thaw stability
Odorless

Foods
Petroleum industry
Pharmaceuticals
Cosmetics and personal care products
Agriculture

[167,168]

Gellan Hydrocolloid
Stability over wide pH range
Gelling capacity
Thermoreversible gels
Adhesive
Versatile texture
High clarity
Dispersibility
Biocompatibility

Foods
Pet food
Pharmaceuticals
Research: agar substitute and gel electrophoresis

[168,169]

Alginate Hydrocolloid
Gelling capacity
Film-forming
Stabilizer
Thickening agent
Foam stabilizer

Foods
Medicine
- Surgical dressings
- Wound management
- Controlled drug release

[169,170]

Cellulose High crystallinityInsolubility in most solvents
High tensile strength
Moldability

Foods
Biomedical
- Wound healing
- Tissue engineered blood vessels

[171,172]

Dextran Non-ionic
Good stability
Newtonian fluid behavior
Improve moisture retention and viscosity
Low solubility in water
Antigenic properties

Foods
Pharmaceutical industry
Chromatographic media

[173]

Levan Low viscosity
High water solubility
Anti-tumor activity
Anti-inflammatory
Adhesive strength
Film-forming capacity
Biocompatibility

Food (prebiotic)
Feed
Medicines
Cosmetics
Industry

[174,175]

Proteins
Amyloids Polymerization

Adhesive
Bioflocculants

Building blocks for nanostructures, nanosensors and nanotubes.
Amyloid-based gels in cell adhesion and wound healing
Drug delivery systems

[131,132,135]

BslA Hydrophobicity Food and cosmetic industries as stabilizers [124]

Extracellular DNA
eDNA Easy digestion Biomedicine [157,159,166]

Negative charge Forensic (eukaryotic eDNA)
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fluids, and its deletion alters the microstructure of colonies
[119,120]. BslA functions in cooperation with other ECM compo-
nents as TasA/TapA and EPS to ease the maturation of the biofilm
[99,120]. Hydrophobin proteins are typically found in fungi, where
they assemble spontaneously into amphipathic monolayers at
hydrophobic–hydrophilic interfaces. The surfactant and amphi-
pathic nature of the hydrophobin layers helps in the formation of
essential aerial structures of filamentous fungi, such as hyphae,
fruiting bodies, and spores [121,122], in interactions with the envi-
ronment and in protection against the host defence system [123].
Hydrophobins, such as the previously mentioned BslA, might also
have applications in the food or cosmetic industries as stabilizers.
The use of BslA in the production process of ice creams is a good
example because the combination of the protein with air, fat and
water yields a stable mixture permitting the ice cream to stay fro-
zen for longer periods of time and retarding the growth of ice crys-
tals [124].

In addition to the critical contribution of amyloid proteins to
the progress towards the different stages of the biofilm life cycle,
complementary roles in bacterial growth and survival, detoxifica-
2800
tion of toxic compounds, resistance to antibiotics and even elec-
tron transport have been discovered [125,126]. Furthermore, the
interesting biophysical properties of amyloid proteins, exemplified
by their outstanding resistance to chemical and thermal denatu-
rants or pH changes [127–129], are promoting studies on their
use and implementation in a variety of biotechnological processes.
In this sense, bacterial amyloids are attracting greater interest as
potential natural building blocks for the design of new nanostruc-
tures and nanomaterials: nanowires and nanotubes for electronics,
nanosensors, amyloid-based gels for cell adhesion and wound
healing, or as drug delivery systems [130–132]. Specifically, stud-
ies performed with E. coli have permitted the development of a sys-
tem to fabricate multiscale patterning fibres as versatile scaffolds
able to synthetize fluorescent quantum dots, gold nanowires and
nanoparticles [133]. A biofilm-integrated nanofiber display (BIND)
system has served as the base for the exploitation of curli fibres to
create a biocatalytic biofilm in which functional nanofibers immo-
bilized the industrially relevant enzyme a-amylase [134]. Amy-
loids can also be used as bioflocculants in microalgae cultivation
and are becoming popular as a preferred biomass for biofuel pro-
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duction, promoting the use of cost- and energy-efficient technolo-
gies [135]. Because of their variability, functional amyloid proteins
with their different biophysical properties are promising sources
for the development of potential biotechnological tools and use
in technological applications (Table 1).

3.3. Extracellular DNA.

The last main component of the bacterial extracellular matrix is
extracellular genomic DNA (eDNA). Initially, it was assumed that
eDNA was derived from lysed cells and that mere remnants of
eDNA were present and had no relevance on biofilm structure
[136,137]. However, this concept was rebutted by many studies
showing species-specific amounts of eDNA in different single and
multispecies biofilms and showing organized patterns forming
grid-like structures of filamentous networks [138–142]. eDNA
can be released from lysed cells by mechanisms analogous to
holin-antiholin systems, as in S. aureus [143], but the possibility
of secretion by different eDNA secretion mechanisms has also been
described, such as secretion by outer membrane vesicles in P.
aeruginosa, S. aureus, B. subtilis, Klebsiella pneumoniae, S. epider-
midis, and V. cholerae. The addition of DNase to growing or mature
biofilms resulted in the inhibition of biofilm formation or disrup-
tion of established biofilms, leading to the establishment of a direct
relation between the age of the biofilm and its disruption (young
biofilms were more sensitive to DNase than older biofilms)
[144,145]. Currently, it is accepted that eDNA is a structural com-
ponent of the ECM that provides structural stability to bacterial
biofilms by interacting with other ECM components, such as
exopolysaccharides and proteins, modulating cell surface proper-
ties and promoting cell-to-cell and cell-to-surface adhesion [146–
148]. For example, eDNA in P. aeruginosa has been described to
physically interact with the exopolysaccharide Psl, forming fibres
facilitating bacterial adhesion and growth [149], while in B. subtilis,
eDNA appears to interact with EPS in the early phases of biofilm
development [150]. Several studies have also demonstrated the
ability of eDNA to act as a chelator of cationic antimicrobials and
explained their role in increasing resistance against antibiotics
[139,151,152]. In addition to eDNA-polysaccharide interactions,
eDNA has also been shown to attract and bind amyloid proteins,
causing the polymerisation of the matrix and stimulating autoim-
munity [153,154].

eDNA is rarely used as a biotechnological resource (Table 1);
however, there are many applications where this component of
the ECM has attracted attention. eDNA is mostly fragmented,
which suggests an interesting way to fine tune the attachment of
bacterial cells to surfaces, as experimentally reported for Listeria
monocytogenes [155]. Therefore, eDNA seems to work as a unique
element for the control of biofilm attachment and structural stabil-
ity, and modification of the release of this molecule may be used to
alter the mechanical properties of biofilms [140]. Another applica-
tion is related to the increased resistance of biofilms to antibiotics.
The negative charge of eDNA contributes to the creation of a shield
that protects biofilm-associated cells from aminoglycosides and
cationic antimicrobial peptides that are positively charged by its
binding, thus avoiding the penetration of these peptides inside
the bacterial cells [156].

Considering its relevance for biofilm formation, eDNA can also
be used as a target in the search for antibiofilm agents [157–
159]. Primarily, the use of DNase to digest eDNA leads to biofilm
disruption, but the use of antibodies against DNA-binding proteins
located at the intersection of crossed eDNA strands has also been
investigated [160]. Continuing in this therapeutic direction,
nanomaterial-cleaving eDNA in S. aureus biofilms has been pro-
posed as a promising treatment against biofilm-related infections
[161].
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Very interestingly, although not bacterial, eukaryotic eDNA
seems to be useful for medical diagnostics, given the correlation
of eDNA concentration with different pathologies, including cancer
and autoimmune disorders [162–164]. In fact, eukaryotic eDNA is
used during pregnancy, as eDNA from foetal cells circulates in
the maternal blood allowing the detection of foetal genetic disor-
ders [165]. Finally, the application of eDNA in forensics is also
interesting, as it can be located and quantified on human epithelial
cells or other surfaces, providing a new tool in forensic analysis of
touch samples [159,166].
4. Future perspectives and conclusions

The ECM is a complex structure that is chemically and function-
ally diverse. Mechanistic studies are providing increased knowl-
edge on the chemical structure and biophysical peculiarities of
the molecules that compose this structure. Additional studies on
the features defining the stages of biofilm development are neces-
sary to generate a solid body of knowledge that will enable further
manipulation or even specific design of polymers for current or
new biotechnological applications. The application of the bacterial
biofilms or the different components of the extracellular matrix in
industrial and agricultural processes is arising as a very promising
strategy, both from economic and ecologic point of views, reducing
production costs while increasing productivity, fighting against
pollutants and serving as an ecological tool against agricultural
plagues. Major challenges rely on the ability to scale the produc-
tion of such biotechnological products at industrial level and thus,
their commercial applications due to the high cost of the industrial
processes and the low yield that is currently obtained from their
production. Studies on the fine genetic regulation of the production
of ECM components, the isolation of new producer strains and the
utilization of the most adequate substrates should serve to select
the more suitable natural microorganisms, especially when genetic
manipulation is not permitted or affordable. The unspecific inter-
action of certain ECM with themselves or medium components
impose limitations to further downstream processes. Thus, specific
studies on the physicochemical singularities of each ECM compo-
nent are a matter of interest to define the best ways to improve
extraction and purification methods and how to proceed in the
bioreactor, improving not only yield but also the quality and utility
of the bioproduct.
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