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Abstract

We proposed a theoretical framework predicting mutualistic outcomes for the arbuscular

mycorrhizal (AM) symbiosis based on host provenance (crop versus wild). To test the frame-

work, we grew two isolates of Rhizoglomus irregulare (commercial versus an isolate locally

isolated), with five crop plants and five wild plants endemic to the region that co-occur with

the locally sourced fungus. While inoculation with either isolate had no effect on plant bio-

mass, it decreased leaf P content, particularly for wild plants. All plants associating with the

commercial fungus had lower leaf P. Overall, our data shows that wild plants may be more

sensitive to differences in mutualistic quality among fungal isolates.

Introduction

Arbuscular mycorrhizal (AM) fungi are obligate root symbionts that provide a wide spectrum

of benefits to their hosts, such as improved nutrient uptake and stress tolerance [1]. These ben-

efits have led to their use as bio-fertilizers in agriculture and horticulture over the past 30+

years [2]. Consumer demand for AM fungal biofertilizers is growing; the number of compa-

nies producing inoculum have more than doubled in the past decade [3,4].

Despite early promise [5], inoculation by AM fungi does not always lead to improved plant

performance. Even under controlled greenhouse conditions, failure to colonize is common

[6,7] and in cases of successful colonization, effects range from negative [8–11], negligible

[12,13] to significant yield increase [14]. Inoculation with AM fungi in the field is likewise

inconsistent, ranging from yield increases [15–18] to no significant effect [19,20].

Most of our knowledge about host responses to inoculation by AM fungi is based on

domesticated cultivars [17,18,21,22], meaning we have a poor understanding of how inocu-

lants may affect local plant populations and communities if they disperse beyond the target

plant community [23]. AM fungal inoculants may pose little threat to natural plant communi-

ties because most commercial inoculants comprise cosmopolitan species with worldwide dis-

tribution [24]. But there exists large intraspecific variation among conspecifics, [25–28],

including mutualistic quality [29] and genetics [27,30,31]. Such variation may make it difficult

to predict the functioning of these inoculants, even if conspecifics naturally co-occur.

Symbiotic outcomes for wild plants may differ from domesticated cultivars, leading to dif-

ferential responses to inoculation. Because wild plants generally depend more on AM fungi

PLOS ONE | https://doi.org/10.1371/journal.pone.0221037 August 8, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kokkoris V, Hamel C, Hart MM (2019)

Mycorrhizal response in crop versus wild plants.

PLoS ONE 14(8): e0221037. https://doi.org/

10.1371/journal.pone.0221037

Editor: Ricardo Aroca, Estacion Experimental del

Zaidin, SPAIN

Received: February 12, 2019

Accepted: July 29, 2019

Published: August 8, 2019

Copyright: © 2019 Kokkoris et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-1667-0493
https://doi.org/10.1371/journal.pone.0221037
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221037&domain=pdf&date_stamp=2019-08-08
https://doi.org/10.1371/journal.pone.0221037
https://doi.org/10.1371/journal.pone.0221037
http://creativecommons.org/licenses/by/4.0/


compared to cultivars [32–35], symbiotic outcomes may be more pronounced (positive or neg-

ative) for wild plants compared to cultivars. This effect may be exacerbated by local adaptation

between wild plants and soil biota as native plants respond more positively to local, versus

exotic AM fungi [36,37]. Not only are local fungi adapted to local conditions [38,39], mutual-

isms are more beneficial when partners share evolutionary history [40]. Taken together, such

differential responses to commercial fungal inoculum may result in less beneficial mutualisms

for local plants if commercial inoculants become naturalized.

We designed a theoretical framework to predict how wild plants and crops can respond dif-

ferently to AM fungal inoculation (Fig 1). To test the framework and to determine potential

positive or negative impacts of commercial inoculants, we evaluated the mycorrhizal response

of five wild plants and five crop plant species growing with a commercial AM fungal isolate

and a locally sourced conspecific to test the questions:

a. Does plant provenance affect mycorrhizal response?

b. Does plant provenance affect fungal response?

Materials & methods

Experimental treatments

We tested the effect of host plant identity (five crop and five wild plant species) and AM fungal

identity (commercial, locally sourced, non-mycorrhizal control) in a completely randomized

block design (n = 8, total 240 experimental units). This experiment was conducted in green-

house at UBC Okanagan from September 2015 to February 2016.

Plant identity. We tested the effect of host identity using “crop” and “wild” plants repre-

senting different functional groups (C4 grass, C3 grass, forb) that form AM symbioses

(Table 1). These plants were selected to represent both common agricultural crops in the local

area, and naturally occurring wild plants. Wild plant seeds were collected from wild popula-

tions near the source of the local inoculant. All wild plant seeds, as well as the flax (Linum usi-
tatissimum), lentils (Lens culinaris) and wheat (Triticum aestivum) seeds, were provided by Dr.

M. Schellenberg from Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-

Food Canada in Swift Current, Saskatchewan. Corn (Zea mays) and soybean (Glycine max)
seeds were obtained from West Coast Seeds Ltd.

Inoculant identity. Rhizophagus irregularis Schenck & Smith (DAOM 197198) (synonym

Glomus intraradices, G. irregulare [41] and recently Rhizoglomus irregulare [42] was provided

by BioSyneterra, Inc. (L’Assomption, Québec CANADA) This isolate has been cultivated in-

vitro for more than 30 years (Stockinger, Walker & Schüßler, 2009) and is sold globally as a

commercial inoculant. We also tested a locally sourced Rhizophagus irregularis (GD50, isolated

in 2007 from SK (50˚ 34’ 56.94" N/105˚ 29’ 17.41" W), Agriculture and Agri-Food Canada,

Swift Current Research and Development Centre). For the experiment, we used whole inocu-

lum for both isolates (infected root fragments and spores), standardized based on propagule

density per gram quantity. The propagule density for the locally sourced isolate inoculum was

determined using the infection unit method by [43]and propagule density of the commercial

isolate, as defined by the provider.

Growing conditions. Pots (3 L) were filled with 3.5 kg mix of sterile medium consisting

of 75% medium-fine sand SAKRETE Play Sand and 25% Turface athletics MVP by volume.

The medium was low in soil nutrients, as specified by the manufacturer’s information, so we

could control the nutrient status with fertilization. Turface consists of SiO2 (60%) Fe2O3 (5%)

and other chemicals at less than 5% Al2O3, CaO, MgO, K2O, Na2O and TiO2 while sand had
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no nutrients. In each pot, we placed 26 propagules (8.7 g of inoculum containing infected root

fragments and spores of the locally sourced isolate and 7 g similar inoculum of the commercial

isolate). The inocula did not contain any additive nutrients and the carrier for both inocula

was vermiculate. Three seeds were placed on top of the inoculum and covered with ~200 ml of

Fig 1. Experimental hypotheses and theoretical framework of differential response of wild and crop plants to AM fungi. The thickness of arrows corresponds to the

magnitude of host-plant response. Inoculation effects on crop and wild plants (up arrows): We hypothesized inoculation with AM fungi would have a weak effect, either

positive or negative, on crops due to lack of coadaptation [36,37] and reduced mycorrhizal responsiveness of domesticated plants [32–35]. For wild plants, we

hypothesized effects of inoculation will be magnified, having a strong, either positive or negative effect, due to strong mycorrhizal responsiveness of wild plants [32–35].

Effects of plant provenance on AM fungi (down arrows): We hypothesized wild plants would have a strong positive effect on AM fungal growth due to increased

dependency while crops would have a weak positive effect on AM fungi due to lack of coadaptation and reduced mycorrhizal responsiveness [36,37].

https://doi.org/10.1371/journal.pone.0221037.g001

Table 1. Cultivars and wild plants, from three distinct functional groups, that were inoculated with a commercial

and a locally sourced isolate of Rhizophagus irregularis.

Functional

group

Cultivars Wild plants

C4 grass Zea mays (Corn, var. Early Sunglow) Schizachyrium scoparium (Little blue

stem),

Calamovilfa longifolia (Prairie sandreed)

C3 grass Triticum aestivum (Lillian spring wheat) Agropyron dasystachyum (Northern

wheatgrass)

Forbs Linum usitatissimum (Flax, var. Bethune), Lens
culinaris (Lentils),

Glycine max (Soybean, var. Kuroshinja Edamame)

Hedysarum alpinum (Alpine

Sweetvetch),

Dalea candida (White prairie clover)

https://doi.org/10.1371/journal.pone.0221037.t001
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growing medium, then thinned to one seedling per pot. Plants were watered with emitters sup-

plying 2 l hr-1 to each pot, ~35 ml every day (1 minute per day) through the irrigation system

and after 45 days the same amount of water as delivered every 2 days. Temperature ranged

from 18 to 32˚C.

A microbial wash from both the inoculants was applied at the beginning of the experiment

to ensure that microbial community was same in all treatments and that any effect would be

due to AM fungal isolate differences. This was made by adding 100 g of each inoculant to 4 l of

water and mixing. The resulting solution was filtered through a 5μm mesh to exclude mycor-

rhizal fungal spores and infected roots.

Location of plants was randomized on greenhouse benches with each bench representing

a ‘block’. The pots were subjected to 16 h light per day, with daily light integral (DLI) 71 μmol

s-1 m-2 per μA measured with LI-250A light meter, Biosciences. Low P fertilizer (Miracle-gro

24-8-16) was added at half the manufacturer recommended dosage. Five ml of fertilizer was

diluted in 8L of water. Fifty ml of that solution (containing 1.96 mg of P and 5.86 mg N) was

applied every 14 days. Plants were grown for 16 weeks.

Plant responses

Root, shoot, seed biomass and seed number. At harvest shoots were separated from

roots. Fresh weight was measured before seeds and leaves were dried at 60˚C for 48 h. A sub-

sample of the root system was obtained for subsequent colonization measurements This sub-

sample was included in the total root biomass value. After 48h at 60˚C, dry weight of the roots

was obtained. In addition to raw values, we calculated changes in biomass as Root: Shoot ratio.

Only crops developed seeds during the experiment. Seeds were counted, then dried at 60˚C for

48h for dry weight.

% Leaf P. Dried leaves were collected, pulverized and homogenized. % P in the leaves was

calculated using a color development method, (using an acidified solution of ammonium

molybdate, ascorbic acid and antimony) after acid digestion [44].

Mycorrhizal response (MR). All plant responses were evaluated as mycorrhizal respon-

siveness. Mycorrhizal response (MR) represents the amount of benefit (if any) a plant gains

from an AM fungal associate versus a nonmycorrhizal control [45]. For this study, we mea-

sured a) root: shoot ratio and b) % leaf P content. MR for root: shoot ratio was calculated for

every plant species by the following formula:

MR ¼ ln
i
ii

� �

where ⅰ = root: shoot ratio of mycorrhizal plants and ⅱ = mean root: shoot ratio of non-mycor-

rhizal plants. MR for % leaf P content was calculated using the same formula but with % leaf P

in lieu of root: shoot. To test for variability in response between crop and wild plants we used

Leven’s test.

Fungal responses

Root colonization. Roots were stained based on the protocol of [46]. Briefly, fresh roots

were cut into 2-cm fragments and stained with Trypan blue. Fifteen to twenty root pieces were

randomly collected and placed on a glass slide. The percentage of fungal organs (hyphae, vesi-

cles and arbuscules) and the total root colonization were determined microscopically using the

gridline intersect method of [47].

External mycelium and spores. For each pot, 100g of homogenized (wet) soil was used to

determine external mycelia length as in [48]. A second 100 g (wet) soil sample was collected
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and dried. That sample was used to quantify spore density based on the protocol of (Gerde-

mann & Nicolson, 1963). Briefly, after recording the dry weight, each sample was placed into a

blender and mixed in high speed for 5 seconds. The blended material was filtered through a

series of sieves the final of which had an opening of 38 μm. After spores were transferred to 50

ml falcon tubes, centrifuged twice (at 1200 x g and 960 x g), and AM fungal spores were col-

lected from the final supernatant in 50 ml falcon tubes. The number of spores was counted in

each part of the grid.

Statistical analysis

Does plant provenance affect mycorrhizal response?. We used a mixed effect linear

model “lme4” version 1.1–12, Fitting Linear Mixed-Effects Models [49] to examine differences

in mycorrhizal response for plants (crop vs. wild, fixed) exposed to different inoculation treat-

ments (commercial inoculum vs. locally sourced inoculum vs. non-mycorrhizal control) with

plant identity (random) and block (random). Data for all traits were logarithmically trans-

formed to allow for normal distribution of residuals of the model. We examined biomass, %

leaf P, MR of total biomass, root: shoot ratio and % leaf P. To test for equality of variances

between crop and wild plants we used Levene’s test (“Rcmdr” version 2.4–4).

Does plant provenance affect fungal response?. Similar to above, we used a mixed effect

linear model “lme4” to test for differences between plant treatments and AM fungal treatments

on the fungal responses. Factors were, AM fungal isolate (fixed), plant provenance (crop vs.

wild plants, fixed) with plant identity (random) and block (random). Data for all traits (except

vesicle data) were logarithmically transformed to allow for normal distribution of residuals of

the model. For vesicle data normalization of the residuals of the model was not possible, there-

fore we used a generalized mixed model (Poisson), which does not assume normality, with

fixed and random factors as described above.

To proportionally represent the fungal traits (intra: extraradical) of each isolate the data

were standardized using the “vegan” version 2.3–5 package (Community Ecology Package)

[50]. Normalized trait values per isolate were summed and scaled to 100%. The ratio of intrara-

dical to extraradical traits after normalization was calculated and we used a mixed effects linear

model (lme4” version 1.1–12, Fitting Linear Mixed-Effects Models) [49]to examine the differ-

ences in trait investment strategies between the two isolates (commercial, locally sourced)

among plant provenance (crop-wild, fixed), plant identity (10 species, random) and block

(random).

R studio (Version 1.0.136–2009–2016 RStudio, Inc.) was used for all analyses.

Results

Does plant provenance affect mycorrhizal response?

Total biomass. AM fungal identity did not affect total plant biomass compared to nonmy-

corrhizal controls for crop or wild plants (p = 0.51) (Fig 2A). Contrary to our hypothesis, wild

plants were not more responsive to AM fungi in terms of biomass compared to crops overall

(p = 0.89) (Fig 3A), but while examining individual responses, wild plants had significantly

higher variation in their response to AM fungi in terms of biomass (Levene’s test, p<0.001)

(Fig 4A). Individual plant biomass responses are presented in S1 Table.

Root: Shoot ratio. There was no difference among plants in root: shoot ratio (p = 0.63).

Fungal identity had a significant effect on root: shoot ratio (p<0.01), that is the commercial

AM isolate leading to larger root: shoot ratio compared to locally sourced AM isolate. There

was a significant interaction between fungal identity and plant provenance (p<0.001) with

locally sourced inoculum leading to increased root: shoot ratio for crops and decreased root:
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shoot ratio for wild plants (Fig 3B). Individual plant root: shoot ratio responses are presented

in S1 Table.

% Leaf P. There was a significant interaction between fungal identity and plant prove-

nance, with wild plants having a significant less % P than crop for the commercial AM fungus

(p<0.05) (Fig 3C). AM fungal identity significantly affected plant % leaf P (p<0.001).

The commercial isolate reduced plant % leaf P levels (p<0.001) across all plants and plant

provenance compared to control and locally sourced inoculum (Fig 2B). The locally sourced

isolate increased crop % leaf P compared to control (p<0.05) but did not affect % leaf P of wild

plants compare to control (p = 0.71) (Fig 2B). Wild plants had significantly higher variation in

their response to AM fungi in terms of % leaf P (Levene’s test p<0.01) (Fig 4B). Individual

plant % leaf P responses are presented in S1 Table.

Does plant provenance affect fungal response?

Root colonization. Wild plants had lower colonization for both isolates compared to the

crops (p<0.01) (Fig 5A). No AM colonization was observed in non-mycorrhizal controls. The

commercial isolate had lower root colonization compared to the locally sourced isolate

(p<0.001) (Fig 5A). For individual host % colonization data please see S2 Table.

Arbuscules. In general, wild plants had fewer arbuscules compared to crops (p<0.01) (Fig

5B). The commercial isolate formed fewer arbuscules compared to the locally sourced isolate

(p<0.001) The number of arbuscules differed significantly among the two AM fungal isolates

(Fig 5B).

Fig 2. Fungal inoculation effects on cultivars and wild plants. Fungal inoculation effects on cultivars and wild plants: (a) Total plant biomass (g) (b) % leaf P. Red

color boxplots: plants interacting with the commercial isolate, Blue color boxplots: plants interacting with the locally sourced isolate. Green color boxplots: plants

without AM fungi. Box-plots show the third quartile and first quartile (box edges), median (middle line), range of the data (whiskers) and data outliers (black dots). ���

p<0.001. Letters signify statistical significance (p<0.05) based on Tukey’s multiple comparisons test (agricolae version 1.2–3).

https://doi.org/10.1371/journal.pone.0221037.g002
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Vesicles. Fewer vesicles were observed for the wild plants compared to crops regardless of

fungal isolate (p<0.05) (Fig 5C). The number of vesicles differed significantly among the two

AM fungal isolates in all hosts (p<0.05) (Fig 5C). The commercial isolate formed fewer vesicles

compared to the locally sourced isolate

Spores. Sporulation was not influenced by the plant provenance (p = 0.33) (Fig 5E). How-

ever, spore density differed significantly between fungal isolates. The commercial isolate pro-

duced more spores compared to the locally sourced isolate (p<0.001) (Fig 5D).

Extraradical mycelium (ERM) length. There was no difference in extraradical mycelium

length between wild plants and crops (p = 0.34) nor between the fungal isolates (p = 0.58).

Allometry: Proportional fungal trait distribution (Intraradical traits/extraradical

traits). Wild plants had a lower intraradical: extraradical ratio compared to crops (p<0.01)

(Fig 6). There was a significant difference at the ratio of intraradical to extraradical traits

between the two AM fungi (p<0.001). The commercial isolate invested more extraradically

compared to the locally sourced isolate.

Discussion

Our experiment provides preliminary evidence that introduced fungi may negatively affect

AM mutualistic outcomes. Wild plants had pronounced variation in their response to fungi

compared to crops. Responses ranged from positive to strongly negative revealing the sensitiv-

ity of wild plants to fungal identity, even to isolates within the same fungal species. Future

Fig 3. Mycorrhizal response in crop plants versus wild plants. (a) MR of total biomass of cultivars and wild plants when interacting with the commercial isolate (red)

and the locally sourced isolate (blue). Red line indicates the mean value of nonmycorrhizal plants. (b) MR of root: shoot ratio of cultivars and wild plants when

interacting with the commercial isolate (red) and the locally sourced isolate (blue). Red line indicates the mean value of the non-mycorrhizal plants. (c) MR of % leaf P of

cultivars and wild plants when interacting with the commercial isolate (red) and the locally sourced isolate (blue). Red line indicates the mean value of the non-

mycorrhizal plants. Box-plots show the third quartile and first quartile (box edges), median (middle line), range of the data (whiskers) and data outliers (black dots). �

p<0.05. Mycorrhizal response (MR) represents the amount of benefit (if any) a plant gains from an AM fungal associate versus a nonmycorrhizal control.

https://doi.org/10.1371/journal.pone.0221037.g003
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studies assessing the risk of fungal inoculants should examine this relationship on a variety of

hosts, multiple functional groups and fungal isolates.

Plant responses

While wild plants have been reported to be more responsive to AM fungi [32–35], we did not

find support for this in terms of biomass when looking at plants as either ‘crop’ or ‘wild’

plants. Because our wild plants were perennials, it is possible that our study did not allow

enough time for full biomass differences to manifest, as the study ended when crops, but not

wild plants, had senesced. Thus, our inability to detect a difference among crops may have

been due to time constraints [13].

When we looked at responses of individual plant species, wild plants varied more in their

response to inoculation with AM fungi, ranging from highly negative to highly positive. Varia-

tion in biomass has been documented for wild plants in the literature, particularly, for perenni-

als versus annuals [51], and natives versus exotics [40] revealing the strong mycorrhizal

responsiveness of wild plants.

Inoculation with the commercial isolate led to increased shoot: root for crops but not for

wild plants. It is not uncommon to observe alteration in root: shoot ratio with inoculation by

AM fungi [52–54]. The “functional equilibrium” theory suggests that plants allocate biomass

preferentially to maximize resource acquisition, a plant should favor above ground growth

Fig 4. Mycorrhizal response variation in crop plants vs wild plants. (a) Biomass and (b) % leaf P. Red line indicates the mean value of the non-mycorrhizal plants.

Crop are represented with red [ZM (Zea mays), LI (Linum usitatissimum), TA (Triticum aestivum), GM (Glycine max), LC (Lens culinaris)] and wild plants with blue

color [(SC (Schizachyrium scoparium), DC (Dalea candida), HA (Hedysarum alpinum), CL (Calamovilfa longifolia), AD (Agropyron dasystachyum)]. Red line

indicates the mean biomass of non-mycorrhizal plants. The third quartile and first quartile (box edges), median (middle line), and range of the data (whiskers) are

shown. To test for equality of variance between crops and wild plant we used Levene’s test. Wild plants had significantly more variation compared to cultivars in terms

of biomass p<0.001 and % P, p<0.01). Box-plots show the third quartile and first quartile (box edges), median (middle line), range of the data (whiskers) and data

outliers (circles). �� p<0.01. ��� p<0.001. Mycorrhizal response (MR) represents the amount of benefit a plant gains (if any) from an AM fungal associate versus a

nonmycorrhizal control.

https://doi.org/10.1371/journal.pone.0221037.g004
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when carbon is limited. Because carbon allocation from plant to fungus can lead to carbon lim-

itation [55], our results indicate that the commercial isolate may have posed more of a carbon

demand than the local isolate, leading to increased shoot allocation. Such changes may lead to

reduced nutrient acquisition for plants associated with the commercial fungus in some

conditions.

We found support for our hypothesis that plant provenance affects mycorrhizal response in

terms of % leaf P. Wild plants, surprisingly, experienced a decrease in percent % leaf P when inoc-

ulated with AM fungi. While there is evidence for wild plants as more mycorrhizal dependent

compared to crops [32–35], their increased sensitivity to AM fungi can lead to magnified negative

effects as well particularly when fungi and plants are competing for limited resources [40].

In our study, the commercial isolate was less mutualistic in terms of % leaf P and this effect

was magnified in wild plants. Other studies have shown of AM fungal inoculation leading to

reduced host P [8–11]. While such reductions may be related to greenhouse growing condi-

tions, reduced P following inoculation may also indicate a less mutualistic AM association in

some cases [10,56,57]. In our study, plants inoculated with the commercial isolate had lower P

compared to non-mycorrhizal controls which could indicate either direct competition

between plant and fungus for P, or P hoarding by the fungus [58]. It may also mean that the

commercial isolate does not have enhanced P uptake ability over plant-direct uptake routes,

perhaps through loss of traits during domestication. Further studies comparing more isolates

with isotope labelling and genomic studies could elucidate the mechanism involved.

Nevertheless, in order to further examine wild and cultivar plant responses to inoculation,

that will more accurately represent natural growing conditions, it is very important for future

Fig 5. Fungal response when associating cultivars or wild plants with a commercial isolate (red) or a locally sourced isolate (blue). (a) per cent colonization, (b)

per cent arbuscules, (c) per cent vesicles, (d) spore number per 60 gr of substrate (dry). Box-plots show the third quartile and first quartile (box edges), median (middle

line), range of the data (whiskers) and data outliers (circles). � p<0.05, �� p<0.01 ��� p<0.001.

https://doi.org/10.1371/journal.pone.0221037.g005
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studies to consider soil physicochemical properties, since it has been shown that sympatric

combinations of plants, fungi and soil, can lead to increased MR [37].

Fungal responses

We did not find support for our hypothesis that wild plants were more beneficial to AM fungi

compared to crops. Rather, large differences in growth strategies among the two fungal isolates

may explain differences plant response. The commercial isolate in our study had few arbus-

cules at time of harvest. This is unusual as arbuscules (or coils) are considered fundamental to

the mutualism under natural conditions [59]. Reduction of arbuscules has been reported for a

variety of AM fungal species (including Rhizophagus sp.) under stressful environments [60,61],

and due to differences in harvest time and level of fertilization [62,63]. Specifically, suppression

of arbuscules can occur with increasing P or N [62] and changes in arbuscule formation due to

time of harvest can be regulated by the species identity [63]. In our experiment, differences are

likely do to fungal strategies since there was no suppression of arbuscules in the locally sourced

isolate.

Low levels of arbuscules in the commercial isolate may be explained by considering the con-

ditions under which the commercial isolate is propagated. Large-scale inoculum production

occurs mostly on transformed roots, which are able to directly uptake most of their resources

from the nutrient medium [64] and have very low nutrient requirements [65]. Such a luxuri-

ous in nutrients environment, may require fewer arbuscules or enhance the resource sink abil-

ities of the isolate, but this remains to be seen. Given that there is still considerable debate over

the function of arbuscules [66,67], it is difficult to identify factors that promote or suppress

their production.

Fig 6. Proportional representation of fungal structures in crop and wild plants. Arbuscules (green), extraradical mycelium (blue), intraradical mycelium (orange),

spores (red) and vesicles (yellow) of the commercial (Com) and local isolate (Local) when associated with (a) cultivars and (b) wild plants. ��� p<0.001.

https://doi.org/10.1371/journal.pone.0221037.g006
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Alternatively, propagation using transformed roots for inoculum production may favor

ruderal behavior since ruderal traits, such as rapid growth and early production of abundant

propagules, are of interest to inoculum production industry [68]. If the commercial isolate is

more ruderal, the extremely low number of arbuscules observed for the commercial isolate at

harvest might be due to a faster‘completion of its life cycle compared to the locally sourced iso-

late. Future studies examining the progress of the symbiosis over time would be able to reveal

such significant differences in life history strategies.

Overall, we observed low values of root colonization for both isolates across all plants. Our

experiment was conducted during the winter. Thus, it is possible our plants reduced the

amount of carbon allocated to the roots and subsequently to AM fungi [69].

While there was no difference in the extent of ERM among fungal isolates, the commer-

cial isolate invested heavily in spore production compared to the local isolate. Large differ-

ences in spore production among isolates is not unusual, as there have been many reports of

inter and intraspecific variation in fungal traits, over several orders of magnitude in some

cases [28,54,70–72]. Nevertheless, the difference in sporulation rate observed in this study,

is unusually large (50x) and represents a significant carbon drain for hosts associating with

this fungus.

Low levels of root colonization during winter growing conditions and especially due to

light limitations is typical ([73–76]) but in our study it had the unintended benefit of poten-

tially exacerbating differences in LHS among our isolates. Under the carbon limiting condi-

tions of our study, the commercial isolate allocated resources into non-mutualistic structures

(i.e. spores)–thereby competing with its host for nutrients. In contrast, the wild isolate allo-

cated resources to mutualistic structures (i.e. arbuscules). It would be interesting to test

whether such strategies are a response to resource levels, or robust across gradients.

Allometry (Intraradical: Extraradical investment)

Root colonization is not a good predictor of symbiosis quality [77,78]. On the contrary, exam-

ining specific traits can be more meaningful [79,80]. The commercial isolate had a significantly

different growth pattern compared to the locally sourced isolate that was consistent among

hosts and plant provenance, revealing important LHS variations between the two isolates. The

commercial isolate had a high soil biomass, which could enhance soil exploration potential

and subsequently, host benefit [81]. Considering the differences in spore number between the

two isolates, deriving from the same quantity of ERM, means that the commercial isolate rep-

resented a nutrient sink rather than a source (including C and P).

Conclusions

Wild plants had highly variable response to inoculation by AM fungi compared to crop plants.

This raises concerns about how inoculation practices may affect wild plant/soil communities.

Our study provides evidence that the commercial isolate used in this study may be less mutual-

istic under some conditions. The commercial isolate invested in spore production at the

expense of intraradical structures, suggesting a more “selfish” strategy. Correspondingly,

plants experienced decreased P with the commercial isolate. It is important for future studies

to consider fitness consequences associated with inoculation studies, as poor mutualists may

not be apparent over one generation. Considering the number of propagules produced by the

commercial isolate, there is a high likelihood of spread beyond the agricultural fields displacing

native AM fungi. Future studies should focus on the viability and establishment of these propa-

gules beyond agricultural systems.
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