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Abstract

Spatially explicit, fine-grained datasets describing historical urban extents are rarely available 

prior to the era of operational remote sensing. However, such data are necessary to better 

understand long-term urbanization and land development processes and for the assessment of 

coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, 

we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., 

the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps 

to automatically generate historical urban extents for the early 20th century. By applying 

unsupervised color space segmentation to the historical maps, spatially constrained to the urban 

extents derived from the GHSL, our approach generates historical settlement extents for seamless 

integration with the multitemporal GHSL. We apply our method to study areas in countries across 

four continents, and evaluate our approach against historical building density estimates from 

the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area 

estimates from the History Database of the Global Environment (HYDE). Our results achieve 

Area-under-the-Curve values > 0.9 when comparing to HISDAC-US and are largely in agreement 

with model-based urban areas from the HYDE database, demonstrating that the integration 

of remote-sensing-derived observations and historical cartographic data sources opens up new, 
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promising avenues for assessing urbanization and long-term land cover change in countries where 

historical maps are available.
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1. Introduction

By 2050, 68% of the human population is projected to live in urban areas [1]. The 

increasing urbanization and related processes such as rural-urban migration, socio-economic 

changes, and land consumption are drivers of issues such as transportation congestion and 

increasing pollution, posing unprecedented challenges for urban planners and policymakers. 

In order to make our cities more sustainable, efficient, and resilient to increasingly occurring 

extreme weather events, natural hazards, and climate-change-related phenomena, a thorough 

understanding of the long-term development trajectories of urban areas is indispensable 

for urban planners and policymakers. However, spatially explicit data on the size and 

structure of urban areas (and their changes over time) are typically derived from remote-

sensing-based earth observation data, and thus rarely available prior to the 1970s. This 

shortcoming severely limits our knowledge of historical urban-spatial development, and 

forces researchers to rely on an observational window of approximately 40 years for 

retrospective assessments [2-4] and to establish future projections of urban land [5]. Hence, 

researchers studying long-term historical (urban) land development either rely on model-

based approaches (e.g., [6,7]), on alternative data sources such as property data [8-11], or 

on the use of historical maps [12-16] that are mostly constrained to relatively small areas, 

such as specific cities, regions, or countries, often involving manual digitization work. This 

research explores the use of historical maps more specifically, as many countries have some 

form of historical map series, which can be used to derive knowledge related to urban areas 

prior to the 1970s. Integrating such spatial data with existing global remote-sensing-based 

settlement layers facilitates building temporally extended depictions of historical urban 

development for any region in the world for which such map archives have been established. 

This kind of integration framework is presented herein.

Recent advances in automated georeferencing [17,18], cloud-based data storage 

technologies, and map acquisition methods have catalyzed the availability of large historical 

topographic map collections to the public, often holding thousands of (georeferenced) digital 

raster datasets, such as in the US [19,20], the UK [21], Switzerland [22], or international 

collections [23-26]. Moreover, advances in the automated processing of historical maps 

have opened new avenues for the efficient acquisition [27] and mining of large volumes of 

historical maps, and for the detection, recognition, and conversion of historical map content 

into digital, machine-readable data formats [28-31].

Such recent efforts include the mining of (historical) map collections by their content or 

associated metadata [32-37], automated georeferencing [18,38-40] and alignment [41,42], 

text detection and recognition [43-45], and the extraction of thematic map content, often 
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involving (deep) machine learning methods, focusing on specific geographic features such 

as forest [46], railroads [33,47], road network intersections [48,49] and road types [50], 

archeological content [51] and mining features [52], cadastral parcels boundaries [53,54], 

wetlands and other hydrographic features [55,56], linear features in general [57], land cover/

land use [58], urban street networks and city blocks [34], building footprints [13,59,60], 

and historical human settlement patterns [61-63]. Other approaches use deep-learning-based 

computer vision for generic segmentation of historical maps [64,65], generative machine 

learning approaches for map style transfer [66,67], or attempt to mimic historical overhead 

imagery based on historical maps [68].

Many of these approaches have been tested on maps dating back to the late 1800s or 

even earlier but are commonly evaluated on relatively small spatial extents only. Thus, it 

remains unknown how such methods perform for large-scale information extraction from 

large volumes of historical maps, covering large spatial extents, stretching across different 

time periods, cartographic designs, or map scales. As a consequence, researchers have begun 

to develop historical map processing frameworks for large-scale data mining and extraction 

of heterogeneous information in a robust, feasible, and efficient manner [33].

Herein, we propose such a framework, applied to the extraction of historical urban extents. 

More specifically, we use urban extents from the Global Human Settlement Layer (GHSL) 

[69] to narrow down the regions in which urban areas in the historical maps likely occur. 

The GHSL data product contains the first, high-resolution settlement layer (i.e., on a 30 

× 30 m grid) consistently enumerated at a global scale for the time period from 1975 to 

2014 [70]. The framework presented herein combines historical maps with remote-sensing-

derived settlement layers in order to extend the GHSL retrospectively (i.e., to time periods 

before 1975) and is, to our knowledge, the first study that analytically combines signals 

obtained from historical topographic maps with remote-sensing-derived data for urban 

change analysis. Herein, we aim to answer the following research questions:

1. Is the integrated use of signals from historical maps and from remote sensing 

data beneficial for the field of urban analysis?

2. What are the challenges and the requirements for an analytical framework in 

order to be used for the joint analysis of historical maps and remote sensing 

data?

3. How do the extracted urban areas from historical maps agree with other spatial-

historical datasets?

Our method makes use of a back-casting strategy. While the term back-casting often refers 

to a specific planning strategy working backwards from a desired future state [71], the term 

back-casting (or hind-casting) is also used for models that generally aim to recreate past 

conditions [72]. The back-casting strategy employed herein spatially constrains extraction 

results from historical maps (from the early 1900s) to be within built-up areas from the 

GHSL in 1975 (see Section 2.2.2). This strategy of constraining earlier urban extents to 

be within the more recent and presumably more reliable area depictions [73] is commonly 

used in multi-temporal urban monitoring [70,74-77], as opposed to temporally independent 

strategies, where data for each point in time is analyzed independently, allowing for 
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the detection of bi-directional changes (“post-classification comparison”) [78]. Thus, back-

casting approaches only evaluate urban growth, not shrinkage, and may yield biased results 

in areas affected by urban shrinkage. However, urban shrinkage occurs relatively rarely, and 

typically relates to population decline and housing vacancies [79], rather than manifesting 

in land conversion from urban to non-urban land. Hence, we expect this bias to be marginal 

for the presented work. We applied our method to historical maps from six cities in four 

continents dated between 1890 and 1960, using historical built-up property data from the 

Historical Settlement Data Compilation for the US (HISDAC-US) [8,80] as well as urban 

area estimates from the History Database of the Global Environment (HYDE) [6] to evaluate 

and cross-compare our results.

2. Materials and Methods

2.1. Data and Study Areas

2.1.1. Global Human Settlement Layer—From the GHSL data suite, we used the 

GHS-BUILT Landsat version 2018 (GHS_BUILT_LDSMT_GLOBE_R2018A), which is 

derived from multispectral earth observation data from the Landsat sensors, mapping built-

up areas in a global grid of 30 × 30 m, referenced in a spherical Mercator projection 

(EPSG:3857). The GHS-BUILT data product (henceforth referred to as “GHSL”) is 

available for four epochs (i.e., for approximately 1975, 1990, 2000, and 2014) [69,70].

2.1.2. Historical Maps—Herein, we combine the remote-sensing-derived built-up areas 

from the GHSL (1975–2014) with urban extents extracted from a range of historical maps 

dated to the period between 1890 and 1960. These maps are assumed to be the earliest 

available detailed topographic maps created by systematic land surveying and topographic 

map production, and thus will allow us to maximize the observation period for each study 

area. As the GHSL is a globally available product, we chose six study areas in four different 

countries where digital historical maps were available.

Two study areas are located in the United States (i.e., Boston and Atlanta metropolitan 

areas) and cover different map scales, time periods, and map designs (i.e., 3-color print 

in Boston (approx. 1900, scale 1:62,500) and 5-color print in Atlanta (approx. 1960, 

scale 1:24,000)). These historical maps were acquired from the United States Geological 

Survey (USGS) historical topographic map collection (HTMC), which is a digital archive 

of >190,000 scanned and georeferenced topographic maps created between 1884 and 2006 

[19]. The HTMC is available via the Amazon Web Services (AWS) S3 cloud data storage 

infrastructure [81]. The USGS-HTMC maps used herein consist of a composite of individual 

map sheets (see Section 2.2.1) (Figure 1a-d).

We also chose two study areas in the United Kingdom (i.e., Greater Birmingham 

and London, see Figure 2e-g), for which the National Library of Scotland provides 

georeferenced, seamless composites of historical Ordnance Survey topographic maps 

[82,83]. These maps are typically 3-color maps and exhibit different map designs than 

the USGS HTMC maps. For example, they depict urban settlements as blocks (Figure 1f), 

whereas USGS-HTMC maps use individual building outlines (Figure 1d), or red-colored 

urban areas in maps created after 1950 (Figure 1c). Like in the US, the Ordnance Survey 
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maps were produced at different scales: the Birmingham maps (approx. 1900) are of scale 

1:10,560 (“six-inch to the mile”), whereas the London map (1896) is at a scale of 1:63,360 

(“one-inch to the mile”). We obtained the Birmingham map through an automated download 

and mosaicking procedure (see Section “Data Availability Statement”), and the London map 

through manual download, mosaicking, and georeferencing.

Finally, we use a historical topographic map covering the region southeast of the city of 

Sao Paulo (Brazil), at scale 1:100,000 from 1906 (Figure 2a,b), and a map covering the 

Lahore-Amritsar region (Pakistan/India) at scale 1:254,440 from 1943 (Figure 2c,d). Both 

the Sao Paulo and Lahore-Amritsar maps are individual map sheets rather than composites, 

and needed to be georeferenced manually, using a contemporary OpenStreetMap basemap in 

ESRI ArcMap 10.8.

We chose these study areas based on the availability of historical maps, and in order to 

cover a wide range of different map ages, map styles, map scales, and historical (colonial) 

settings, covering both traditionally “data-rich” (UK, US) and “data-poor” environments 

(Brazil, India-Pakistan), by browsing the historical map search engine available at [25]. 

Nevertheless, most of the maps are relatively similar with respect to their color properties 

(e.g., 2–3 color print), except the Atlanta maps (5-color print), which are also the most 

recent maps, covering the largest spatial extent. Regarding the cartographic styles used 

for depicting urban, built-up areas, most of the maps use either street blocks (Sao Paulo, 

London) or building blocks (Boston, Birmingham), while in the Atlanta maps, urban areas 

are depicted in a red color tone, comprising both roads and buildings, and the Lahore map 

uses individual (symbolic) building outlines. Figure 3 highlights these different visualization 

styles in detail, and Table 1 summarizes the properties of the historical maps used in this 

study. Moreover, Figure A1 shows selected original map sheets for four out of the six study 

areas.

2.1.3. HISDAC-US—Empirical data on historical urban extents are generally sparse, as 

remotely sensed data are typically not available prior to the 1970s. However, novel data 

sources such as the industry-generated property database ZTRAX (Zillow Transaction and 

Assessment Dataset [86]), assembled from heterogeneous county-level assessor data, holds 

the year-built information for large parts of the US building stock and has recently been 

leveraged to generate the Historical Settlement Data Compilation for the US (HISDAC-

US). HISDAC-US is a fine-grained historical settlement database for the conterminous 

US, composed of gridded surfaces consistently enumerated in a grid of 250 m × 250 m, 

measuring for example, the number of built-up properties per grid cell from 1810 to 2016, 

which is a proxy measure for building density [9,80] (Figure 4a,b).

2.1.4. HYDE Database—While the HISDAC-US data are only available for the US, we 

also used gridded surfaces from the HYDE 3.2 database [6], containing a global model of 

the fraction of urban area per 5′ grid cell, over very long time periods from 10,000 BC to 

2010 (Figure 4c,d). The land use fractions in HYDE are based on “historical population, 

cropland and pasture statistics, combined with satellite information and specific allocation 

algorithms” [6]. Despite the long temporal coverage, HYDE urban area fractions do not 

provide much spatial detail (Figure 4c,d), and thus are not suitable for morphological 
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analysis of historical urban areas or similar spatially explicit analyses over long time 

periods. Employing historical maps for such purposes may potentially fill these gaps.

Due to the model-based nature and the coarse spatial resolution, urban areas derived from 

HYDE are only of limited spatial compatibility when compared to the urban areas extracted 

at a resolution of 100 m × 100 m; however, they represent the only data source consistently 

available for all six study areas. Herein, we cross-compare urban area fractions from HYDE 

to the urban areas extracted from historical maps in all six study areas (see Section 3.4). 

By employing both HISDAC-US and HYDE data for cross-comparison, we expect to gain 

insight into the relationships of our extracted historical urban areas to historical building 

densities (HISDAC-US), as well as to urban land in general (HYDE).

2.2. Methods

The methods used herein consist of the following steps: (a) preprocessing, (b) urban area 

extraction, (c) spatial evaluation, and (d) temporal plausibility analysis. The preprocessing 

includes the (automated) acquisition of historical maps, manual georeferencing for some of 

the study areas, and mosaicking, as well as calibration of the map data and other gridded 

datasets used in this study (i.e., the transformation of the datasets into common grids) 

(Section 2.2.1). Then, we extract urban areas from the historical maps using the GHSL as 

ancillary data (Section 2.2.2). This extraction process includes an unsupervised, color-based 

map segmentation step, the integration of map signals with built-up areas from the GHSL, 

a rule-based decision mechanism to identify historical urban areas, and a spatial refinement 

step including spatial constraining and morphological cleaning (Figure 5). We evaluate the 

resulting historical urban areas across space, by quantifying the spatial agreement with 

built-up density distributions from the HISDAC-US (Section 2.2.3), and evaluate our results 

across time, by assessing the agreement to the HYDE data, and by testing the plausibility 

of our results with respect to the GHSL-based development trajectories in each of the study 

areas (Section 2.2.4).

2.2.1. Preprocessing—Based on metadata for the USGS-HTMC (available from 

https://thor-f5.er.usgs.gov/ngtoc/metadata/misc/, accessed on 10 September 2021), the 

geographic footprints of each map sheet contained in the archive can be obtained, allowing 

for reconstruction of the grid (the so-called graticule) in which the USGS-HTMC map 

sheets are organized. For each quadrangle (i.e., grid cell of the graticule), we identified the 

earliest available map sheet and its scale within the boundaries of the Boston and Atlanta 

metropolitan statistical areas in 2010 [87] and automatically downloaded these maps from 

the AWS S3 archive [81]. By doing so, we obtained 33 maps for the Boston metro area, and 

180 maps for the Atlanta metro area. Based on the corner coordinates available for each map 

sheet, we removed the map collars and generated a seamless mosaic of the maps per study 

area (see Figure 1c,d). The preprocessing steps for the US study areas are shown in Figure 

A2a.

For the study areas in the UK, we obtained the historical maps from [82,83] and mosaicked 

them and, in case of the London study area, georeferenced them. Individual map sheets for 

the Sao Paulo and Lahore study areas were manually georeferenced. All maps and map 
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composites were then spatially aggregated by computing the RGB averages, separately per 

channel, within blocks of 100 m × 100 m (RGB100). This 100 m × 100 m grid represents 

the analytical unit for the subsequent analyses. Such a spatial aggregation allows for the fast 

processing of large amounts of maps and facilitates the integration with other gridded data.

Despite a native spatial resolution of the GHSL of 30 m × 30 m, we use a grid of 100 

m × 100 m cells as our analytical unit, since such spatially aggregated RGB signals from 

the historical maps will allow modelling of “urban areas” in a generalized and more robust 

manner, regardless of how built-up structures are depicted in historical maps (e.g., individual 

buildings, street blocks, etc.), as a 100 m × 100 m grid cell typically extends across multiple 

street blocks. The resulting urban areas are assumed to encompass built-up structures, 

impervious surfaces, and other land use types considered to be “urban” in a broader sense, 

such as smaller intra-urban green spaces or similar. The effect of spatially aggregating RGB 

information found in the historical maps to create the RGB100 layers can be seen in Figure 

6b,c. Using a finer analytical unit may result in oversampled results, in particular when the 

scanning resolution of historical maps is low. Moreover, historical maps may suffer from 

positional inaccuracies introduced by a range of reasons, such as inaccurate topographic 

measurements due to the instruments used at the time of map creation, cartographic 

displacements and generalization, humidity or heat-induced (non-linear) deformations of 

the paper map, and inaccurate georeferencing [32]. Most of these positional uncertainties 

are unknown and difficult to quantify. Thus, we use an analytical unit of 100 m × 100 

m to obtain historical urban extents at a fine spatial granularity (as compared to coarser 

spatial-historical datasets such as HYDE or HISDAC-US), accounting for and potentially 

mitigating positional inaccuracies in the signals from the historical maps to a certain degree.

The GHSL built-up land surface as well as the HYDE urban area raster data were both 

clipped to the historical map extent of each study area, and resampled to create a 100 m × 

100 m grid that is consistent with the aggregated map data (Figure 6a, see Figure A2b for 

the underlying data processing). Given the potential positional uncertainties in the historical 

maps, along with the vague definition of “urban areas” in general, additional uncertainty 

introduced during the data processing and calibration (e.g., resampling the 30 m × 30 m 

GHSL to the 100 m × 100 m target grid, see Figure A2b) are considered marginal.

2.2.2. Urban Area Extraction—As no training data on urban vs non-urban areas are 

available that could be used for a supervised extraction approach, we developed a simple 

unsupervised method to extract the urban areas from the spatially aggregated RGB100 

surfaces. In topographic map processing, color space clustering based on techniques such 

as k-means clustering [88] is commonly used for color reduction and color segmentation of 

scanned maps [30]. Thus, in order to reduce the color complexity, and to group the map 

color in meaningful ways, we performed k-means clustering on these surfaces, for a range of 

k ϵ [2,10].

For map composites (mosaics of individually scanned map sheets), such as in the Boston 

and Atlanta study areas (Figure 1c,d), we conducted a separate clustering analysis for each 

map sheet (Figure 6d) in order to account for potential differences in contrast or color 
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tone (see Figure 6b,c). Moreover, we used the Elbow method [89] to identify the optimum 

number of clusters per study area.

Herein, we used a rule-based decision mechanism to determine which of the obtained color 

clusters represents the urban areas contained in the historical maps. This mechanism works 

as follows. We calculated the area proportion of each detected cluster within the built-up 

areas reported in the GHSL in 1975, aggregated to 100 m × 100 m grid cells. Assuming 

that the urban areas in the historical map (dated earlier than 1975) are contained within 

the 1975 built-up areas from the GHSL (BUA1975), we identified the cluster of the highest 

area proportion within the BUA1975 as the cluster likely to represent the urban areas in the 

historical maps. Moreover, we tested whether the average R, G, and B values of the RGB100 

cells within that cluster were less than a given threshold value (e.g., <200). Since urban areas 

in historical maps are typically depicted in dark or saturated colors (black, grey, red), the 

use of such a simple brightness-based criterion helps to robustly identify the correct target 

cluster (i.e., the cluster identified as urban area).

The target cluster may still contain a considerable number of false positives (e.g., dark text 

elements or major roads) (Figure 6e). To reduce these artefacts, we implemented a two-step 

spatial refinement procedure: First, we exclude grid cells of the target cluster located outside 

of the BUA1975 extents (Figure 6f), given that this approach only detects urban growth, not 

urban shrinkage, which is consistent with the implemented GHSL modeling strategy and 

built-up concept [69]. By using the BUA1975 as spatial constraint, as opposed to the later 

epochs from the GHSL, we reduce the temporal gap between the historical map date and 

the constraining areas, ensuring that a maximum of false positives is eliminated. Second, 

we implemented a morphological post-processing strategy, removing further segments of the 

target cluster that are below a specific area threshold t ϵ (10, 50, 100 pixels). This is based 

on the assumption that settlements require a minimum size to be mapped at all. Moreover, 

it is unlikely that the signals of small settlements depicted in the original historical map 

are still detected correctly after applying the spatial aggregation to RGB100. Thus, small 

segments of the target cluster are likely to be false positives. As can be seen in Figure 6g, 

this method removes artefacts and retains the densely built-up urban cores of the settlements 

depicted in the historical map. Lastly, the grid cells identified as urban in the aggregated 

map layer are merged with the multi-temporal labels from the GHSL to create a temporally 

extended set of historical built-up land layers (Figure 6h).

2.2.3. Spatial Evaluation—As described previously, a spatially explicit evaluation of 

the extracted historical urban extents is difficult due to the lack of reference data. The 

historical built-up property records (BUPR) surfaces from the HISDAC-US provide an 

estimate of the historical building density distributions across space in urban, but also in 

rural, areas and are available at a half-decadal temporal resolution. As our urban area 

extraction approach is assumed to be responsive to densely built-up urban areas only, a 

direct (i.e., binary) comparison of urban grid cells extracted from the historical map with 

any built-up reference grid cell (i.e., containing at least one structure) is not suitable, as it 

would underestimate the accuracy of our approach. Thus, we decided to carry out Receiver-

Operator-Characteristic (ROC) analysis [90], which is a performance measurement tool for a 

(binary) classifier that yields a continuous output as a function of thresholds that are applied 
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in order to predict class membership [91]. Herein, we use ROC analysis to test whether 

there is a building density threshold in the BUPR surfaces that successfully reproduces the 

urban/non-urban labels extracted from the historical maps. This threshold may possibly vary 

between maps and study areas.

We conducted such an analysis for the US study areas where HISDAC-US is available. To 

do so, we resampled the building densities from the BUPR layers to the RGB100 grids (see 

Figure A2b). As these historical map composites consist of individual maps produced in 

slightly different years (see Table 1), we created a BUPR composite that reflects the BUPR 

distribution in each map quadrangle in or close to the production year of the underlying 

historical map. For example, if a map sheet was created in 1898, we used the BUPR 

estimates in 1900 for the grid cells within the area covered by the map sheet.

2.2.4. Temporal Plausibility Analysis—While the method described in Section 2.2.3 

evaluates our results in the spatial domain, we also assessed how the hind-casted trajectories 

of urban area (i.e., the urban area reported in GHSL and the urban area extracted from the 

historical maps) agree with the trajectories extracted from the HYDE urban area dataset. In 

order to obtain the urban area reported in HYDE, within each study area (i.e., within the grid 

cells of the RGB100 surfaces), we clipped and resampled the HYDE urban area fraction grid 

to the RGB100 grids (see Figure A2b).

3. Results

3.1. ROC Analysis against Historical HISDAC-US Building Densities

The ROC comparative analysis of extracted historical urban/non-urban labels and the 

historical building densities from the HISDAC-US BUPR dataset for the US study areas 

reveal notable effects of spatial constraining and post-processing the areas of the identified 

target clusters likely to represent urban areas (Figure 6). When detecting urban areas without 

spatially constraining them to the GHSL BUA1975, Area-under-the-Curve (AUC) values 

are low (Figure 7a,d) but increase to up to 0.88 when including the spatial constraints 

(Figure 7b,e). The post-processing step (i.e., removing small segments of <50 pixels) further 

increases the AUC to values >0.9 in both study areas. Generally, the agreement between the 

extracted urban areas and the BUPR estimates is higher in Boston than in Atlanta, probably 

due to the higher complexity of the information contained in the Atlanta maps (i.e., smaller 

map scale, higher number of colors and individual map sheets). The choice of the number of 

clusters k heavily affects the results in Atlanta, but less so in the Boston study area, where 

the improvement stagnates when using a k > 5 (Figure 7c). This is in line with the results of 

the elbow analysis, based on the inertia of the detected clusters in RGB100 space, suggesting 

that most maps (in spatially aggregated form) consist of approximately 3 to 5 main clusters 

(Figure A3). Herein, we use a threshold of 50 pixels for the segment removal during the 

post-processing step; higher thresholds do not improve the results (Figure A4).

3.2. Clustering Analysis

While the results in the Atlanta study area seem to yield the best results for k = 10, we 

use k = 4 for the subsequently discussed extractions, since most maps are 3-color prints 

Uhl et al. Page 9

Remote Sens (Basel). Author manuscript; available in PMC 2021 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and thus are expected to perform in a similar way to the Boston study area. Thus, a 

granularity of k = 4 is expected to be sufficient for urban area extraction, which is shown 

in Figure 8a-d. However, the “mixed pixel” effects produced by the spatial aggregation of 

RGB information in the historical maps may cause a higher number of clusters to better 

characterize the density variations of specific colors (features) in the original map. For 

example, the clustering results using k = 10 show increasing homogeneity across individual 

map sheets (in the case of the Boston mosaic, Figure 8a,e), or even allow the detection of 

subtle scanner- or paper-induced color variations in the historical map (Figure 8f). Moreover, 

a higher number of clusters may even be useful to extract mountainous terrain, due to the 

specific RGB average values produced by densely spaced contour lines (shown in pink color 

in Figures 8c,f,g and A1b). An integrated illustration of the effects of spatial constraints, 

number of clusters, and post-processing thresholds can be seen in Figure A5.

3.3. Historical Settlement Extents

Finally, we show the extraction results (using k = 4 and a post-processing threshold of 

50 pixels) for the six study areas in Figure 9. The extracted historical urban areas are 

mostly located in the center of the 1975 urban extents, which seems geographically logical, 

assuming concentric growth over the long term given there are no topographic constraints. 

These results illustrate the robustness of the decision-based identification of the urban 

cluster, and the effectiveness of constraining the resulting segmentation to the built-up 

areas from the GHSL. The visualizations in Figure 9 depict the process of urbanization 

that occurred prior to the remote sensing era and demonstrate the benefit of integrating 

remote-sensing-derived urban footprints from contemporary built-up land data and signals 

extracted from historical maps.

3.4. Cross-Comparison to HYDE and Hind-Casted GHSL Trajectories

While the extraction results seem to be geographically plausible, how do they compare with 

the GHSL- and HYDE-based trajectories of urban areas over time? Figure 10 suggests that 

the extracted urban areas are largely in agreement with the trends of urban area estimated 

by the HYDE model, especially in the Birmingham and Sao Paulo study areas. We observe 

higher levels of dispersion of the extracted urban areas in London, where the extracted areas 

seem to be highly sensitive to the chosen post-processing parameters. Results for Lahore 

show higher levels of systematic deviation from the HYDE area estimate, in particular for 

the scenarios involving spatial constraints. This could be attributed to lower levels of data 

quality of the GHSL in 1975 in this area resulting in higher levels of omission of built-up 

areas as compared to HYDE.

Lastly, we visualized the hind-casted GHSL trajectories of built-up area and overlaid them 

with the HYDE trajectories extracted for the same areas. Figure 11 suggests that for most 

cities, the hind-casted trajectory exhibits high levels of steadiness, oxcept in the London 

study area. A higher temporal donsity of hictorical maps would probably mitigate this effect 

and produce a smoother curvel. Importantly, the uncertainty of these hind-casted trajectories 

due to the different post-processing parameters is relatively small, and appears to be smallest 

in the Lahore study area (Figure 11, yellow bands). As a side note, we observe high levels 

of discrepancies between the GHSL built-up area and HYDE urban area estimates in some 
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study areas, such as Birmingham. This is likely an effect of different definitions, as the 

GHSL includes all detected settlements (including rural settlements), whereas the urban 

areas in HYDE are likely to exclude those areas, but can also be attributed to the general 

difficulty of global models such as HYDE to estimate historical land use patterns at the 

regional or local level [92]. In the specific case of the London study area, this discrepancy 

could also be the result of edge effects due to the small study area in relation to the HYDE 

grid cells (i.e., 5′), which may exclude partially overlapping grid cells from the study area.

4. Conclusions

The work presented herein is a first attempt to create a framework that combines signals 

obtained from scanned, georeferenced historical maps with remote sensing data products 

in an integrated analytical environment. We applied this framework to the extraction and 

assessment of urban areas over long time periods and demonstrated how such an approach 

can create spatial-historical data that describe trends of long-term urban-spatial development 

prior to the era of remote sensing and enhance our understanding of the underlying 

urbanization processes.

The spatial aggregation performed on the historical maps facilitates the seamless integration 

with other gridded surfaces in general, and effectively reduces the spatial data volume to 

be processed. Thus, given the availability of georeferenced historical maps in numerous 

countries, this framework could be applied to systematically hind-cast the Global Human 

Settlement Layer, or other settlement data products, at a country scale. The presented 

framework represents an effective way to harvest historical maps, and thus preserve valuable 

knowledge that can only be found in such archival documents. Revisiting the research 

questions posed in Section 1, we can conclude the following:

(i) We demonstrated that signals obtained from scanned and georeferenced historical maps 

or whole map collections have the potential to enrich remote-sensing-based analyses (e.g., 

[93]) and to extend the observational window of remote-sensing-based change analysis 

further back in time. We applied our method to the study of long-term urban change, 

but similar frameworks could be employed for other applications, such as the analysis of 

long-term forest dynamics or other types of land cover.

(ii) Unlike remote sensing data, which is typically collected within short repeat cycles 

(e.g., 16 days for the Landsat 8 satellite), signals obtained from historical maps over large 

spatial extents may suffer from heterogeneous temporal reference. Moreover, the discussed, 

inherent and largely unknown positional uncertainties in signals from historical maps need 

to be taken into account. Thus, the choice of an appropriate analytical unit is crucial, 

allowing one to capture the desired spatial detail while aggregating the map signals in a way 

that reduces the effects of positional inaccuracies and accounts for the vague definition of 

the features of interest (e.g., urban areas).

(iii) Despite these challenges, the proposed analytical framework yields plausible results, 

that is, the extracted urban extents are largely in agreement with other spatial-historical 
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information, and they are at a higher spatial resolution than existing spatially explicit 

historical data, such as HYDE or HISDAC-US.

From the ROC analysis conducted for the US study areas (Figure 6), we observe slightly 

higher AUC values for the Boston maps than for the Atlanta maps. This is surprising, as the 

Boston maps are much older (1900) than the Atlanta maps (1960). The reason is likely the 

number of colors used: the Boston 1900 maps are 3-color prints, whereas the Atlanta 1960 

maps are 5-color prints. In addition to that, the variety of map styles in the Atlanta map 

composite is higher. A careful interpretation of this difference would be that the proposed 

method works better for map collections of homogeneous map styles with a minimum of 

complexity (i.e., when fewer colors are used in the historical maps), which is typically 

the case for older maps. This seems plausible, though it is in contrast to remotely sensed 

observations, where more recent data are typically more reliable than earlier measurements. 

However, in order to confidently formulate recommendations related to such properties, 

and to assess the influence of building representations in the historical maps (individual 

building outlines, city blocks, etc.), statistical evidence would be required by systematically 

analyzing a larger sample of maps from different points in time and of different map styles.

From a methodological point of view, we followed the principle of parsimony and 

implemented a simplistic, rule-based color clustering method to extract the features of 

interest, and observed satisfactory levels of performance (i.e., high levels of receptiveness 

with respect to historical building densities—AUC > 0.9; and consistency with model-based 

estimates of historical urban area) and efficiency. Future work will include the use of 

more advanced extraction methods, taking into account shape and textural characteristics, 

or more complex rule-based systems, potentially able to distinguish between high-density 

and low-density urban/built-up areas. The concept of contemporary spatial constraints such 

as delineating the results to the 1975 GHSL built-up areas, could also be incorporated into 

an automated training data collection procedure, which could then be used for a supervised, 

deep-learning approach to extract urban areas and human settlement patterns at finer spatial 

granularity (cf. [61]).

Concluding, we find that the presented approach appears to perform better on maps of few 

map colors (3-color prints) and shows lower performance on 5-color prints, even though the 

3-color maps are older. When using composites of multiple individual historical maps, the 

method seems to work better on map composites consisting of homogeneous map styles. 

As our results seem plausible across all study areas, we find that the graphical quality of 

the underlying maps, manifested in their spatial resolution (cf. Table 1), does not affect the 

quality of the results drastically.

As the use of k-means color space clustering requires the manual choice of the number 

of clusters k, the results depend on this choice (Figure A5). Future work will include 

the test of alternative clustering or unsupervised classification techniques that infer the 

optimum number of clusters from the data [94,95], as well as the use of different color space 

representations [96]. Future work will also include the performance of object-based methods 

[57,64] as compared to the pixel-based extraction method presented herein.
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Spatially explicit, historical data on built-up or urban area can enhance our understanding 

of the efficiency of a city over time (e.g., urban scaling analysis [97]), reduce manual 

labor involved in the analysis of urban-spatial trajectories [14], and allow for studying 

long-term urban development and land consumption processes. From a city planning 

perspective, however, historical information on functional properties of city elements (e.g., 

historical, spatially explicit urban land use, or building function) would be more beneficial 

than area-related information alone. While most historical topographic maps only contain 

limited information on land use and building functions, some map collections such as the 

Sanborn Fire Insurance maps [20] contain such information. However, the extraction of such 

information requires more complex information extraction methods, such as deep learning 

[98]. Future work could also focus on the extraction of functional properties from such 

historical maps, facilitated by contemporary remote sensing data. In a broader context, 

the proposed, generic tile-based framework could be expanded by using more complex 

feature embeddings [99] in order to estimate different kinds of retrospective land cover from 

historical maps.

Ultimately, such efforts create new data and insights that can inform long-term, spatially 

explicit land use models, such as HYDE, and can be used to improve future projections of 

urban land, and thus enable more informed urban planning and decision making.
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Appendix A

Figure A1. 
Selected scanned historical maps used in this study. (a) Northwest Atlanta (US) 1954, 

(b) Sao Paulo (Brazil) 1908, (c) Lahore/Amritsar (Pakistan/India) 1946, and (d) Greater 

Boston (US) 1893. Source (a,d): https://ngmdb.usgs.gov/topoview/viewer (accessed on 

13 September 2021), Source (b): http://1886.u-bordeaux-montaigne.fr/items/show/10037 

(accessed on 13 September 2021), Source (c): https://maps.lib.utexas.edu/maps/topo/

india_253k/ (accessed on 13 September 2021).
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Figure A2. 
Preprocessing workflows. (a) The steps performed to generate spatially aggregated 

composites of RGB signals from historical maps for the Atlanta and Boston metropolitan 

areas. Panel (b) illustrates the reprojection and resampling steps to transform the historical 

map data, HISDAC-US, HYDE, and the GHSL into common grids. More specifically, the 

HISDAC-US based building densities are resampled from a 250 × 250 m2 grid to the 

target resolution of 100 × 100 m2, using an intermediate resolution of 50 × 50 m2, to keep 

additional uncertainty introduced during resampling to a minimum. Similarly, the HYDE 

urban area fractions, available in a 5′ x 5′ grid, are resampled to 100 × 100 m2, and urban 

area fractions are proportionally re-allocated in the target grid to keep the effects of grid 

cells overlapping the study area boundaries to a minimum.

Figure A3. 
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Cluster analysis results. Elbow curves based on the cluster inertia for the RGB values of the 

historical map raster datasets for the six study areas.

Figure A4. 
Extended ROC analysis of extracted urban/non-urban labels against the HISDAC-US BUPR 

estimates.
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Figure A5. 
Illustrating the effects of spatially constraining the extraction results to the GHSL built-

up areas in 1975, the different clustering granularity k, and the threshold used for post-

processing.
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Figure 1. 
Input data for the study areas in the US and in the UK: (a) GHSL-based built-up area 

in 2014 and 1975 in Atlanta metro area (US), and (b) in the Boston metro area (US); 

(c) 1:24,000 historical map composite for the Atlanta metro area from approximately 

1960, and (d) historical map composite for the Boston metro area at scale 1:62,500 from 

approximately 1900; (e) GHSL-based built-up area in 2014 in the greater Birmingham area 

(UK), (f) historical Ordnance Survey topographic map composite from approximately 1900 

(approximate scale: 1:10,000), with an enlargement of a part of the Birmingham downtown 

area, and (g) historical Ordnance Survey topographic map composite from 1896 for the 

London area (UK; approximate scale: 1:63,000), overlaid on the GHSL 2014 built-up areas 

(grey).
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Figure 2. 
Input data for the study areas in South America and Asia: (a) GHSL built-up areas in 2014 

and 1975 for the greater Sao Paulo area (Brazil), including the coastal city of Santos, (b) 

historical topographic map from 1906 (scale: 1:100,000) covering the same area, (c) GHSL 

built-up areas in 2014 and 1975 for the Lahore (Pakistan) and Amritsar (India) region, and 

(d) historical topographic map from 1943 (approximate scale: 1:250,000).
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Figure 3. 
Cartographic styles used to depict urban built-up areas in the historical maps used in this 

study: (a) Boston (~1900), (b) Atlanta (~1960), (c) Birmingham (~1900), (d) London 

(1896), (e) Sao Paulo (1906), and (f) Lahore (1943).
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Figure 4. 
Evaluation data. Historical settlement data compilation for the US (HISDAC-US) built-up 

properties (BUPR) for (a) 1900 and (b) 2010, and urban area fractions per grid cell from the 

history database of the global environment (HYDE 3.2) for (c) 1900 and (d) 2010, all shown 

for the Boston metropolitan area.
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Figure 5. 
Flow diagram illustrating the historical urban area extraction and validation steps.
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Figure 6. 
Illustrating the historical urban area extraction method using historical maps and the GHSL. 

(a) GHSL multitemporal built-up areas (resampled to 100 m × 100 m), (b) original historical 

map sheets from approximately 1900, (c) generated 100 m × 100 m RGB aggregates 

(averages per channel), (d) color clustering results for k = 4, (e) target clusters likely 

representing urban areas, identified by a rule-based decision mechanism taking into account 

the GHSL areal proportions per cluster and the cluster brightness, (f) target clusters within 

GHSL 1975 built-up areas only, (g) post-processed target cluster areas, and (h) back-casted 

urban areas (i.e., extracted historical urban areas integrated with the GHSL multi-temporal 

built-up areas).
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Figure 7. 
Evaluation of the map-extracted historical urban areas in the US study areas against 

HISDAC-US built-up property densities. (a) Receiver-Operator-Characteristic (ROC) plots 

for each clustering scenario (k from 2 to 10) without spatial constraints using GHSL 1975 

built-up areas, (b) after applying the spatial constraints, and (c) after post-processing the 

extracted areas by removing small segments (<50 px) in Boston. Panels (d–f) show the ROC 

plots for the same scenarios in the Atlanta study area, respectively.
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Figure 8. 
Raw color-space clustering results illustrating the effect of the number of clusters k on the 

spatial and semantic output granularity shown for a low k for the (a) Boston, (b) Lahore, (c) 

Sao Paulo, and (d) London study areas, and for a high k in (e–h).
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Figure 9. 
Extracted historical urban extents for all study areas. (a) Boston metro area, (b) Atlanta 

metro area, (c) London (dashed rectangle shows the study area extent), (d) Birmingham and 

surroundings, (e) south-east part of greater Sao Paulo area, and (f) Lahore-Amritsar area 

with an inset map of Lahore.
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Figure 10. 
Cross-comparison to HYDE urban areas. Box-and-whisker plots illustrating the distribution 

of built-up areas extracted from the historical maps for all clustering scenarios, per 

constraint and post-processing scenario, overlaid with the urban area extracted from the 

HYDE 3.2 database for the respective study areas (ATL = Atlanta, BOS = Boston, LON = 

London, BIR = Birmingham, SP = Sao Paulo, and LAH = Lahore).
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Figure 11. 
Hind-casted GHSL urban growth trajectories (extracted historical urban areas are GHSL-

constraint, k = 4, averaged across any post-processing scenario) and their deviation, overlaid 

with HYDE 3.2 urban area trajectories. These trajectories are composed of four remote-

sensing-based observations (from the GHSL) and an earlier observation obtained from the 

historical maps, allowing for hind-casting the GHSL-based trajectories to earlier points in 

time.
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