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LJBB, 0000-0003-3619-3177

Thea-,b- and d-cells of the pancreatic islet exhibit different electrophysiological

features. We used a large dataset of whole-cell patch-clamp recordings from

cells in intact mouse islets (N ¼ 288 recordings) to investigate whether it is poss-

ible to reliably identify cell type (a, b or d) based on their electrophysiological

characteristics. We quantified 15 electrophysiological variables in each recorded

cell. Individually, none of the variables could reliably distinguish the cell types.

We therefore constructed a logistic regression model that included all quantified

variables, to determine whether they could together identify cell type. The

model identified cell type with 94% accuracy. This model was applied to a data-

set of cells recorded from hyperglycaemic bV59M mice; it correctly identified

cell type in all cells and was able to distinguish cells that co-expressed insulin

and glucagon. Based on this revised functional identification, we were able to

improve conductance-based models of the electrical activity in a-cells and gen-

erate a model of d-cell electrical activity. These new models could faithfully

emulate a- and d-cell electrical activity recorded experimentally.
1. Introduction
The pancreatic islet is composed of three main cell types: a-, b- and d-cells [1,2].

All three cell types are electrically excitable and use electrical signals to regulate

hormone release [3–5]. These hormones—glucagon, insulin and somatostatin,

respectively—all have a role in normalizing plasma glucose [6–8]. In type 2

diabetes mellitus (T2DM), both glucagon and insulin secretion are impaired

[9,10]. This impairment has been linked to changes in the electrical properties

of a- and b-cells [11–14]. Determining the mechanisms by which islet cells

couple electrical activity to hormone secretion is therefore fundamental for

understanding normal glucose homeostasis and the pathophysiology of T2DM.

The whole-cell patch-clamp technique, applied to intact islets, is the perfect

experimental paradigm for understanding the electrophysiological properties of

islet cells. However, within a mouse islet, the different cell types are not present

in equal proportions; b-cells are the most abundant (70–80% of all cells), with

a-cells (15–20%) and d-cells (5–10%) being relatively sparse [15]. Thus, whereas

there have been great advances in our understanding of the electrical properties

of b-cells and how they couple to insulin secretion in both health and disease

[16–18], progress has been slower and shrouded in controversy for a-cells

[4,19–21]. For d-cells, there remains great uncertainty, even with regard to

fundamental aspects of the metabolic regulation of their electrical activity.

This has motivated the development of strategies to improve identification

of islet cell type. b-cells can be separated from non-b-cells by autofluorescence-

activated cell sorting [22]. Although this can purify b-cells and a-cells by
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80–90%, it has the drawback of removing cells from

their paracrine environment—an environment necessary for

maintaining normal electrophysiological and secretory func-

tion [8,23–27]. Recent efforts have been made to produce

fluorescent labels for particular islet cell types in the mouse

[28–30]. However, it is not straightforward to distinguish

labelled and non-labelled cells in the intact islet owing to

fluorescence emission from cells deeper in the tissue layer.

For this reason, islet cells from such transgenic mice are

often dispersed into single cells [29,31–33]. This allows

labelled cells to be identified, but again removes them from

their paracrine environment. Many experiments are therefore

still performed on intact islets harvested from normal (i.e. not

genetically modified) mice, where cell type must be distin-

guished by reference to established differences in the

electrophysiological properties of a-, b- and d-cells or post-

recording, using immunocytochemistry. Here, we explored

whether the electrophysiological properties can be used to

reliably ‘functionally identify’ each cell type.

Currently, electrophysiological identification of cell type

(a, b or d) relies on two criteria. The first is that b-cells are

larger than non-b-cells [3,34–44]. The second is that a-,

b- and d-cells possess distinct ionic channels or similar chan-

nels that exhibit different properties. For example, b-cells

exhibit non-inactivating Kþ currents and a voltage-gated

Naþ current that inactivates at very hyperpolarized potentials

[37,39,45]. In contrast, there is evidence that non-b-cells

express an A-type transient Kþ current [29,31,38,46–48], a

Naþ current with depolarized inactivation properties relative

to the b-cell [11,29,39–41,44–47,49,50] and T-type Ca2þ chan-

nels [3,38,46]. Several laboratories have used these different

electrophysiological fingerprints to distinguish between a-,

b- and d-cells [11,13,31,34–36,39–44,46–48,50–53].

Here we reviewed the electrophysiological fingerprints of

mouse a-, b- and d-cells. We recorded and analysed a large

dataset of whole-cell voltage-clamp recordings (288 record-

ings) made from cells in intact mouse islets, whose cell type

was subsequently unequivocally determined by immunocyto-

chemistry. We used these data to investigate the validity

of these properties for cell identification and to produce a

mathematical model for identifying islet cell type. We show

that this model can reliably identify islet cell type and

can be successfully used to monitor transdifferentiation

of cells in a diabetic mouse model (bV59M) [54]. Our findings

demonstrate that the electrophysiological properties of a- and

d-cells differ somewhat from what has previously been

deduced. We finally used this amended information to

improve reported conductance-based models of the electrical

activity in a-cells and d-cells and show that these revised

models faithfully resemble experimentally recorded action

potential shape.
2. Methods
2.1. Animals used in this study
Recordings from 288 cells in islets from five different strains of

mouse with a normoglycaemic phenotype were used in this

study. The mouse strains were NMRI, C57BL/6, EPAC2-KO

[55], GYY [32] and SST-Cherry [56]. Islets from a mouse model

with a hyperglycaemic phenotype were also used, together with

littermate controls [54]. These mice have a valine-to-methionine

substitution in the Kir6.2 subunit of the ATP-sensitive Kþ (KATP)
channel in b-cells (bV59M mice). This dataset consisted of 13

recordings from bV59M mice, and 15 from littermate controls.

2.2. Preparation of pancreatic islets
Mice were killed by cervical dislocation, and islets isolated by lib-

erase digestion (schedule 1 procedure). Islets were used for acute

experiments and were not maintained in tissue culture for less

than 16 h. A new islet was used for each cell recording.

2.3. Whole-cell patch-clamp recordings
Whole-cell currents were recorded in intact islets using the stan-

dard whole-cell configuration. Measurements were performed

using an EPC-10 patch-clamp amplifier and PULSE software

(HEKA Electronics, Lambrecht/Pfalz, Germany). Currents were fil-

tered at 2.9 kHz and digitized at more than 10 kHz. Currents were

compensated for capacitive transients and leak current subtraction

was conducted. The extracellular medium consisted of (mM)

118 NaCl, 20 tetraethylammonium-Cl (TEA-Cl), 5.6 KCl, 1.2

MgCl2, 5 HEPES (pH 7.4 with NaOH), 2.6 CaCl2 and 1 D-glucose.

Two intracellular (pipette) solutions were used (solution 1 and

solution 2). Solution 1 contained (mM) 125 K-glut, 10 KCl,

10 NaCl, 1 MgCl2, 5 HEPES, 3 MgATP and 0.05 EGTA (KOH buf-

fered). Solution 2 contained 15 Cs-glut, 10 CsCl, 10 NaCl, 1 MgCl2,

5 HEPES, 3 MgATP, 0.05 EGTA (CsOH buffered). All chemicals

were from Sigma-Aldrich. Only recordings with an access

resistance of less than 50 MV were used for analysis.

2.4. Identification of cell type by immunocytochemistry
In all recordings, cell identity (a, b or d) was subsequently estab-

lished by immunocytochemistry. Biocytin (0.5 mg ml21) was

included in the intracellular solution to allow identification of

the cell recorded from. Following voltage-clamp experiments,

islets were fixed with 4% formaldehyde in phosphate-buffered

saline (PBS) overnight and permeabilized with 0.3% Triton

X-100. Non-specific binding was blocked by pre-treatment for

2 h with 5% normal goat serum before incubating with the differ-

ent primary antibodies for 4–12 h (guinea pig anti-insulin

(Abcam, Cambridge, UK), sheep anti-glucagon (Sigma-Aldrich,

St Louis, MO) and rabbit anti-somatostatin (Vector Labs, Burlin-

game, CA)). After washing with PBS, the islet was incubated

for 1 h in secondary antibodies (Alexa 633 goat anti-guinea pig

(insulin), Alexa 405 goat anti-mouse (glucagon) and Alexa 543

goat anti-rabbit (somatostatin)). Biocytin labelling was visualized

by using Alexa Fluor 488 conjugated streptavidin (0.04 mg ml21;

Thermo Fisher). Islets were then washed and imaged on a confo-

cal microscope (Axioskop 2 upright microscope fitted with a Zeiss

LSM 510 meta confocal and a chameleon multiphoton module).

2.5. Electrophysiological variables
For every cell, several electrophysiological variables were

recorded and characterized (table 1). All analyses were con-

ducted blinded to cell type. The electrophysiological variables

quantified are described in appendix A.

2.6. Multinomial logistic regression model for predicting
islet cell type

A multinomial logistic regression model was constructed. For a

given set of electrophysiological measures from a specific cell

recording, this model can be used to predict the cell type. The

model process requires a dataset for constructing (model con-

struction dataset; N ¼ 175 cell recordings) and validating

(model validation dataset; N ¼ 113 cell recordings) the model.

A description of this model and the modelling process is given

in appendix B.



Table 1. Variables quantified/characterized and used in the construction of the multinomial logistic regression model of islet cell type.

variable (Xi) description continuous/categorical

animal strain strain of the animal from which cell recording taken categorical [1 ¼ C57BL6; 2 ¼ EPAC2-KO; 3 ¼ Glu-;

4 ¼ NMRI; 5 ¼ SST-Cherry]

double sigmoid does the steady-state inactivation of Naþ currents exhibit a

double or single sigmoidal shape?

categorical [0 ¼ single; 1 ¼ double]

V2h half-inactivation of Naþ current continuous

kh slope factor of inactivation of Naþ current continuous

R2 goodness-of-fit of the sigmoidal function to steady-state

Naþ current data

continuous

Imax maximum Naþ current evoked continuous

Imax70 Naþ current evoked from a holding potential of 270 mV continuous

Ccell cell capacitance continuous

Raccess access (series) resistance of recording continuous

tail current presence of a tail current in current – voltage data (see §3.5) categorical [0 ¼ no; 1 ¼ yes]

transient current presence of a transient outward current (see §3.6) categorical [0 ¼ no; 1 ¼ yes]

Ileak leak current of the recording continuous

Rinput input (seal) resistance of the recording in 1 mM glucose continuous

ratio current ratio of Imax and Imax70 continuous

intracellular solution solution 1 (K-glut) or solution 2 (Cs-glut) categorical [solution 1; solution 2]
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The multinomial logistic regression model was constructed in

SPSS (IBM, Armonk, NY). The model developed was coded into a

freely available Matlab toolbox for predicting cell type. The tool-

box and SPSS files are available from GitHub (https://github.

com/IsletCellType/IsletCellType_GitHub). The toolbox uses the

multinomial logistic regression model presented to predict cell

type, given a set of user-defined inputs (electrophysiological vari-

ables from the recorded cell). We have also made available on

GitHub the entire dataset of 288 cell recordings that can be

tested with the multinomial regression model.

2.7. Statistical tests of electrophysiological variables and
analysis

All data are reported as mean+ s.e.m., unless otherwise stated.

SD refers to the standard deviation and N refers to the number

of cell recordings. Statistical significance was defined as p , 0.05.

All recorded variables were compared across cell types using

one-way ANOVA (PRISM5; GraphPad Software, San Diego, CA).

If the data passed normality criteria (D’Agostino’s test of normal-

ity and Bartlett’s test of equal variances), a parametric test was

conducted with the appropriate post hoc test (Tukey). If the nor-

mality criteria were not met, a Kruskal–Wallis test with Dunn’s

multiple comparison test was conducted.

Some of the variables used to identify cell type, such as the

presence/absence of an outward transient current, are categori-

cal (table 1). A contingency table analysis (Pearson’s x2) will

test whether there is an association between this variable and

cell type. For post hoc tests, we adopted the approach described

by Sharpe [57]; contingency tables were partitioned into 2 � 2

tables, and a Fisher’s exact test was conducted [57].

2.8. Conductance-based models
Conductance-based (Hodgkin–Huxley-like) models were used

to simulate electrical activity in a model of an a-cell and a

d-cell. All conductance-based models were solved numerically
in the software package XPPAUT [58] using the variable step

size method CVODE with absolute and relative tolerances of

10210. The models are described in appendix C and can be

obtained from GitHub (https://github.com/IsletCellType).

In what follows, it will be clear from the context whether we

are referring to either (i) a conductance-based model of a- or

d-cell electrical activity or (ii) a multinomial logistic regression

model for predicting islet cell type.
3. Results
We analysed the electrophysiological variables of 288 cells in

intact islets from mice with a normoglycaemic phenotype.

3.1. Cell capacitance is an inadequate identifier of islet
cell type

Cell capacitance (Ccell) in b-cells (5.8+0.3 pF, N ¼ 56) was sig-

nificantly larger than that seen in a-cells (4.2+0.1 pF, N ¼ 141;

p , 0.001) and d-cells (4.3+0.1 pF, N ¼ 91; p , 0.001;

figure 1a). a-Cells and d-cells did not differ in their cell size

( p ¼ 0.556). Given that Ccell is frequently used to identify cell

type [13,34,36,39,40,42,44,49], we constructed a multinomial

logistic regression model to investigate whether Ccell alone

can identify cell type (equation (B 2) and table 2). The model

identified a-cells with 89% accuracy, but poorly identified b-

cells (11/40 were identified correctly) and d-cells (1/62). Thus

Ccell alone is an inadequate indicator of cell type.

3.2. KATP conductance is largest in b-cells
The whole-cell conductance (G) was larger in b-cells (1.7+
0.2 nS, N¼ 56) than in a-cells (0.9+0.1 nS, N¼ 141; p , 0.001)

or d-cells (1.0+0.1 nS, N¼ 91; p¼ 0.005; figure 1b). There was

no difference in G between a-cells and d-cells ( p¼ 0.215).

https://github.com/IsletCellType/IsletCellType_GitHub
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G density (G normalized by Ccell) in a-cells (0.22+
0.02 nS pF21, N ¼ 141) was statistically lower than in b-cells

(0.33+0.03 nS pF21, N ¼ 56; p ¼ 0.017; figure 1c). G density

in d-cells (0.25+0.03 nS pF21, N ¼ 91) was no different

from that in b-cells ( p ¼ 0.184) or a-cells ( p ¼ 0.536).

3.3. Naþ currents are largest in d-cells (not a-cells)
The maximum amplitude of the Naþ current (Imax; figure 2a)

evoked in a-cells (2465+19 pA, N ¼ 141) was significantly

smaller than that in b-cells (2720+50 pA, N ¼ 56; p , 0.001)

and d-cells (2846+37 pA, N ¼ 91; p , 0.001; figure 2b).

There was no difference in Imax between d- and b-cells ( p ¼
0.14). We explored whether Imax could be used to predict cell

type in a multinomial logistic regression model (equation

(B 2) and table 2), given that it is frequently used to identify

cell type [29,35,39,40,45–47]. The model identified cell

type with 57.7% accuracy, and failed to identify any b-cells.

Therefore, Imax alone cannot reliably identify cell type.

3.4. V2h cannot reliably distinguish b-cells from non-
b-cells

The voltage dependence of steady-state inactivation of the Naþ

current differed between cell types (figure 2c–e). Inactivation

in a-cells was half-maximal (V2h) at 238.4+1.4 mV (N ¼
141), as observed in pancreatic slices [40]. This value was not

statistically different from that in d-cells (241.4+1.8 mV,

N ¼ 91; p ¼ 0.187). In contrast, V2h was significantly more

hyperpolarized in b-cells (278.3+3 mV, N ¼ 56) than in

either a-cells ( p , 0.001) or d-cells ( p , 0.001). There was no

difference in V2h between a- and d-cells ( p ¼ 0.22).

As it is more hyperpolarized in b-cells, V2h is often used to

distinguish b-cells from non-b-cells [11,29,39–41,44–47,49,50].

We therefore explored whether V2h alone could be used to dis-

tinguish cell type. We first did this by investigating whether a

simple criterion could enrich the b-cell population; the number

of cells with V2h , a fixed cut-off were counted. The cut-off

ranged from 225 to 2100 mV in 1 mV increments. For each

cut-off, the numbers of a-, b- and d-cells that pass this criterion

were counted. The percentage of these cells that were b-cells (b-

cell enrichment; figure 2f ) and the percentage of b-cells that

pass this criterion (figure 2g) were then calculated. As the

cut-off became more hyperpolarized, b-cell enrichment

increased. However, the percentage of b-cells that passed this

criterion also decreased. Therefore, attempting to enrich b-

cells with a criterion based on V2h comes with a cost—a drastic
decrease in sample size. We further demonstrated that V2h

cannot reliably identify cell type by constructing a multinomial

logistic regression model of cell type, with one independent vari-

able (V2h; equation (B 2)). The model was unable to identify

d-cells (0% correct) and correctly identified cell type with an

overall accuracy of 54% only (table 2).

The slope factor of steady-state inactivation was greater

in b-cells (kh ¼ 213.1+0.8 mV, N ¼ 56) than in a-cells

(kh ¼ 29.5+ 0.4 mV, N ¼ 141; p ¼ 0.001) and d-cells

(kh ¼ 27.7+ 0.3 mV, N ¼ 91; p , 0.001; figure 2e). The

slope factor was also significantly smaller in a-cells than in

d-cells ( p , 0.001).

3.5. Ca2þ tail currents are most prominent in d-cells
We next analysed slow tail currents in all cells (figure 3a,b). The

average time constant of decay in d-cells (1.9+0.2 ms; N ¼ 91)

was significantly greater than that in a-cells (0.58+0.03, N ¼
141; p , 0.001) and b-cells (0.54+0.04, N ¼ 56; p , 0.001).

Slow tail currents were present in 0/141 a-cells, 4/56 (7%) b-

cells and 59/91 (65%) d-cells (figure 3c). The presence of a

slow tail current in d-cells was statistically different from that

in a-cells ( p , 0.001) and b-cells ( p , 0.001). This contrasts

with previous studies which have used the presence of a

slow tail current to identify a-cells [29,31,38,46].

3.6. The presence of a transient outward current is not
unique to a-cells

Many groups have used the presence of a transient TEA-

resistant outward current (putatively an A-type Kþ current)

to define an a-cell [29,31,38,46–48]. We therefore character-

ized the presence of this current in all recordings (figure 4).

Transient outward currents were seen in 14/141 (10%)

a-cells, 0/56 (0%) b-cells and 23/91 (25%) d-cells (figure 4b).

The presence of a transient outward current was statistically

different between d-cells and a-cells ( p ¼ 0.0029). When only

recordings with intracellular solution 1 (K-glut) were con-

sidered, its prevalence in d-cells (67%) was also greater than

that in a-cells (20%; p ¼ 0.0001; figure 4b).

3.7. A binary logistic regression model for identifying
b-cells versus non-b-cells

Electrophysiological criteria have been employed in many

studies to distinguish b-cells from non-b-cells. For example,

islet cells with Ccell . 5pF [42] and Ccell . 6pF [13] have been

considered to be b-cells. We therefore investigated whether a
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simple rule based on Ccell could distinguish b-cells from non-

b-cells. The number of cells with Ccell . a fixed cut-off

(4–10 pF in 0.2 pF increments) were counted. The percentage

of cells that passed the criterion that were b-cells (b-cell enrich-

ment; figure 5a) and the percentage of all b-cells that pass this

criterion (figure 5b) were then calculated. For example, 41 cells

passed the criterion Ccell . 6 pF; 12 a-cells, 21 b-cells and eight

d-cells. Therefore, this rule only enriched b-cells in the sample

to 51%. Moreover, 35 (56221) b-cells did not pass this cri-

terion; a 63% reduction in potential sample size. The results

were still poor when we applied a stricter criterion; only

four b-cells passed the criterion Ccell . 9.4 pF (100% enrich-

ment), but this came with a 92% reduction in sample size

(4/56 b-cells). We conclude that using Ccell alone to

distinguish b-cells from non-b-cells is inadequate.

We therefore used the model construction dataset to con-

struct a binary logistic regression model, to determine

whether the electrophysiological variables could collectively

distinguish b-cells from non-b-cells (figure 5c– f ). The electro-

physiological variables significantly predicting cell type (b-

cells from non-b-cells) included Ccell and Imax. The model

was able to distinguish b-cells from non-b-cells with 91%

accuracy in the model construction dataset; 32/40 b-cells

were correctly assigned as b-cells, and 127/135 non-b-cells

were assigned as non-b-cells (figure 5c,d ). When the model

was applied to the model validation dataset it again

could identify b-cells from non-b-cells with 97% accuracy

(figure 5e,f ). We conclude that, when taken together, the elec-

trophysiological variables quantified can distinguish b-cells

from non-b-cells with a high degree of accuracy.

3.8. A multinomial logistic regression model for
identifying cell type

A multinomial logistic regression model was developed to

investigate whether the electrophysiological variables could

be used together to identify all three cell types, rather than

just distinguish b-cells from non-b-cells. The model construc-

tion dataset was used for fitting the model parameters

(table 3). The modelling process (see appendix B) yielded a

final model based on 10 electrophysiological variables

(figure 6 and table 4). Importantly, potential confounders,

such as animal strain and intracellular solution, did not sig-

nificantly increase the maximum likelihood of observing the

sample values. The model was stable; both forward-entry

and backward-elimination methods of variable selection

produced a model with similar variables and parameter esti-

mates (figure 6a and table 4). The final model constructed

with the forward-entry method included the electrophysio-

logical variables Ileak, Raccess, Ccell, kh, Imax, Rinput, transient

current, ratio current, V2h and tail current. In what follows,

this model is used to predict islet cell type.

The model was applied to the model validation dataset

(N ¼ 113; table 3) to see how well it can identify cell type.

The model identified a-cells with 94% accuracy, d-cells with

90% accuracy and b-cells with 100% accuracy (figure 6b,c).

These data demonstrate that the model is applicable to

other datasets, as it can predict islet cell type in the model

validation dataset with an overall accuracy of 94%.

To rank the variables in the model by their importance for

identifying islet cell type, standardized coefficients were calcu-

lated as described by Menard [60]. V2h and Ccell—variables

typically used to distinguish b-cells from non-b-cells
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[3,11,29,35,37–41,44–47,50]—ranked low (eighth and 12th,

respectively) on the list (figure 6e(i)). The most important vari-

able for distinguishing d-cells from a-cells was the presence

of a slow Ca2þ tail current (figure 6e(ii)). The presence

of an A-current—which has frequently been employed to
distinguish these two cell types [29,31,38,46–48]—was not

the highest ranking variable. The variable that ranked

second was Imax, indicating that a large Naþ current is an

important distinguishing feature of d-cells from a-cells. These

findings do not conform to standard practice for identifying
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cell type and therefore highlight the importance of using our

multinomial logistic regression model to identify cell type.

3.9. Incorrectly identified a-cells have b-cell-like
characteristics

We characterized the cells whose cell type was incorrectly

identified by the model (figure 7). The model incorrectly
identified 14/141 a-cells. In those a-cells incorrectly

assigned (as b- or d-cells), the measured V2h was signifi-

cantly hyperpolarized (264.1+ 7.1) compared with

correctly assigned a-cells (235.3+1.1; p ¼ 0.01). More-

over, it did not differ from that of b-cells that were

correctly identified by the model (281.8+2.8; p ¼ 0.42;

figure 7a(i)). Furthermore, 64% of the incorrectly ident-

ified a-cells (9/14) exhibited a double sigmoidal h1,
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compared with 2.5% of cells in the correctly labelled

a-cell population (figure 7a(ii)). These incorrectly ident-

ified a-cells therefore have ‘b-cell-like’ Naþ channel

properties. The model supported this idea; the probability

that the incorrectly identified a-cells were b-cells (Pb ¼

0.52+ 0.1) was significantly larger than for correctly

identified a-cells (Pb ¼ 0.05+0.01; p ¼ 0.001; figure 7b).

In particular, the model revealed that these a-cells have

‘b-cell-like’ properties.
3.10. The model can identify islet cell type in mice with
a hyperglycaemic phenotype

To investigate whether the model could accurately identify islet

cell type from mice with a hyperglycaemic phenotype, an

additional 13 cell recordings were made in bV59M mice and

15 in wild-type control mice (WT; figure 8). The model identi-

fied cell type in recordings from WT islets with 100% accuracy,

identifying all five b-cells (Pb¼ 0.95+0.04) and 10 a-cells
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(Pa¼ 0.86+0.05) correctly. In bV59M mice, the model correctly

identified all three b-cells (Pb¼ 0.91+0.04) and four a-cells

(Pa¼ 0.94+0.02). The remaining six recordings from bV59M

mice were revealed (by immunocytochemical staining)
to be from cells co-expressing insulin and glucagon

(insþ/gluþ). The model identified all of these cells as b-cells

(Pb¼ 0.67+0.05). The probability that these cells were a-cells

(Pa¼ 0.37+0.05), as predicted by the model, was significantly



rsif.royalsocietypublishing

13
larger than the probability that b-cells from WT (Pa¼ 0.06+
0.04; p¼ 0.022) or bV59M (Pa¼ 0.07+0.04; p¼ 0.15) mice

were identified as a-cells by the model. Furthermore,

the model was less certain that these bV59M insþ/gluþ cells

were b-cells; Pb in bV59M insþ/gluþ cells was smaller than

in WT ( p¼ 0.019) and bV59M ( p¼ 0.04) b-cells. Therefore,

although the model predicted these six bV59M insþ/gluþ

cells to be b-cells, it also revealed that they had ‘a-cell-like’

electrophysiological properties.
 .org
J.R.Soc.Interface

14:20160999
4. Discussion
Here we have quantified numerous electrophysiological vari-

ables in a-, b- and d-cells from intact mouse islets. Our study

highlights the perils of using a single electrophysiological vari-

able to distinguish cell type and demonstrates that some

established methods for functional identifying cell type are mis-

leading (figures 1–4). We show, by constructing a multinomial

logistic regression model (figure 6), that multiple electrophysio-

logical variables can be used to predict islet cell type with 94%

accuracy. The mathematical model was also able to identify

cells from a diabetic mouse, and could distinguish cells in this

mouse that were positive for both insulin and glucagon (figure 8).

4.1. Functionally identifying islet cell type based on a
few electrophysiological properties

When recording membrane potential in the perforated patch-

clamp configuration, the electrical activity of the cell in

response to application of glucose is one method by which

cell identity can be alluded to. The aim of this study was to

provide a tool for accurately identifying cell type when mem-

brane potential recording is not required or cannot be used

(namely in voltage-clamp experiments under the standard

whole-cell configuration).

Under the standard whole-cell configuration, a-, b- and

d-cells in mouse islets are known to exhibit electrophysiological

properties that differ. These properties are often used to

functionally identify the cell type [11,13,29,31,34–36,39–42,

44,46–48,50,61]. For example, an electrophysiological feature

that is commonly employed to distinguish cell type is the cell

capacitance [3,13,35–41,43,44], which is largest in b-cells.

Some studies have employed a criterion based on cell capaci-

tance to distinguish b-cells from non-b-cells [13,34,42].

However, we show that functionally identifying b-cells from

non-b-cells using cell capacitance is unreliable (figure 5a,b). Cri-

teria based on cell capacitance alone may moderately enrich the

cell type of interest, but will significantly reduce the sample size.

Thus, even if subsequent criteria are applied (e.g. pertaining to

Naþ current properties; see Rolland et al. [42]), the dataset will

already be considerably reduced in size and not representative

of the population. Furthermore, although our large dataset

demonstrated many differences in electrophysiological proper-

ties across cell type, no single feature was able to distinguish

islet cell type (table 2). A better method of identifying islet cell

type is therefore required.

4.2. A multinomial logistic regression model for
identifying islet cell type

To determine whether the electrophysiological features we

measured could, collectively, be used to predict islet cell
type, we constructed a multinomial logistic regression

model. This model was able to predict islet cell type with

94% accuracy (figure 6). It requires only a few standard elec-

trophysiological variables as input. Its accuracy and speed

could aid online identification of cell type and can replace

the lengthy immunocytochemical and imaging procedures.

This model demonstrated that Naþ current variables, the

input resistance (1/G) and cell capacitance are significant

predictors of cell type, when important experimental confoun-

ders (e.g. access resistance and leak current) are controlled for.

Interestingly, the model revealed that the leak current—an

experimental confounder—is a significant predictor of cell

type (table 4). It is therefore important to consider such

experimental confounders when using electrophysiological

variables to identify cell type.

For each recorded cell, the model generated probabilities

Pa, Pb and Pd—the maximum of which yielded the cell type

predicted by the model. The model could correctly identify

cell type in mice with a diabetic phenotype [54] and identify

cells that were positive for both insulin and glucagon. It

may therefore help to understand the electrophysiological

properties of cells undergoing reprogramming [62].

4.3. A-type Kþ current (transient outward current) as
an identifier of cell type

The presence/absence of an A-current has been used in many

studies as an identifying feature for a-cells/d-cells, respect-

ively [29,31,38,46–48]. Our analysis of a large sample of

cells revealed that the notion that the A-current is an identify-

ing feature of a-cells is false (figure 4). We demonstrate that it

is a feature of both d-cells (67% of d-cells exhibited a transient

outward current) and a-cells (20%; figure 4c). This is sup-

ported by transcriptome data from DiGruccio et al. [59] that

report expression of genes encoding A-type Kþ channels in

both a- and d-cells (figure 4d ) [59]. KCNA4 and KCND2 are

preferentially expressed in d-cells, and KCND1 and KCND3
exhibit similar levels of expression in a- and d-cells. Similarly,

Adriaenssens et al. [56] recently reported genes differentially

expressed between a-, b- and d-cells; genes encoded by

A-type channels were not found to exhibit significant

expression changes between a- and d-cells [56]. In conclusion,

the presence of an A-type current is not unique to a-cells, and

should therefore be avoided as an identifier of cell type.

How do we reconcile this fact with the observation that

4-aminopyridine (4-AP) reduces glucagon secretion in

mouse islets [49]? First, although 4-AP is traditionally seen

as a blocker of A-type Kþ channels [63], it is not selective

for Kþ channels that inactivate; it blocks both slowly inacti-

vating and non-inactivating Kþ currents of delayed rectifier

type, including Shaker family members Kv1.1 [64], Kv1.2

[65], Kv1.3 [66], Kv1.5 [67,68] and Kv1.6 [69], as well as

Shab-related Kv2.1 and Shaw-related Kv3.1 [70]. Secondly, if,

as our analysis suggests, the A-type current is actually a fin-

gerprint of d-cells, then blockade of this current will increase

action potential width in d-cells, facilitating somatostatin

release. This may decrease glucagon secretion via paracrine

inhibition of a-cells [71].

4.4. Improved conductance-based models of a-cells
To demonstrate the importance of our improved characteriz-

ation of the electrophysiological properties of a- and d-cells,
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we used our findings to develop models of the electrical

activity in these cell types (figures 9 and 10).

4.5. An improved conductance-based model of a-cell
electrical activity

Conductance-based mathematical models of the electrical

activity of a-cells have provided us with invaluable insights

into the mechanisms regulating glucagon secretion [72–75].

However, parameters used in these models were based on pre-

sumptive a-cells identified by traditional electrophysiological

criteria [3,29,31,35,38,46], which we have shown here to be inac-

curate. The parameters used in these models were therefore not

always correct. The recent model of Watts & Sherman [74]

includes an A-type Kþ current which we demonstrate is present

in 20% of a-cells (figure 4). It also included Naþ current par-

ameters that did not resemble our experimental dataset

(figure 9a). Furthermore, the cell capacitance reported in pre-

viously published models was 5 pF [72–74], which does not

resemble Ccell for a-cells reported here (4.2+0.1 pF; figure 1a)

or previously [11,45]. These discrepancies may explain why the

model of Watts & Sherman [74] produced a small decrease in

spike height (2.45 mV) and doublet spikes during simulation of

high-glucose conditions (figure 9b,c), a feature not seen exper-

imentally [11]. We therefore modified this model in the light of
our findings (appendix C). When we removed the A-current,

decreased Ccell to 4 pF and modified the Naþ current parameters

in the model to fit our experimental data, the similarity between

the model and the experimental data under simulated high-glu-

cose improved. In particular, in low-glucose conditions, the spike

height of the model action potential overshot 0 mV and had an

amplitude of more than 50 mV, as seen experimentally [11,52].

Moreover, in high-glucose conditions, the decrease in spike

height was larger (6.1 mV), as observed experimentally [11].

These results do not disagree with the results produced from

simulations of conductance-based models of a-cells by Watts &

Sherman [74]. In fact, we used the model by Watts & Sherman

[74] as a starting model (as opposed to the other available

models ofa-cells) because it correctly captures the phenomenolo-

gical behaviour seen in the experimental data when high glucose

is added. Our improvement of this model, based on our exper-

imental findings, illustrates the importance of using reliable

techniques for identifying cell type.
4.6. An improved conductance-based model of d-cell
electrical activity

A conductance-based model of d-cell electrical activity cali-

brated against experimental data does not exist. Recently,
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compared with the inward current experimentally recorded from a d-cell under the same protocol (dashed). The Naþ current model parameters were then opti-
mized by the method of Willms et al. [76], so that the model fitted the experimental data. The currents shown are in response to Vcond ¼ 2150, 2100, 260 and
220 mV. (b) Spiking behaviour generated by the model of Watts et al. [75] with the reparametrized Naþ current model (as shown in a) and Ccell ¼ 4 pF was
compared with the original, unaltered d-cell model by Watts et al. [75]. Note that action potentials evoked in the improved model overshoot 0 mV, have short
duration and also have a pronounced after-hyperpolarization (arrows; owing to the A-type Kþ current), as seen in the experimental action potentials recorded from a
d-cell under the perforated patch-clamp configuration (c). (Online version in colour.)
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Watts et al. [75] generated a conductance-based model of a

d-cell for studying the dynamical interactions between cell

types, but this was a modified version of an a-cell model

[75]. We therefore developed a model of d-cell electrical

activity, constrained to our experimental data for d-cells

(figure 10 and appendix C). The Naþ current kinetics in the

model were fitted to experimental data from a d-cell record-

ing by the improved parameter estimation method

proposed by Willms et al. [76]. Given that our data demon-

strate that d-cells have slow Ca2þ tail currents (figure 3)

and A-currents (figure 4), T-type Ca2þ and A-type Kþ currents

were included in the model. These modifications produced a

good fit between the model and experimental data in response

to the Naþ inactivation protocol (from a single recording of a
d-cell; figure 10a). We also changed Ccell in the model (from 5

to 4 pF) to fit the experimental data for d-cells (4.3+0.1 pF,

N ¼ 91; figure 1a). When the model was simulated under cur-

rent clamp conditions, it produced large-amplitude spikes that

overshot 0 mV and had large after-hyperpolarizations

(figure 10b). Similar spikes were seen experimentally using

the perforated patch-clamp configuration (figure 10c).
4.7. Future directions and conclusions
We have focused our model on characterizing islet cell type

from recordings made from intact islets. Some studies, how-

ever, use dispersed islet cells. Our model was not tested

against recordings from dispersed cells for two reasons.
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First, cell identification by immunocytochemistry is straight-

forward in dispersed cells. Second, there is evidence that

both cell size and Naþ current density are altered in

dispersed islet cells [77].

a-, b- and d-cells in human islets possess very distinct

electrophysiological features compared with their mouse

counterparts [78–80]. Unlike the mouse, no functional identi-

fication exists for human cell type; patch-clamp recordings

from human islets are rare. Therefore, identification of cell

type demands successful immunocytochemical staining.

The difficulties faced when studying the electrophysiological

properties of human islet cells are reflected by the sample

sizes (typically ,10 [78–80]). Furthermore, human islet

function is very heterogeneous [11,81,82]. These obstacles

have undoubtedly contributed to the slow progress in our

understanding of the electrophysiological properties of

each cell type in human islets, and how these properties

correlate to the phenotype (e.g. non-diabetic/diabetic) of

the donor.

The modelling process outlined in this study would also be

helpful in the study of human islets. Such a model could be

used to determine the key electrophysiological variables that

identify cell type, making comprehensible the defining electro-

physiological properties of these heterogeneous cells. It could

also be used to predict the disease state (non-diabetic/diabetic)

of a donor given a set of electrophysiological variables. Such

a modelling procedure would illuminate which electrophysio-

logical properties differ in diabetes, while correctly controlling

for experimental confounders.

In conclusion, we have conducted a comprehensive

analysis of the electrophysiological properties of islet cells tra-

ditionally used for identifying cell type, in a large population

of recordings. We used this dataset to reveal which electro-

physiological fingerprints were reliable for identifying cell

type, and then constructed a logistic regression model that can

be used to predict islet cell type with 94% accuracy. These

data were successfully used to not only predict cell type in dia-

betic mouse models, but also improve conductance-based

models of a- and d-cells.

Ethics. All animal experiments were conducted in accordance with the
UK Animals Scientific Procedures Act (1986) and University of
Oxford ethical guidelines.

Authors’ contributions. All authors had significant intellectual input
into the study and gave final approval for publication. L.J.B.B. con-
ceived the study design, drafted the manuscript, constructed and
simulated the mathematical models and analysed the experimental
and computational data. J.A.K. analysed the experimental data.
E.V. and Q.Z. recorded the experimental data. Q.Z., F.M.A. and
B.R. helped draft the manuscript. P.R. conceived the study design
and helped draft the manuscript.

Competing interests. We have no competing interests.

Funding. L.J.B.B. is supported by a Sir Henry Wellcome Postdoctoral
Fellowship (Wellcome Trust, 201325/Z/16/Z). Q.Z. holds an RD
Lawrence Fellowship (Diabetes UK). J.A.K. and E.V. hold Wellcome
Trust OXION PhD studentships. Financial support was also received
from Wellcome Trust grant nos. 884655, 089795 and 095531. B.R. is
supported by a Wellcome Trust Senior Research Fellowship in
Basic Biomedical Science (100246/Z/12/Z), the British Heart Foun-
dation Centre of Research Excellence in Oxford (RE/13/1/30181),
an NC3R Infrastructure for Impact award (NC/P001076/1), an
EPSRC Impact Acceleration Award (EP/K503769/1) and the Com-
BioMed project supported by the European Commission (grant
agreement no. 675451)). F.M.A. holds an ERC Advanced Investigator
award (322620) and a Royal Society/Wolfson Merit Award.

Acknowledgements. We thank Dr Melissa Brereton for her help with the
experimental mouse model of diabetes (bV59M).
Appendix A: electrophysiological variables
quantified
Here we describe the experimental electrophysiological vari-

ables quantified from every recorded cell.
A.1. Whole-cell conductance (G)
The reciprocal of the input resistance (1/Rinput), taken from

the parameter window of the EPC-10, was computed to

yield the whole-cell conductance (G). This to a large extent

reflects the KATP-channel conductance (GKATP).
A.2. Naþ current variables
Voltage-gated Naþ currents (INa) exhibit distinct properties

in b- and non-b-cells; these are frequently used to functionally

identify cell type [3,11,29,35,37–41,44–47,50]. We therefore

sought to characterize these fingerprints in each cell recorded.

Steady-state properties of INa were investigated by applying a

200 ms conditioning potential (Vcond ¼ 2180 to 20 mV,

10 mV increments) followed by a 10 ms test pulse to 0 mV.

Maximum Naþ current amplitude (Imax) was taken as the

peak current evoked following a conditioning pulse

of Vcond ¼ 2180 mV. For each conditioning potential, the

peak current evoked during the test pulse (I) was normali-

zed by Imax. This yielded a sigmoid relationship, which

represents the steady-state inactivation of the Naþ current

(h1 ¼ I/Imax) as a function of Vcond. The data were then fitted

with a single sigmoid,

h1ðVcondÞ ¼
1

1þ exp((Vcond � V2hÞ=khÞ
,

in Matlab v. 6.1 (2000; The MathWorks, Natick, MA). The fit

process yielded two biological parameters for inactivation:

the half-inactivation (V2h) and the slope factor (kh). It also pro-

duced a goodness-of-fit (R2). Zhang et al. [45] recently

demonstrated that h1 in b-cells exhibits a biphasic shape and

fits well with a double sigmoid,

h1ðVcondÞ ¼ A0 þ A1
A2

1þ expððVcond � V2h,1Þ=kh,1Þ

�

þ 1þ A2

1þ expððVcond � V2h,2Þ=kh,2Þ

�
:

We therefore fitted all data with both a double and single sig-

moid function. The fit with the largest R2 was taken as the

most appropriate fit for the h1(Vcond) data. If the fit was a

double sigmoid, then the value of V2h used to compare with

other cell types was the most negative value out of V2h,1 and

V2h,2.
A.3. Cell capacitance, Raccess and Ileak
a-, b- and d-cells differ in cell size and this is frequently used as

an identifying feature for cell type [3,13,35–41,43,44]. A proxy

for cell size (measurable during whole-cell patch-clamp record-

ings) is cell capacitance (Ccell). This is taken as the slow

component of the capacitive transient, as, after fast capaci-

tance compensation for electrode capacitance, all remaining

capacitive transients come from the cell capacitance [83].

The access (series) resistance (Raccess) was also recorded as

this is a potential confounder of the recorded
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electrophysiological properties of the cell [84,85]. Similarly,

the leak current (Ileak) was recorded.
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A.4. Transient outward and slow tail currents
In some recordings, application of a conditioning potential

Vcond , 270 mV, followed by a test pulse to 0 mV, evoked a

transient outward current that persisted in the presence of

20 mM TEA-Cl. This current, carried by Kþ and putatively of

A-type, has been used to identify a-cells [29,31,38,46–48]. In

each cell, we characterized whether such a current was present

or absent (transient current ¼ yes/no; table 1).

A current–voltage protocol was also applied to each cell

recorded, to determine the peak currents elicited by voltage

steps to different membrane potentials. Voltage steps of ampli-

tude 2100 to 30 mV (10 mV increments) were applied from a

holding potential of 270 mV, and the evoked current recorded.

This peak current was recorded (Imax70). In some cells, a slowly

deactivating inward tail current (slow tail current) was observed

on termination of the voltage step to 30 mV. This slow tail cur-

rent, presumed to be a T-type Ca2þ current, has been used to

identify islet cell type [29,31,38,46]. In each recorded cell, we

characterized whether this slow tail current was present or

absent (tail current¼ yes/no; table 1). As this characteristic is

descriptive and subjective, we fitted a single exponential to

the decay time course of this slow tail current; if the time con-

stant of decay was more than 1.5 ms then a slow tail current

was considered to be present (tail current¼ yes).
Appendix B: multinomial logistic regression
model for identifying islet cell type
B.1. Multinomial logistic regression analysis
Our aim was to use the experimental variables calculated

(table 1) to construct a regression model for predicting cell

type (a, b or d). Because the dependent variable is categorical

with more than two levels, we fitted a multinomial logistic

regression model to the experimental data. The benefit of this

form of regression model is that it allows independent variables

to be both categorical and continuous. It also accounts for exper-

imental confounders [86] and how these influence identification

of cell type. The model has the form

ln
Pa

1�Pa

� �
¼B0aþX1B1aþ ...þXiBia ...þXnBna,

ln
Pb

1�Pb

� �
¼B0bþX1B1bþ ...þXiBib ...þXnBnb:

)
ðB 1Þ

Here, Bia and Bib are 2(n þ 1) parameters determined by the

modelling fitting process and Xi are the n independent variables

(identifying features). For example, our model may include

X1 ¼ V2h and X2 ¼ Ccell. Given a cell and its set of values of

Xi, the model produces Pa and Pb—the probabilities that the

cell is an a-cell and b-cell, respectively. This model also yields

the probability that a cell is a d-cell; Pd ¼ 1 2 Pa 2 Pb. What

remains to be outlined is how (i) Bia and Bib are determined

and (ii) the variables Xi are chosen.
B.2. Model construction
In the model fitting process, parameter values (Bia, Bib) were

chosen so that they maximized the likelihood of observing
the sampled values Xi [87]. For the model fitting process,

N ¼ 175 recordings made in mice with a normoglycaemic

phenotype (60% of the normoglycaemic dataset) were used

as the sample values, and the model was fitted to these

samples (table 3). This dataset is referred to as the ‘model

construction’ dataset. All logistic regression models presented

were constructed using this dataset.

B.3. Models with one independent variable
To understand whether a particular independent variable

(e.g. X1 ¼ V2h) can alone identify cell type, equation (B 1)

was fitted to the experimental data with just this single inde-

pendent variable. This model takes the form

ln
Pa

1� Pa

� �
¼ B0a þ X1B1a,

ln
Pb

1� Pb

� �
¼ B0b þ X1B1b,

)
ðB 2Þ

where B0a, B1a, B0b and B1b are parameters determined by the

fitting process and X1 is the independent variable of interest.

This model can be used to understand how reliable X1 alone

is at correctly identifying cell type.
B.4. Model with more than one independent
variable—the variable selection process

To understand whether the electrophysiological variables

could be used together to accurately predict cell type, a for-

ward-entry approach was taken. A variable was entered

into the model as a new independent variable Xi if it signifi-

cantly increased the maximum likelihood of observing the

sampled values [87]. The variables considered for this process

are precisely those described above (table 1). A backward-

elimination method was also applied to test stability of the

variable selection process.

Certain variables were forced to be in the model. Exper-

imental confounders were accounted for by inclusion in the

initial model [86]. Because Raccess can influence the observed

current–voltage relationship and the temporal resolution of

recorded currents [84,85], this variable was considered as

an experimental confounder and forced to be in the model.

For similar reasons, multiplicative variables were included

in the variable selection process; Raccess
. Imax, Raccess

. V2h

and Raccess
. kh were subjected to maximum-likelihood criteria

for inclusion in the model. Ileak, which is a measure of the seal

quality, was forced to be in the model. The strain of the

animal from which the cell recording was taken was con-

sidered as experimental confounders (influencing cell type).

This categorical variable was not forced to be in the model

but instead subjected to the aforementioned maximum-

likelihood criteria. Many studies report Imax normalized to

Ccell because this can bias the current amplitude; the larger

the cell area, the larger the current recorded. We could account

for this in the model by including the variable Ccell
. Imax in the

modelling process and seeing whether this explained any

variance in cell type. Two intracellular solutions were used

for recording (solutions 1 and 2). As the solution used may

influence the magnitude of the outward currents observable,

and outward (namely A type) currents are used to identify

cell type, we included the variable intracellular solution

(solution 1/solution 2) as a confounder in the model.



rsif.royalsocietypub

18
The final model from this process was used to calculate

the probability that any given cell (with sample values Xi

for i ¼ 0, . . . ,n) is an a-cell (Pa), b-cell (Pb) or d-cell (Pd).

The maximum of these three computed probabilities deter-

mines the cell type predicted by the model and can be

compared with the observed cell type (confirmed by

immunocytochemistry).
lishing.org
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B.5. Model validation
Following the model construction process, the model was

validated. To ensure that the model fit is generalizable to

other datasets, a second dataset (distinct from the model con-

struction dataset) was used. This ‘model validation’ dataset

consisted of the remaining N ¼ 113 cell recordings made

from mice with a normoglycaemic phenotype (40% of the

normoglycaemic dataset; table 3). For each cell recording

(with experimental variables Xi), the values Xi were entered

into equation (B 1) and the probabilities (Pa, Pb, Pd) com-

puted. The cell type predicted by the model could then be

compared with the observed cell type.
Appendix C: conductance-based models of
electrical activity
C.1. Conductance-based models of a-cells
We studied how any discrepancies in the identifying features

of a-cells would change the behaviour of previously pub-

lished conductance-based models of a-cells (which have

relied on these identifying features to constrain model par-

ameters). To do this, we used the recent model by Watts &

Sherman [74]. The unmodified model is

Ccell
dV
dt
¼�(ICaLþICaNþICaTþINaþIKþIKATPþIKAþILþISOC),
where Ccell is the cell capacitance; ICaL, ICaN and ICaT are L-, N-

and T-type voltage-dependent Ca2þ currents, respectively; INa

is a voltage-dependent Naþ current; IK is a delayed rectifier Kþ

current; IKA is an A-type voltage-dependent Kþ current; IK(ATP)

is an ATP-sensitive Kþ current; IL is a leak current; and ISOC is a

store-operated Ca2þ current. A full description of this model

can be found in Watts & Sherman [74] and the model code

can be obtained from GitHub (https://github.com/IsletCell

Type/IsletCellType_GitHub).
C.2. Conductance-based models of d-cells
Similarly, we studied how any discrepancies in the identify-

ing features of d-cells would change the behaviour of

previously published conductance-based models of d-cells

(which have relied on these identifying features to constrain

model parameters). To do this, we used the recent model

by Watts et al. [75]. The unmodified model is

Ccell
dV
dt
¼ �(ICaL þ ICaN þ INa þ IK þ IKATP þ IKA þ IL),

where Ccell is the cell capacitance; ICaL and ICaN are the L- and

N-type voltage-dependent Ca2þ currents, respectively; INa is a

voltage-dependent Naþ current; IK is a delayed rectifier Kþ cur-

rent; IKA is an A-type voltage-dependent Kþ current; IK(ATP) is

an ATP-sensitive Kþ current; and IL is a leak current. The

GABA current was excluded from the model as we were not

modelling paracrine signalling. The parameter values of IK,

IK(ATP), IKA and IL were left unmodified. The parameter values

of INa were fitted to experimental data by the process described

by Willms et al. [76]. The only further modification to this

model was that the time constants of the voltage-gated Ca2þ

channels were decreased, because action potentials generated

by the model were seen to be too broad in comparison with

experimental data. This model is available online at GitHub

(https://github.com/IsletCellType/IsletCellType_GitHub).
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