
Retinoblastoma (OMIM 180200) is the most commonly 
encountered pediatric intraocular tumor (3% of childhood 
cancer) and affects about 1 in 15,000 live births worldwide 
[1,2]. It is highly malignant and mostly manifested in the 
first five years of life and causes death in 50% of affected 
children worldwide. The mortality, however, varies from less 
than 5% of children in the United States and other developed 
countries with advanced medical care to more than 70% in 
some developing countries [3]. More than 50% of retino-
blastoma cases are sporadic and mainly caused by RB1 gene 
mutation [4-7]. Despite intensive pathological, genetic, and 
epigenetic studies, the histogenesis of retinoblastoma is not 
well defined [8-11]. It is debatable whether retinoblastoma 
is generated from naturally death-resistant retinal precursor 

cells or RB1-deficient retinoblasts undergoing p53 pathway 
inactivation-mediated apoptosis and exit of the cell cycle 
[12,13]. Expression of retinal development–related genes, 
including NESTIN, Rx, PAX6, and CHX10, shows that retino-
blastoma can be derived from undifferentiated retinoblasts 
[14]. A subpopulation of retinoblastoma cells also displays 
immunoreactive ATP-binding cassette transporter glyco-
protein G2, aldehyde dehydrogenase I, stem cell antigen-1, 
p63, and B lymphoma Mo-MLV insertion region 1 (BMI-1), 
indicating the properties of self-renewal and proliferation 
capacity of cancer stem cells [15]. Moreover, BrdU retention 
and the expression of OCT3/4, NANOG, and Musashi-1 have 
been detected in retinoblastoma tumors and cell lines, further 
suggesting that they contain cells with embryonic stem-like 
properties [16].

BMI-1 belongs to the polycomb group proteins, which 
form a multiprotein complex and are involved in transcrip-
tional regulation [17,18]. It is an oncogene that regulates cell 
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proliferation and senescence through the repression of the 
Ckdn2a locus, which encodes the p16Ink4a and p14Arf tumor 
suppressor proteins [19,20]. It is implicated in the self-renewal 
and proliferation of various types of somatic stem cells, 
including neural, hematopoietic, and prostate cells [21-23]. 
Deregulation of BMI-1, such as in gene amplification and 
protein overexpression, has been linked to the tumorigenesis 
of leukemia and solid tumors like oligodendroglial tumors 
and prostate, breast, and colorectal cancers [20,23-27]. In 
some instances, BMI-1 overexpression has been attributed to 
unfavorable prognosis in patients with squamous cell carci-
noma of the tongue, hepatocellular carcinoma, and prostate 
and pancreatic cancers [28-31]. In nasopharyngeal carcinoma, 
the five-year survival rate of patients was over 80% if BMI-1 
was negative, but only 47% if it was positive [32]. In this 
study, we investigated BMI-1 expression and the clinicopath-
ological parameters of human retinoblastomas. The effect of 
BMI-1 overexpression and reduction on the growth, cell cycle 
changes, and apoptosis of Y79 cells was examined.

METHODS

Retinoblastoma cases: The study protocol of human reti-
noblastoma archive specimens was approved by the Ethics 
Committee for Human Research, Beijing Tongren Hospital, 
Capital Medical University, China and adhered to the tenets 
of Declaration of Helsinki. Paraffin-embedded retinoblas-
toma eyeballs from 34 patients were archived in Beijing 
Tongren Hospital from 2007 to 2008. These patients had no 
associated medical and family history. All specimens were 
serially sectioned along the pupillary–optic nerve head axis 
and the sections were used for immunohistochemistry.

Immunohistochemistry of BMI-1 on archived sections: 
Immunoreactive BMI-1 was detected using the labeled horse-
radish peroxidase method. On paraffin sections, antigen was 
retrieved by trypsin and endogenous peroxidase inactivated 
by 0.3% hydrogen peroxide in methanol. After blocking with 
5% normal goat serum and 0.1% Triton X-100, the section 
was incubated with or without 0.5 to 1 μg/ml antihuman 
BMI-1 monoclonal antibody (Clone F6, Millipore, Billerica, 
MA). Control sections were incubated with buffer without 
primary antibody. Following PBS rinses, sections were 
treated with goat anit-mouse immunoglobulin horseradish 
peroxidase conjugate (Jackson ImmunoRes Lab, West Grove, 
PA). Signals were revealed by 3,3’-diaminobenzidine (DAB) 
reduction and examined under light microscopy (DMRB, 
Leica, Wetzlar, Germany) equipped with Spot RT color 
system (Diagnostic Instruments Inc., Sterling Heights, MI). 
Stained sections were examined by two masked pathologists 
(RRJ, LTL). In 10 random images taken at 50× magnification, 

the percentage of BMI-1 positive cells in tumor or retinal 
layers was graded as (0) no staining, (1) <5%, (2) 5%–25%, 
(3) 25%–50%, or (4) >50%.

Expression constructs of BMI-1: BMI-1 expression construct 
was prepared by cloning a 990 bp EcoR1/Xho1 fragment 
encompassing full-length 981 bp open reading frame of 
wild-type human BMI-1 to EcoR1/Xho1 site of a mammalian 
expression vector pCMV-HA (Clontech, Mountain View, CA) 
to create pHA-BMI-1. Alternatively, for specific knockdown, 
synthesized 64 bp oligonucleotide containing human BMI-1 
small interfering RNA (siRNA) sequence (5′-ATG AAG AGA 
AGA AGG GAT T-3′, position 269–287 bp from the start 
codon) was cloned into the HindIII/BglII site in the pSuper 
vector (Oligoengine, Seattle, WA) to generate pSuper-BMI-1. 
All constructs were verified by direct sequencing.

Cell transfection: Y79 cells (American Tissue Cell Collec-
tion, Manassas, VA) were maintained in RPMI-1640 (Invi-
trogen, Carlsbad, CA) supplemented with 10% fetal bovine 
serum (FBS, Invitrogen), 100 U/ml penicillin G, and 100 μg/
ml streptomycin sulfate at 37 °C under humidified conditions 
in 5% CO2 balanced with air. The BMI-1 construct was trans-
fected to cells at 5×105 cells/ml by Lipofectamine 2000 (Invi-
trogen) at a ratio of 3 µl reagent per µg DNA in Opti-MEM® 
Reduced Serum Medium, GlutaMAX™ (Invitrogen). One 
day after transfection, the cells were maintained in 80 µg/ml 
Geneticin-418 (Invitrogen) for 10 days. Drug-resistant cells 
were pooled for protein and RNA analyses.

Cell growth, viability, and apoptosis assays: Transfected 
cells at a density of 5×105 cells/µl were cultured in a six-well 
plate. Every 24 h, 200 µl of cell suspension was collected 
for for tetrazolium dye (MTT) cell viability/proliferation 
assay. Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay using ApopTaqIn Situ Apoptosis 
Detection Kit (Oncor, Gaithersburg, MD) was performed 
on paraformaldehyde-fixed cytospinned cells. The TUNEL-
positive and 4’,6-diamidino-2-phenylindole (DAPI)-labeled 
cells were counted in 10 random images captured under fluo-
rescence microscopy with a 20x objective. The apoptosis rate 
was determined as the percentage of TUNEL-positive cells. 
All experiments were carried out in triplicate.

Multicellular sphere assay: Single transfected cells at 50 cells/
ml were passed through 40 µm nylon mesh and incubated in 
a culture dish (100 mm diameter) in serum-free RPMI-1640 
medium supplemented with 10 ng/ml basic fibroblast growth 
factor (Invitrogen). After 7 days, the culture was examined 
for sphere formation and the number and sizes of spheres 
were recorded. Cell proliferation was assayed by BrdU 
incorporation for 2 h, followed by immunofluorescence using 
anti-BrdU antibody (Abcam, Cambridge, UK), followed by 
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Alexa 488-conjugated immuneglopbulin G (IgG) secondary 
antibody (Jackson ImmunoRes Lab, West Grove, PA).

Propidium iodide cell cycle analysis: Transfected cells were 
harvested and fixed with 70% ice-cold ethanol with vigorous 
shaking to prevent cell clustering. The cells were incubated 
with 50 μg/ml propidium iodide (Invitrogen) in the presence 
of 0.1 mg/ml RNase A (Sigma) and 0.05% Triton X-100. After 
washes, the cells were resuspended in PBS for flow analysis 
using a FACS Calibur Flow Cytometer (BD).

Western blotting: The cells were lysed at 2.5×106 cells/µl in 
radioimmunoprecipitation buffer containing 50 mM Tris-HCl 
(Sigma, St Louis, MI), 150 mM sodium chloride, 1% Nonidet 
P40, 0.25% sodium deoxycholate, protease inhibitor cock-
tail (Roche, Basel, Switzerland), and 1 mM phenylmethyl 
sulfonylfluoride. The clear supernatant was denatured in 2% 
sodium dodecyl sulfate (BioRad, Hercules, CA) and 50 mM 
DL-dithiothreitol. Proteins (equivalent to 2×105 cells) were 
resolved by 10% or 13% sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis and analyzed by enhanced chemilu-
minescence using antibodies against HA (Millipore), BMI-1 
(Millipore), p14ARF (Santa Cruz Biotechnol., Santa Cruz, 
CA), p16INK4a (Santa Cruz), cyclin D1 (Santa Cruz), cyclin 
D2 (Santa Cruz), proliferating cell nuclear antigen (PCNA, 
Sigma), caspase-3 (Millipore), and β-actin (Sigma).

Expression of ribonucleic acid: Total RNA was extracted 
with RNeasy kit (Qiagen, Valencia, CA), quantified and 
reverse transcribed with random primer (Roche) and Super-
Script™ III reverse transcriptase (Invitrogen). Semiquantita-
tive PCR was performed with specific primers for CHX10, 
Rx, NESTIN, neurofilament-M and glyceraldehyde phosphate 
dehydrogenase (Table 1). PCR products were resolved by 
2% agarose gel electrophoresis and analysed by Quantity 
One Image Analysis. Gene expression was normalized with 
glyceraldehyde phosphate dehydrogenase. Three independent 
experiments were performed.

Statistical analyses: The analysis was performed using a 
commercially available statistical software package (SPSS 
for Windows, version 17.0, SPSS, Chicago, IL). The data 
were presented as mean and standard deviation, as well as in 
median and ranges. For the comparison of study groups, the 
Mann–Whitney U test was applied for unpaired samples. If 
there was one variable possibly associated with the dependent 
parameter, a Spearman correlation analysis was performed. 
A value of p<0.05 was considered as statistical significance.

RESULTS

Demography and retinoblastoma pathology: A total of 34 
retinoblastoma specimens were recruited in this study. They 
were collected at Beijing Tongren Hospital from April 2007 
to April 2008 (Table 2). The patients had no associated 
medical or family history. Twenty-one were males and 15 
were females, and the average age was 2.27±1.13 years. There 
were 31 unilateral retinoblastomas (15 left and 16 right eyes) 
and 5 bilateral retinoblastomas. Leukocoria was commonly 
presented (31 eyes), while others exhibited pink eye (2 eyes), 
esotropia (1 eye), reduced vision with esotropia (1 eye), and 
leukocoria with esotropia (1 eye).

BMI-1 expression and retinoblastoma differentiation: 
Twenty-four tumors without Flexner-Wintersteiner rosettes 
and showing small-sized cells with a large nucleus-to-cyto-
plasm ratio were classified as undifferentiated type (column 
A in Figure 1). Ten tumors were characterized as differenti-
ated with typical Flexner-Wintersteiner rosettes with cells 
surrounding the central lumen (column A in Figure 2). 
Homer-Wright rosettes bearing eosinophilic neurofibrillary 
cores were occasionally observed. Intratumor necrosis was 
infrequently observed.

Nuclear BMI-1 staining was present in the majority 
of retinoblastoma specimens (33/34 tumors, 97.1%). The 
staining intensity varied with the differentiation status. 

Table 1. Specific primer sequences for gene expression study.

Gene GenBank Accession No. Primer sequence (5’-3’)
CHX10 NM_182894 F: GAGAAGGCATTCAACGAAGC  

R: CATACTCCGCCATGACACTG
Rx NM_013435 F: AGCGAAACTGTCAGAGGA  

R: TCATGCAGCTGGTACGTGGTGA
NESTIN NM_006617 F: CCTGGGAAAGGGAGAGTACC  

R: GGATGAGGCAGAGCTGAATC
neurofilament-M NM_005382 F: ATCGGTAAAGGTGCACTTG  

R: TCTACCTCCCCATTGACAGC
glyceraldehyde phosphate 

dehydrogenase
BC_014085 F: GAAGGTGAAGGTCGGAGT  

R: GAAGATGGTGATGGGATTTC
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Distinct BMI-1 expression was observed in >50% tumor cells 
in 13 undifferentiated retinoblastoma cases (13/24, 54.2%; 
representative pictures in column B of Figure 1, magnified 
images in column C), but not in any differentiated cases (0/10, 
0%; Table 3). Ten undifferentiated cases (10/24, 41.7%) had 
milder BMI-1 staining (<50% tumor cells). Only one case was 
BMI-1 negative. On the other hand, BMI-1 was not clearly 
observed in the differentiated tumors. All cases exhibited 
BMI-1 immunoreactivity in <25% tumor cells (representa-
tive pictures in column B of Figure 2, magnified images in 
column C). Hence, the expression of BMI-1 was shown to be 
significantly associated with undifferentiated retinoblastomas 
(p=0.05, Mann–Whitney U test).

We studied BMI-1 expression in 27 retinal tissues adja-
cent to retinoblastoma (Table 3). Notably, it was not widely 
detected in all retinas. Most retinal tissue next to undif-
ferentiated retinoblastomas had positive BMI-1 staining in 
<25% retinal cells (14/17, 82.3%; representative pictures in 
upper panel of Figure 3). A similar observation was made 
for differentiated cases (9/10, 90%; representative pictures 
in lower panel of Figure 3). The remaining was BMI-1 nega-
tive. Hence, there was no significant correlation between 
BMI-1 expression in retina in terms of the differentiation 
status of retinoblastomas (p=0.86, Mann–Whitney U test). 
Furthermore, altered retinal layers, including an indistinct 
inner nuclear layer, was infrequently observed in both 
differentiated and undifferentiated tumors (marked by red 
brackets in Figure 3). There was no association between 

BMI-1 expression in the outer and inner nuclear layer with 
retinoblastoma differentiation status (p=0.49 and p=0.24, 
respectively; Table 3).

BMI-1 expression and retinoblastoma invasion to posterior 
tissues: In our 34 studied cases, 9 retinoblastomas remained 
in situ and no invasion to adjacent retinal tissue was observed 
(9/34, 26.5%; pT1 grade in Pathologic Classification of TNM 
[Tumor, Node, Metastasis] Classification for Retinoblastoma, 
Table 3). For the remaining 25 cases showing tumor cell inva-
sion, involvement of the optic nerve was only detected in 14 
retinoblastomas (38.9%; pT2a grade), 3 were choroid only 
(8.3%), and 8 were invaded to both optic nerve and choroid 
(22.2%; pT2b grade). The percentage of BMI-1 positive cells 
was significantly greater in retinoblastomas with invasion 
than those without (p=0.0023, Mann–Whitney U test; Figure 
1 and Figure 2; Table 3). Among these malignant cases, more 
BMI-1 expressing cells were found in tumors invading both 
the optic nerve and choroid (p=0.0005), whereas fewer were 
found in tumors with invasion to either location. For reti-
noblastomas showing optic nerve invasion (n=22), 13 were 
in the optic nerve head (pT2 grade) and 9 were extended 
to the posterior surface of the lamina cribrosa (pT3 grade) 
and percentage of BMI-1 positive cells was similar in both 
categories (Table 3).

Effect of BMI-1 on retinoblastoma cell growth and prolifera-
tion: Human retinoblastoma Y79 cells were transfected with 
pCMV-HA/BMI-1 for BMI-1 overexpression or by pSuper-
BMI-1-si for specific BMI-1 suppression. Stable transfectants 

Table 2. Demographic and clinical characteristics of studied retinoblastoma cases.

Gender Male 58.3%; female 41.7%
Laterality Unilateral: 31/34 (91.2%)
  right eye: 16/31; left eye: 15/31
  Bilateral: 5/34 (14.7%)
Mode of presentation Leukocoria: 31/34 (91.2%)
  Pink eye: 2/34 (5.9%)
  Esotropia: 1/34 (2.8%)
  Reduced vision with esotropia: 1/34 (2.9%)
  Leukocoria with esotropia: 1/34 (2.9%)
Extraocular invasion Optic nerve invasion: 22/34 (64.7%)
  Choroidal invasion: 11/34 (32.3%)
  focal: 7/11
  massive: 4/11
  No optic nerve or choroidal invasion: 11/34 (32.3%)
  Both types of invasion: 8/34 (23.5%)
RB differentiation Undifferentiated: 24/34 (70.6%)
  Differentiated: 10/34 (29.4%)

http://www.molvis.org/molvis/v19/561
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Figure 1. Representative light microscopy pictures of staining of B lymphoma Mo-MLV insertion region 1 (BMI-1) antigen in undifferenti-
ated retinoblastomas grouped according to Tumor, Nodes, Metastasis (TNM) classification. A: Retinoblastoma sections were stained by 
hematoxylin and eosin.B: Magnified images in C: intense nuclear BMI-1 expression in undifferentiated retinoblastomas. Scale bars: 50 µm. 
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Figure 2. Representative light microscopy pictures of staining of B lymphoma Mo-MLV insertion region 1 (BMI-1) antigen in differenti-
ated retinoblastomas grouped according to Tumor, Nodes, Metastasis (TNM) classification. A: Hematoxylin and eosin staining. Closed 
red arrows in A show the Flexner-Wintersteiner rosettes. B: Magnified images in C: weak to moderate BMI-1 expression in differentiated 
retinoblastomas. D: Background staining of BMI-1 in retinoblastoma 8927 with incubation of primary antibody. E: Negligible BMI-1 
expression in a normal human retina section. Scale bars: 50 µm.

http://www.molvis.org/molvis/v19/561


Molecular Vision 2013; 19:561-574 <http://www.molvis.org/molvis/v19/561> © 2013 Molecular Vision 

567

were obtained after G418 selection for 10 days (Figure 4A). 
Cells transfected with empty vectors (pCMV-HA or pSuper) 
and nontransfected cells served as controls (Figure 4B).

Increased BMI-1 transcript and protein levels in Y79 
cells with pCMV-HA/BMI-1 transfection were confirmed by 
semiquantitative PCR and western blotting of the HA epitope 
(Figure 4C,F). Nontransfected cells exhibited negligible HA 
staining. BMI-1-HA transfected Y79 cells showed increased 
cell viability and a shorter doubling time (17.9 h) when 
compared to nontransfected or mock-transfected control cells 
(both were 22.3 h; Figure 4D). They formed more multicel-
lular spheres in 7 days than pSuper-BMI-1-si and nontrans-
fected cells. The sphere size was generally greater and there 
were more spheres with a diameter greater than 100 µm in 
BMI-1-HA-transfected Y79 cells (63%) than nontransfected 
cells (40%). The BMI-1-transfected cells exhibited higher 

expression of PCNA (Figure 4F) and BrdU incorporation. 
The apoptosis rate, determined by the percentage of TUNEL-
positive cells, was significantly decreased with BMI-1-HA 
expression (5.2±1%) when compared to control (8.2±2.7%; 
p=0.023, paired Student t test; Figure 5A). This observation 
was substantiated in the reduced expression of pro- and active 
caspase-3 in western blotting (Figure 5B). Using propidium 
iodide cell cycle analysis, there was no significant difference 
of S-phase population in BMI-1-HA-expressing Y79 cells 
(13.1%) compared to mock-transfected control cells (11.3%; 
Figure 5C).

In contrast, siRNA-mediated inhibition of BMI-1 
impaired Y79 cell growth (Figure 4E). The cells showed 
longer cell doubling time (29 h) when compared to nontrans-
fected or mock-transfected control cells (both were about 23.1 
h). Further, they exhibited less multicellular sphere formation 

Table 3. BMI-1 expression and clinicopathological features of retinoblastomas.

  Grading of % BMI-1 positive cells
*0  1 2 3 4

(A) Rb differentiation
1. Undifferentiated (n=24) 1 5 5 7 6
2. Differentiated (n=10) 0 3 7 0 0
p=0.05 (Mann–Whitney U test)
(B) Rb retinas
1. Undifferentiated Rb (n=17) 3 6 8 0 0
2. Differentiated Rb (n=10) 1 5 4 0 0
p=0.86 (Mann–Whitney U test)
 (B1) Outer nuclear layer
1. Undifferentiated Rb (n=17) 3 6 8 0 0
2. Differentiated Rb (n=10) 1 6 3 0 0
p=0.49 (Mann–Whitney U test)          
 (B2) Inner nuclear layer
1. Undifferentiated Rb (n=17) 3 4 7 3 0
2. Differentiated Rb (n=10) 1 2 5 1 0
p=0.24 (Mann–Whitney U test)
(C) Tumor invasion
1. No invasion (n=9) 2 4 2 1 0
2. Invasion (n=25) 1 3 9 6 6
(i) to optic nerve only (n=14) 0 2 7 3 2
(ii) to choroid only (n=3) 1 1 1 0 0
(iii) to both (n=8) 0 0 1 3 4
(D) Optic nerve invasion (n=22)
1. To optic nerve head (n=13) 0 2 7 4 0
2. Past lamina cribrosa (n=9) 0 0 1 3 6

p=0.37 (Mann–Whitney U test)* 0 represents no staining; 1: <5%; 2: 5%–25%; 3: 25%–50%; 4: >25% BMI-1 stained cells
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(less than one-third that of nontransfected cells; Figure 6A). 
A set of spheres (43%) were smaller in size (<40 µm in diam-
eter). BrdU incorporation was also reduced (Figure 6C). There 
were more TUNEL-positive cells, and the apoptosis rate 
(14.5±5%) was significantly higher than in mock-transfected 
control cells (7±2.3%; p=0.0017, paired Student t test; Figure 

5A). This was accompanied by an increased expression of 
active caspase-3 (Figure 5B). Propidium iodide cell cycle 
analysis showed that BMI-1 repression increased apoptotic 
cells (21.8%) when compared with mock-transfection (7.2%). 
There was no effect on S-phase alteration (13.7% in si-BMI-1 
cells versus 11.3% in control; Figure 5C).

Figure 4. B lymphoma Mo-MLV insertion region 1 (BMI-1) expression altered retinoblastoma 480 Y79 cell growth. A-C: Immunostaining 
and reverse transcription (RT)–PCR analyses show marked increase of BMI-1 transcript and protein in Y79 cells after transfection with 
pCMV-HA/BMI-1 compared with vector control. D and E: MTT assay showing Y79 cell viability and proliferation was promoted by BMI-1 
overexpression and reduced by siRNA-mediated inhibition of Bmi-1. F: Gene expression analysis of p14, p16, and PCNA in pCMV-HA/
BMI-1, pSuper-BMI-1-si, and vector-transfected Y79 cells. *p<0.05, paired Student t test. Scale bar: 25 μm.
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Western blotting showed that BMI-1 induced cyclin 
D1 (~37 kDa) and D2 (~34 kDa) expression (Figure 5D) 
and reduced cyclin-dependent kinase (CDK) inhibitor 
p14ARF and p16INK4 expression (Figure 4F). In contrast, 

its suppression by specific RNA interference caused a reduc-
tion in cyclin D1 and cyclin D2 (Figure 5D), accompanied by 
induction of p14ARF and p16INK4 (Figure 4F). BMI-1 also 
affected the expression of retinal development markers. The 

Figure 5. Influence of B lymphoma Mo-MLV insertion region 1 (BMI-1) on apoptosis and gene expression of Y79 cells. A: TUNEL assay 
showing increase of apoptosis rate after siBmi1 transfection to Y79 cells. A mild reduction of apoptosis was seen with BMI-1-HA expression 
(n=3, mean±standard deviation). *p<0.01; **p<0.005. B: Western blotting of pro- and active caspase-3 in Y79 cell lysate after transfection. 
Cells treated with camptothecin (10 μM) for 12 h served as the positive control of apoptosis. C: Propidium iodide cell cycle analysis of 
transfected Y79 cells by flow cytometry. D: Western blotting and band densitometry analysis of BMI-1, cyclin D1 and D2 in Y79 cells after 
transfection. *p<0.05, paired Student t test. E: Expression of CHX10, Rx, nestin, and neurofilament-M expression in transfected Y79 cells.
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expression of CHX10 and Rx was elevated with its ectopic 
expression in Y79 cells and reduced after the specific knock-
down (Figure 5E). However, it did not affect the expression 
of Nestin and neurofilament M.

DISCUSSION

Increased expression of BMI-1 has been implicated in 
cancers, including colorectal, non-small cell pulmonary, 
hepatocellular, prostate, and breast cancer, medulloblastoma, 
multiple myeloma, and neuroblastoma [33-36]. In this study, 
we detected BMI-1 upregulation in undifferentiated human 
retinoblastomas when compared to differentiated cases 
(p=0.05). It was found to be significantly associated with 
retinoblastomas showing tumor cells invading the optic nerve 
and choroid than those remaining in situ (p=0.0005). Cellular 
study further demonstrated that BMI-1 regulated retinoblas-
toma Y79 cell proliferation and the formation of multicellular 
spheres, the cell cycle, and apoptosis. This was mediated by 
the regulation of PCNA, cyclin D1 and D2, and CDK inhibi-
tors p14ARF and p16INK4. Hence, our findings indicate that 
BMI-1 might play an important role in the development of and 
malignancy of human retinoblastoma.

Retinoblastoma results from RB1 gene inactivation 
and loss of pRB1, yet the proliferation and metastasis that 
underlie retinoblastoma development have not been well 
defined. In this study, we showed that BMI-1, a polycomb 
group transcription factor and an oncogene, plays a crucial 
role in retinoblastoma proliferation, and may contribute to its 
malignancy. Its expression was significantly increased when 
tumor cells were found in the optic nerve and/or choroid (pT3 
grade) than in those confined to the retina (pT1 grade). This 
pathological grading follows the TNM Classification for Reti-
noblastoma. This suggests a role of BMI-1 in retinoblastoma 
progression; further, it has the potential to be developed as a 
novel diagnostic marker of retinoblastoma. This observation 

is consistently found in other cancers, such as metastatic 
melanoma and cancers of the pancreas, cervix, breast, and 
liver [29,31,32,37-39].

In addition to a role in tumorigenesis, BMI-1 maintains 
cancer (stem) cell identity in leukemia, multiple myeloma, 
breast, lung, and prostate cancer [23,24]. The importance of 
these stem-like cells has been proposed for retinoblastoma 
growth [14,40]. Small populations of retinoblastoma cells 
have been found to express stem cell–associated markers 
SOX2, aldehyde dehydrogenase 1, p63, and ABCG2, and to 
exclude Hoechst dye [15,16]. It is probable that retinoblastoma 
glial cells, which constitute 2 to 3% of cells in tumors, are 
the cancer stem cell population and the origin of tumor cell 
proliferation [41]. These cells express N-MYC and MDM2, 
which suppresses ARF-induced apoptosis and promotes cell 
proliferation cone-specific retinoid X receptor alpha (RXRα) 
signaling [42]. Our finding of elevated BMI-1 expression, 
particularly in undifferentiated retinoblastomas, further 
indicates the self-renewal capacity and extensive prolifera-
tion of these tumor cells. The detection of retinal develop-
ment–related genes, including Nestin, PAX6, Rx, and CHX10 
reveals their multipotency [16]. In our study, the upregula-
tion of CHX10 and Rx in the event of BMI-1 overexpression 
in Y79 cells also indicates BMI-1 involvement in retinal 
development.

In Y79 cells, BMI-1 upregulated cell proliferation 
markers cyclin D1, D2, and PCNA, and inhibited of p14ARF 
and p16INK4. We suggest that Y79 proliferation could be 
controlled by BMI-1 via its regulation of canonical cyclin 
targets and CDK inhibitors. Although there was no signifi-
cant change in cells recruited to the S-phase, the expression 
of BMI-1 substantially reduced Y79 cell apoptosis, probably 
mediated by its abrogation of p14ARF and p16INK4. All 
such effects were reversed by specific BMI-1 knockdown. 

Figure 6. Effect of B lymphoma Mo-MLV insertion 486 region 1 (BMI-1) on multicellular sphere formation of Y79 cells. A: Single 
transfected cells were cultured for 7 days to form multicellular spheres. The number and size of spheres were quantified. In triplicated 
experiments, the mean percentage of spheres having with diameters was indicated. B and C: Cell proliferation assay by BrdU incorporation 
for Y79 cells transfected with BMI-1-HA. B: BMI-1-HA and C: siBmi 1. Scale bar: 100 μm.
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In common with other cancer cells, our findings reveal that 
BMI-1 is important for retinoblastoma cell growth.

In conclusion, we identified significant BMI-1 upregu-
lation in retinoblastomas of low differentiation status and 
invasion to posterior tissues. BMI-1 might be developed as 
a potential diagnostic marker and an important therapeutic 
target for retinoblastoma through specific inhibition of BMI-1 
by small interfering RNAs.
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