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Abstract
High-throughput technologies led to the generation of a wealth of data on regulatory DNA elements in the human genome. However, results 
from disease-driven studies are primarily shared in textual form as scientific articles. Information extraction (IE) algorithms allow this information 
to be (semi-)automatically accessed. Their development, however, is dependent on the availability of annotated corpora. Therefore, we introduce
RegEl (Regulatory Elements), the first freely available corpus annotated with regulatory DNA elements comprising 305 PubMed abstracts for 
a total of 2690 sentences. We focus on enhancers, promoters and transcription factor binding sites. Three annotators worked in two stages, 
achieving an overall 0.73 F1 inter-annotator agreement and 0.46 for regulatory elements. Depending on the entity type, IE baselines reach F1-
scores of 0.48–0.91 for entity detection and 0.71–0.88 for entity normalization. Next, we apply our entity detection models to the entire PubMed 
collection and extract co-occurrences of genes or diseases with regulatory elements. This generates large collections of regulatory elements 
associated with 137 870 unique genes and 7420 diseases, which we make openly available.
Database URL: https://zenodo.org/record/6418451#.YqcLHvexVqg
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Introduction their mutual relationships (see below). Information extrac-
tion (IE) algorithms can (semi-)automatically extract valuable In recent years, it has become increasingly clear that alter-
new knowledge to be incorporated into existing resources cen-ations in regulatory DNA are associated with disease (1, 2). 
tral to research. High-quality annotated corpora are of utmost The advent of new sequencing technologies induced a sharp 
importance for the development of IE systems. To the best of increase in the number of studies delivering data on regulatory 
our knowledge, no other corpora for regulatory elements are elements and features, especially on: enhancers, promoters 
available. Therefore, here we present the RegEl (Regulatoryand transcription factor binding sites (TFBSs). The studies can 
Elements) corpus, the first annotated corpus with mentions of be divided into two main categories: (i) large-scale hypothesis-
regulatory DNA elements.free and genome-wide approaches (e.g. FANTOM (3) or 

ENCODE To create the corpus we selected 305 PubMed abstracts (4)) and (ii) hypothesis- or disease-driven ones. 
While many results of the first category can be accessed as reported in EnDB (11), a literature-curated database of exper-
large web-based databases (5, 6), those of targeted experi- imentally validated enhancers. Three annotators with a back-
ments are primarily shared as text via scientific articles (7). ground in biology/bioinformatics and familiar with the topic 
Systematizing and making this information accessible is cru- of regulatory elements annotated the abstracts in two phases: 
cial to derive or test hypotheses on the molecular basis of a preliminary step to develop the annotation guidelines and 
diseases in cases where deep sequencing has not yet led to a a second for the bulk of the annotation. The final inter-
molecular diagnosis (8, 9). annotator agreement (IAA) for regulatory elements reached 

One of the largest archive of biomedical literature, PubMed a moderately low 0.46 phrase-level F1 score. This prompted 
(https://pubmed.ncbi.nlm.nih.gov/) (10), provides citations us to perform an extensive error analysis, leading to the re-
for more than 33 million articles. However, finding spe- annotation of the entire corpus. The disagreement was mostly 
cific information by querying PubMed, for instance regard- caused by the variety (and vagueness in the worst cases) of 
ing the genes regulated by a specific enhancer, is difficult the expressions describing regulatory elements. Additionally, 
due to the large variability in naming enhancers, genes and normalization, i.e. the process of grounding textual mentions 

mailto:gardasam@informatik.hu-berlin.de
mailto:leser@informatik.hu-berlin.de
https://zenodo.org/record/6418451#.YqcLHvexVqg
https://pubmed.ncbi.nlm.nih.gov/
https://creativecommons.org/licenses/by-nc/4.0/


to a reference ontology (genomic coordinates in this case), 
was feasible only in limited cases. Nevertheless, our corpus 
enables the training of models for large-scale mining of the 
scientific literature. Identified putative mentions can be evalu-
ated by human experts in order to (i) assure their validity and 
(ii) determine further necessary information, a process called 
expert curation (12).

The RegEl corpus (https://zenodo.org/record/5 776 679)
and the code to reproduce our experiments (https://github.
com/reg-el/regel-corpus) are freely available. Furthermore, 
we publicly release the entity detection models trained on 
RegEl, which can be used to annotate arbitrary documents 
(https://huggingface.co/regel-corpus). We also make available 
the annotations computed by these models over >20 million 
PubMed abstracts and their co-occurrences with genes and 
diseases (https://zenodo.org/record/6 418 451). For instance, 
considering articles referencing the gene TP53, we find 1345 
articles that also mention an enhancer, 7.745 with a pro-
moter and 4.272 with a TFBS, at an estimated precision—on 
a random sample—of 0.34, 0.78 and 0.50, respectively.

The rest of the paper is organized as follows. In Section 
‘Materials and methods’ we outline the pipeline for the cre-
ation of the corpus and the biomedical IE models. In Section 
‘Results’ we present the results of the annotation process, the 
corpus statistics and the outcome of the IE experiments. After 
discussing our findings in Section ‘Discussion’ we conclude the 
paper in Section ‘Conclusion’.

Materials and methods
Document selection
Randomly drawing abstracts for annotation from PubMed 
would result in a low fraction of relevant documents. Given 
the fairly recent interest in the non-coding space, we selected 
the initial pool of abstracts from an existing regulatory 
resource, i.e. EnDB (11). EnDB is a recent literature-curated 
database of experimentally validated enhancers. This gener-
ates a certain bias (see Section ‘Entity statistics’), since there 
are more mentions of regulatory elements in this corpus than 
in a randomly drawn sample from PubMed. However, the 
models we learn and provide are still useful as they are capable 
of generalizing to new text and do not simply learn to find a 
regulatory element in every document. In Section ‘Regulatory 
element models: error analysis’ we estimate the drop in preci-
sion that can be expected when applying them to arbitrary 
documents. Another option is to use them on sets of pre-
selected documents, for instance those identified by a query 
enriching for regulatory elements.

Entity annotation
We annotated a total of eight biomedical entities with the 
‘brat’ annotation tool (13): enhancer, promoter, TFBS, tissue, 
gene, disease, species and variant. As common practice, ‘enti-
ties’ denote categories covering all elements to which words 
or phrases, ‘mentions’ from now on, can refer. For instance, 
in the sentence ‘Mismatch repair deficiency is a hallmark of 
Lynch syndrome’, ‘Lynch syndrome’ is a mention of the dis-
ease entity. For a complete overview of regulatory elements 
we refer the interested reader to (14). In the following, we 
briefly discuss our annotation strategies and refer the reader 
to the annotation guidelines in Supplementary Material 1 for
details.

Regulatory element entities
We first focus on regulatory elements, as RegEl is the first cor-
pus to annotate such entities. Promoters are DNA sequences 
located in the 5’ region of genes near the transcription start 
site (TSS). Binding of a transcription factor (TF) to a gene pro-
moter is required for transcription. Enhancers can be located 
thousands of base pairs away from the promoter, but they 
form DNA loops that bring them closer to the promoter 
region. TFs bound to the enhancer can interact with those 
bound to the promoter and hence regulate gene expression. 
Because the binding of TFs is required to activate promoters 
and enhancers, we include binding sites (TFBSs) as well in our 
annotation.

Regulatory elements are an active area of research, thus 
codifying the instructions to annotate these entities is non-
trivial. Mentions of enhancers and promoters are often in the 
form ‘X enhancer/promoter’ where X is the name of a gene, 
e.g. ‘Pdx-1 gene promoter’. We annotated any additional text 
that further defines the element, e.g. its location (‘-6.4 kb rel-
ative to the transcriptional start site’) or the tissue in which 
it is active (‘arcuate nucleus-specific’). If the additional infor-
mation is in itself a mention (e.g. a gene or a tissue), this is 
annotated as well with its corresponding entity, meaning that 
RegEl contains nested annotations.

We also accepted elements described to have an enhancer 
or promoter ‘function’/‘activity’, e.g. ‘enhancer function for 
HRE1’ as they may still be indicative of a regulatory DNA 
sequence. In a preliminary phase, for the TFBS entity we devel-
oped a list of trigger words ([binding site, motif, response 
element, consensus sequence]) which, in combination with a 
TF, might signal a valid mention. References to ‘binding sites’ 
(plural) were admitted too, since they are motifs that can be 
identified across locations, i.e. they are specific to a TF or a 
family of TFs.

We accepted only those mentions to which, in principle, it 
would be possible to assign genomic coordinates, thus exclud-
ing the frequent cases where regulatory elements are dis-
cussed as a category, as opposed to a specific DNA sequence, 
e.g. ‘Enhancers can contact a rhythmic promoter […]’. We 
did however annotate entities referring to multiple regions, 
e.g. ‘Igkappa gene enhancers’, since, hypothesizing a perfect 
knowledge of the genome, it would be possible to enumerate 
all the enhancer regions of the given gene.

Other entities
As they govern the spatiotemporal expressions of genes, activ-
ity of regulatory elements is highly tissue-specific (4). There-
fore, information on where an element is active can be a 
relevant joint criterion for search. In the annotation set, we 
include a unique entity, tissue, covering any mention of organs 
(e.g. ‘liver’) and cell lines (e.g. ‘Pt-K2 cell’).

We also considered four entities found in other cor-
pora (15, 16), namely: gene, disease, species and variant. We 
based the initial annotation guidelines for the gene entity on 
those created for the BioCreative V GPRO corpus (17) and 
on those of tmVar (18) for variant. For disease and species we 
relied instead on the prior knowledge of the annotators. Nev-
ertheless, we refined the guidelines for all entities according to 
the cases encountered during annotation.

Under the gene entity, we aggregated official gene names 
and their abbreviations/variations (e.g. ‘IL6’), proteins and 
enzymes (e.g. ‘ferrodoxin reductase’) but excluded gene 
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groups and complexes (e.g. ‘NF𝜅B’). We include as well 
transcription factors (e.g. ‘STAT5’), but do not handle mul-
timeric TFs and co-factors as standard text mining models 
for genes and gene-related entities lack the sophistication to 
account for these specific cases.

We annotated any medical condition as disease and any 
taxonomic rank as species. For variants we included: dbSNP 
identifiers, notations in Human Genome Variation Society 
(HGVS) format (e.g. ‘111:987654G>A’) or the distance from 
the start ATG (e.g. ‘c.-390delA’) where the transcript ID was 
available. As common practice (19), we pre-annotated all doc-
uments with genes, diseases, variants and species with anno-
tations provided by PubTator (20) and asked the annotators 
to confirm their correctness or amend them when necessary.

Entity normalization
During annotation we performed mention normalization. 
We linked genes to National Center for Biotechnology 
Information (NCBI) Gene (21) and species to NCBI
Taxonomy (22). We normalized variants to dbSNP (23)
whenever possible, otherwise we used the VCF (https://en.wiki
pedia.org/wiki/Variant_Call_Format) notation. We chose the 
Brenda Tissue Ontology (BTO) (24) to normalize the tissue 
entity. Finally, we mapped diseases to MONDO (25), which 
is a unified terminology also defining equivalence relations 
between diseases from different resources.

Identifying genomic coordinates of regulatory elements
Normalization of enhancers, promoters and TFBSs is much 
more involved than for the other entities, because for 
these types of regulatory elements neither a standard nam-
ing convention nor an acknowledged reference database 
exists. Therefore, we targeted coordinates of the respective 
genomic region as identifying information, since this allowed 
to find same or overlapping elements in different publica-
tions. Specifically, we used the BED format (https://en.wiki
pedia.org/wiki/BED_(file_format)), a standard text file format 
used to store genomic regions as coordinates.

Because EnDB reports the genomic coordinates of the 
described enhancers for each curated publication, we eased 
the grounding process by presenting these coordinates to the 
annotators. For validation, annotators were allowed to use 
also external resources, such as NCBI Gene. However, to 
judge extraction quality based exclusively on abstracts, anno-
tators were not allowed to use the full text article or perform 
searches in the literature. If a coordinate could be confirmed, 
this was marked specifically during annotation.

However, such a normalization was successful only for 
a small fraction of regulatory elements (see Section ‘Entity 
statistics’), because most of the articles do not report coor-
dinates in the abstract. References to a location are almost 
always only relative to another entity, such as in ‘region -4701 
to -7501 bp upstream of IGFBP-1’, and often vague, e.g. ‘6-kb 
promoter region upstream of the distal TSS’ or ‘enhancer 
region 17 kb upstream of the Col1a2 gene TSS’. An addi-
tional challenge is the frequent lack of an explicit reference 
to the genome assembly used in the study. These issues are 
in line with what is reported by authors of literature-curated 
databases of regulatory elements (7, 11), even when reviewing 
full text articles.

Therefore, we suggest that it is of high importance to 
establish a standardized naming convention and a reference 

database for general regulatory elements. Nonetheless, future 
versions of our corpus will most likely switch to a more flex-
ible representation of grounding information for these types 
of entities.

Annotation process
The annotation process was supervised by an annotation 
leader, who was in charge of preparing documents for annota-
tion, developing annotation guidelines and organizing conflict 
resolution but did not perform any annotation. Overall, three 
annotators with a background in biology/bioinformatics and 
familiar with the topic of regulatory elements worked at the 
creation of the corpus. The annotation process was split 
into two stages. The first stage consisted of multiple rounds 
where all annotators worked on the same small batches (∼10 
abstracts each). Each round was followed by a disagreement 
analysis with the annotation leader. The aim of this process 
was to iteratively refine the annotation guidelines. It also 
allowed the annotators to gain experience with the ‘brat’ 
annotation tool used in the project. This phase initially started 
with two annotators who worked for three rounds. A third 
annotator joined the team and after two more rounds we 
achieved the desired overall agreement (before conflict reso-
lution) of 0.75 phrase-level F1 score (see Section ‘Annotator 
agreement’ for more detailed numbers). 

In the second stage we performed the bulk of the annota-
tion. Each annotator was assigned a set of 90 documents, of 
which 15 were shared across sets. The overall IAA remained 
stable: 0.73 at the phrase level. However, we noted a sig-
nificant decrease for the regulatory element entities, from an 
average phrase-level ∼60 F1 in the first stage to 0.46. The 
drop is to be attributed to the high variety of expressions 
encountered during annotation (see Section ‘Regulatory ele-
ment entities’). For this reason, we performed a concluding 
and extensive disagreement analysis in order to identify the 
major causes of differences.

Eventually this led to the re-annotation of all mentions of 
regulatory elements in the entire corpus. The re-annotation 
was performed by the annotation leader in collaboration with 
all annotators. We did not compute the IAA since this is a final 
post-processing step aimed to ensure the highest level possible 
of consistency. Figure 1 depicts an overview of the annotation 
process.

Baseline methods for information extraction
We trained or evaluated models for in-corpus named entity 
recognition (NER, see Section ‘Named entity recognition’) 
and named entity normalization (NEN, see Section ‘Named 
entity normalization’) for all entities in the corpus to judge 
upon the expected quality of performing IE for regulatory ele-
ments. Furthermore, we applied some of these models over all 
PubMed abstracts and manually evaluated their precision on 
a randomly sampled set of abstracts (see Section ‘Large-scale 
co-occurrence analysis’). In Table 1 we report an overview of 
the software used in each experiment. Unless stated otherwise, 
we downloaded annotations generated by the tools via the 
PubTator API (https://www.ncbi.nlm.nih.gov/research/pubta-
tor/api.html).

Named entity recognition
For the NER task (also known as entity detection) we used 
HunFlair (15), a state-of-the-art tagger for biomedical texts. 
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Figure 1. Overview of the annotation process. In each phase we denote how many documents were annotated and how many were shared across 
annotators. The error analysis is supervised by the annotation leader.

Table 1. Overview of the different software used for each entity and exper-
iment: NER, NEN and co-occurrence analysis (COO). † NER only ‡ both 
NER and NEN.

NER NEN COO

Enhancer HunFlair – HunFlair†
Promoter HunFlair – HunFlair†
TFBS HunFlair – HunFlair†
Tissue HunFlair BioSyn –
Disease HunFlair BioSyn DNorm‡
Gene HunFlair GNormPlus GNormPlus‡
Species HunFlair SR4GN –
Variant tmVar tmVar –

The basic model is a tagger equipped with embeddings pre-
trained on PubMed and full texts from PubMed Central 
(PMC) (https://www.ncbi.nlm.nih.gov/pmc/). We used this 
model to train the taggers for the regulatory element entities. 
HunFlair also offers taggers pre-trained on already existing 
corpora for the following entities: gene, disease and species. 
For these entities we report the performance both with and 
without fine-tuning on RegEl.

For the evaluation, we used a 5-fold cross-validation proto-
col. To mimic the real-word use case in which taggers annotate 
never-seen documents, each fold comprises 244 abstracts for 
training and 61 abstracts for testing. In each run, a model 
was trained for a maximum of 50 epochs with mini-batches 
of size 32 and an initial learning rate of 0.1. The mod-
els were trained with stochastic gradient descent, and the 
learning rate was halved if the training loss did not decrease 
for three consecutive epochs. We used the original HunFlair 
implementation (https://github.com/flairNLP/flair/blob/mas-
ter/resources/docs/HUNFLAIR.md). The only exception is the 
variant entity, for which we used tmVar (18) since there is no 
available HunFlair model for this entity and the amount of 
training examples is limited (55 sentences).

Named entity normalization
NEN was performed with the following tools: a recently
updated version of GNormPlus (19, 26) for genes, SR4GN
(27) for species and tmVar for variants. These tools do not 
allow the use of pre-computed mentions (e.g. those extracted 
by HunFlair) but rely on an integrated entity detection com-
ponent.

As there are no readily available tools to link disease 
and tissue mentions to MONDO and BTO, respectively, 
we employed a current state-of-the-art method, namely 
BioSyn (28). This is a dense retrieval model based on 
BioBERT (29), a language model pre-trained on PubMed and 
PMC. For training, we used hyper-parameters as specified by 
the authors. The models were trained with Adam (30) for 10 
epochs with a learning rate of 1−5 and mini-batches of size 
16. We used the implementation made publicly available by 
the BioSyn authors (https://github.com/dmis-lab/BioSyn). The 
same folds used in the NER experiment were used for training 
and evaluation.

Large-scale co-occurrence analysis
The ultimate goal of IE for regulatory elements is their auto-
matic and precise identification at PubMed scale, preferably 
together with their regulated genes and the diseases they 
influence. Toward this goal, we applied our new models 
for regulatory elements to all abstracts in PubMed and per-
formed a co-occurrence analysis with genes and diseases. 
This experiment has two purposes. Firstly, we estimate the 
expected precision of NER based on the manual evaluation 
of a randomly drawn sample of identified regulatory elements. 
Secondly, we provide the list of co-occurrences (gene/disease 
with regulatory elements) together with the sentences and 
PubMed identifiers for any interested researcher. These lists 
may help to quickly find enhancers or promoters of genes 
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and/or associated diseases. They could also serve as a basis 
for the manual curation of databases of regulatory elements.

We first downloaded normalized mentions of genes 
and diseases from the PubTator FTP server (ftp://ftp.ncbi.
nlm.nih.gov/pub/lu/PubTatorCentral). These annotations are 
generated with GNormPlus for genes (normalized to NCBI 
Gene) and DNorm for diseases (MeSH). We relied on Pub-
Tator annotations because running our HunFlair (for NER) 
and BioSyn (for NEN) models for genes and diseases over the 
entire PubMed collection would have been prohibitively time-
consuming. We then selected all abstracts containing at least 
one mention of a gene or a disease and split the abstracts into 
sentences with SciSpacy (31).

For each regulatory element we trained a HunFlair model 
on the entire RegEl corpus for a maximum of 100 epochs and 
used it to annotate these abstracts. For quality control, we 
randomly sampled 50 mentions (and sentences in which they 
appear) for each regulatory element, each one coming from a 
different abstract in order to maximize the sample coverage. 
We manually verified their correctness and used these numbers 
to estimate the model’s precision.

Results
We first report the estimated quality (Section ‘Annotator 
agreement’) and frequencies (Section ‘Entity statistics’) of 
annotated entities in RegEl. Next, we highlight the perfor-
mance of our different models for NER and NEN in Section 
‘Named Entity Recognition’ and Section ‘Named entity nor-
malization’, respectively. In Section ‘Co-occurrences of genes 
and diseases with regulatory elements’ we eventually describe 
the result of our co-occurrence experiment.

Annotator agreement
The IAA assesses the consistency and quality of the annota-
tions in the corpus. The scores reported in this section are the 
ones computed with the set of 15 shared abstracts processed 
during the second phase of the annotation before conflict res-
olution (see Section ‘Annotation process’). We consider this to 
be the effective IAA, since the corpus re-annotation (Phase 3 
in Figure 1) was a post-processing collaborative effort of 
annotators and annotation leader.

Table 2 shows that annotators achieved an overall 0.73 
(±0.03) and 0.75 (±0.03) F1 at the phrase and token level 
respectively, representing a substantial agreement. However, 
if we take into account exclusively the regulatory elements, 
IAA drops to a comparably low 0.46 at the phrase level and 
0.60 at the token level. The gap between the two, up to ∼16 
percentage points (pp) for promoters, suggests that overall the 
disagreement is not caused by completely misplaced annota-
tions, but by the different choices in regard to which words 
to include. This also explains the high standard deviation pre-
sented at the phrase level by these entities: up to 16 pp for 
TFBS. We attribute this to the great variety of expressions used 
to denote regulatory elements, which we were able to codify 
in higher depth only after a revision of the annotation guide-
lines (see Section ‘Annotation process’). The perfect agreement 
on the variant entity is caused by all mentions being dbSNP 
identifiers.

Normalization scores were computed with the subset of 
mentions that were identified and normalized by all annota-
tors. We omit scores for the regulatory element entities since it 

Table 2. Phrase- and token-level IAA measured as micro-averaged F1-score 
for each entity. We distinguish between entities for which pre-annotations 
were used (‘Pre-annotated’, lower half) and those annotated from scratch 
(‘New’, upper half).

Phrase level Token level Norm.

New
Enhancer 0.40 (±0.11) 0.52 (±0.09) –
Promoter 0.50 (±0.10) 0.66 (±0.07) –
TFBS 0.49 (±0.16) 0.44 (±0.18) –
Tissue 0.67 (±0.01) 0.80 (±0.03) 0.70 (±0.01)

Pre-annotated
Gene 0.85 (±0.03) 0.88 (±0.02) 0.95 (±0.02)
Disease 0.82 (±0.08) 0.82 (±0.06) –
Species 0.75 (±0.08) 0.77 (±0.06) 0.97 (±0.01)
Variant 1.0 (–) 1.0 (–) 1.0
Total: regulatory 

elements
0.46 (±0.12) 0.60 (±0.09) –

Total: all 0.73 (±0.03) 0.75 (±0.03) –

Table 3. For each entity we report: total number of mentions, how many 
are unique surface forms and the length in number of characters (including 
white spaces). We include the ratio of normalized mentions and the cor-
responding numbers of unique entities after linking. Highest and second 
highest values are in bold and underlined, respectively.

Annotations Unique
Mean 
length Norm. (%) Entities

Regulatory elements
Enhancer 809 508 29.28 6% (53) 14
Promoter 246 146 18.66 4% (11) 3
TFBS 206 160 33.29 0% (0) 0
Total 1261 814 – 5% (64) 17

Other
Tissue 1616 740 15.15 88% (1433) 308
Gene 4125 1002 9.88 100% (4125) 691
Disease 700 293 16.09 94% (661) 147
Species 587 59 8.51 100% (587) 26
Variant 80 39 9.26 95% (76) 34

turned out to be unfeasible. Disease scores are missing because 
this entity was normalized by a single annotator, as we were 
able to determine a suitable ontology only at the end of the 
annotation process.

Entity statistics
The EnDB database contains information stemming from 419 
documents, of which we annotated 305: totaling 2690 sen-
tences. Notably, 55 annotated abstracts contain no valid 
mention of regulatory elements according to the definitions 
of our annotation guidelines. This is due to the fact that 
for building EnDB, full-text articles were reviewed, while we 
only considered abstracts. Importantly, the 55 abstracts with-
out regulatory elements compose a significant set of negative 
examples (∼18% of the corpus), making RegEl more balanced 
for training.

The prevalent entity type is gene with 4125 men-
tions. However, in Table 3 we see that the difference in 
unique mentionsbetween genes and regulatory elements is 
much smaller (814 vs 1002) than the absolute one (4125 
vs 1261). Thus, the predominance is explained by the fact 
that often the same gene is mentioned multiple times in one 
abstract, whereas mentions of regulatory elements are usu-
ally unique. We note that the latter tend to be considerably 
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Table 4. Performance of the HunFlair models for all entities except variants, 
for which we used tmVar. HunFlair results are averaged over 5-folds with 
standard deviation in brackets (except for the variant entity). The ‘zero-shot’ 
rows show the result of the entity-specific pre-trained HunFlair models 
without additional training on the corpus folds. We do not include here 
the performance of tools for which the NER and NEN steps cannot be 
separated, which would make a comparison unfair. See Table 5 for their 
joint results.

Precision Recall F1

HunFlair/Enhancer 0.73 (±0.05) 0.63 (±0.04) 0.68 (±0.03)
HunFlair/Promoter 0.83 (±0.06) 0.78 (±0.09) 0.80 (±0.04)
HunFlair/TFBS 0.59 (±0.06) 0.41 (±0.12) 0.48 (±0.09)
HunFlair/Tissue 0.81 (±0.02) 0.80 (±0.01) 0.80 (±0.01)
HunFlair/Disease 0.88 (±0.02) 0.83 (±0.04) 0.85 (±0.03)
zero-shot 0.60 (–) 0.77 (–) 0.67 (–)
HunFlair/Gene 0.91 (±0.01) 0.95 (±0.02) 0.93 (±0.01)
zero-shot 0.65 (–) 0.74 (–) 0.69 (–)
HunFlair/Species 0.92 (±0.02) 0.91 (±0.06) 0.92 (±0.04)
zero-shot 0.82 (–) 0.88 (–) 0.85 (–)
tmVar/Variant 0.90 (–) 0.89 (–) 0.90 (–)

longer than all other entities. This reflects the fact that no 
naming conventions exist yet, leading to the usage of descrip-
tive periphrases, e.g.: ‘intronic enhancer locating between 
+1719bp and +2453bp from the TSS of the gene’.

We note that it was possible to identify genomic coor-
dinates in the abstract for only 5% of regulatory elements. 
As reported in Section ‘Entity normalization’ this is due to
(i) limiting the annotation to abstracts and (ii) location infor-
mation often being insufficiently precise. While all mentions 
of genes and species were successfully normalized, there were 
unresolved mentions for tissue, disease and variant. In case 
of tissues, this was caused by the lack of specific anatomi-
cal parts, e.g. ‘second heart field’ and ‘outflow tract’ or cell 
lines, e.g. ‘V2a precursors’ and ‘ShP51 cells’ in BTO. For dis-
eases, we encountered the problem that general categories 
such as ‘hypoxia’ and ‘smoking-related disease’ are not con-
tained in MONDO. Ambiguous variants as ‘g.17483576C>G’ 
and ‘R482W’ could also not be normalized.

Performance of information extraction baselines
Named Entity Recognition
Table 4 highlights the results of the entity detection (NER) 
experiment. All results are for the HunFlair models except 
the variant entity. We see that the HunFlair models general-
ize quite well for the new entities, especially considering the 
relatively small amount of training data available. The perfor-
mance of regulatory elements models is higher than the final 
IAA, showing that the re-annotation step improved the over-
all consistency of the annotations. The only exception is the 
TFBS model. We hypothesize that this is due to the particularly 
small amount of training data (only 159 sentences) paired 
with the high variety of expressions associated with these 
entities, e.g. ‘octamer sequence 5’-ATGCAAAT-3’ at -10.2 
kb in the hiNOS promoter’ and ‘6-bp cis-element mediating 
BMP2-dependent transcription’.

We observe a considerable drop in F1-score when com-
paring the HunFlair models with and without fine-tuning 
(zero-shot). While for disease and species performances are 
comparable to the one reported in the original HunFlair paper 
(They report 0.65 F1 and 0.76 for the disease and species 
entity, respectively), the expectation for the gene entity is less 

clear-cut. On BioNLP 2013 CG (32) (also used for disease 
and species) they report 0.87 F1, while on the CRAFT cor-
pus (v4.0) (33) they report 0.73 F1. We attribute the lower 
F1 in our corpus to the fact that we excluded gene groups 
and complexes from annotation. This is supported as well by 
the considerable difference between precision (0.65) and recall 
(0.74).

Named entity normalization
Table 5 shows the performance at the mention level of the 
combined NER and NEN systems on the RegEl corpus. Mod-
els for genes, species and variants perform a joint NER+NEN 
analysis. All systems but BioSyn have the NER component 
integrated. Therefore, for the tissue and disease entities we 
used the mentions extracted by the fine-tuned HunFlair mod-
els. The BioSyn models were trained and evaluated with the 
same 5-folds used in the NER experiments.

Our evaluation shows that the off-the-shelf NEN tools 
are relatively robust when applied to unseen documents, all 
achieving an F1-score above 0.80. The BioSyn models per-
form worse, which is expected, since they were trained only 
on the four folds of the RegEl corpus.

Co-occurrences of genes and diseases with 
regulatory elements
At the time of our analysis (November 2021), there were 
20 850 853 PubMed abstracts pre-annotated by PubTator 
with at least a gene or a disease mention. After analyzing 
them with our HunFlair models, we found that 347 111 also 
contain a mention of a regulatory element.

These abstracts present >3.3M mentions of genes (∼138K 
unique identifiers) and >2M mentions of diseases (∼7K unique 
identifiers). Table 6 shows that although the number of gene 
identifiers is twice the number of diseases, the ratio of regula-
tory elements per gene can be as much as 10 times smaller than 
the one of diseases. This is due to the fact that many diseases 

Table 5. Performance of baselines on the NEN task. Results for the tissue 
and disease entity are averaged over 5-folds.

Precision Recall F1

GNormPlus/Gene 0.88 (–) 0.81 (–) 0.85 (–)
SR4GN/Species 0.85 (–) 0.86 (–) 0.86 (–)
tmVar/Variant 0.84 (–) 0.82 (–) 0.83 (–)
BioSyn/Tissue 0.80 (±0.04) 0.67 (±0.05) 0.73 (±0.04)
BioSyn/Disease 0.71 (±0.05) 0.69 (±0.04) 0.70 (±0.01)

Table 6. For each regulatory element we list the number of abstracts 
containing at least one mention along with their counts. We report the 
average number of mentions associated with a gene and a disease identi-
fier. For instance, on average, 4.16 enhancer mentions are associated with 
a gene (Coo. G) and 53.31 with a disease (Coo. D). We include as well 
the precision estimated on a random sample for each type of regulatory 
element

Annotations Entities Abstracts Coo. G Coo. D Precision

Enhancer 96 490 – 68 265 4.16 53.31 0.34
Promoter 270 040 – 156 106 13.37 146.73 0.78
TFBS 245 342 – 161 864 10.3 92.22 0.50
Gene 3 307 582 137 870 281 931 – – –
Disease 2 034 179 7420 248 201 – – –



Table 7. Gene names (with NCBI Gene identifiers in parentheses) pre-
senting the highest number of co-occurrences with regulatory elements 
(number of publications after semi-colon). For instance, in our annotated 
collection the gene NFKB1 with NCBI Gene identifier ‘4790’ is co-occurring 
with an enhancer mention in 1170 publications.

Enhancer Promoter TFBS

1 TP53 (7157): 1345 TP53 (7157): 7714 TP53 (7157): 4272
2 MYC (4609): 1201 TNF (7124): 5994 F2 (2147): 4013
3 NFKB1 (4790): 

1170
NFKB1 (4790): 

5597
NFKB1 (4790): 

3484
4 GAPDH (2597): 

1158
GAPDH (2597): 

5459
MYC (4609): 3417

5 TNF (7124): 1131 MYC (4609): 5132 LXN (56 925): 
3371

6 AKT1 (207): 955 AKT1 (207): 4252 TNF (7124): 3011
7 IL6 (3569): 800 POTEF (728 378): 

4024
RNU12-2P 

(26 823): 2706
8 INS (3630): 783 IL6 (3569): 3837 SNORA75 

(654 321): 2695
9 EZH2 (2146): 781 SDHC (6391): 

3550
SNORD33 

(26 818): 2692
10 CTNNB1 (1499): 

767
TGFB1 (7040): 

3409
SNORD22 (9304): 

2691

are general categories such as ‘Infections’ (D007239), which 
quickly gather hundreds of co-occurrences.

In Tables 7 and 8, respectively, we report the top 10 genes 
and diseases ranked by the number of publications with co-
occurring regulatory elements. For instance, we find 1345 
publications in which both TP53 and an enhancer appear, or 
12292 (9933) papers where promoters co-occur with breast 
cancer (colorectal cancer). Notably, both tables are dominated 
by cancer-related entities, e.g.: (i) ‘Neoplasm’ and its subcate-
gories for diseases and (ii) known cancer genes such as ‘TP53’, 
‘MYC’ or ‘TNF’ for genes. Also note that in RegEl ∼40% 
of the disease entities are cancer-related although EnDB did 
not specifically filter for diseases when collecting publica-
tions. This prevalence reflects a publication bias, as there is 
a particularly large amount of literature on cancer. 

Entities ‘Anodontia’ and ‘Protein S Deficiency’ in the TFBS 
column strike as outliers when comparing their level of gran-
ularity with regard to the rest of the entries. We find that this 
is due to the joint false positives of the TFBS and disease entity 
detection models: the first is prone to tag chemical formu-
las (see below) while the second, in publications describing 
chemicals, annotates as disease expressions as ‘N atoms’ or 
‘H atoms’.

Regulatory element models: error analysis
For each regulatory element entity we performed a quality 
control of the NER models on a random sample of 50 men-
tions and the corresponding sentences: each from a different 
abstract. We manually examined this sample and computed 
their precision. While promoters achieve a relatively high 
0.78, TFBSs and enhancers reach only 0.5 and 0.34, respec-
tively. For each regulatory element we report examples of 
correct mentions and demonstrative examples for the major 
sources of error (Table 9).

We observe that many false positives, especially for the 
enhancer model, are acronyms and abbreviations (see exam-
ples 1.c and 2.e) which our models wrongly detect as 
enhancers. The second major source of error consists of trig-
ger words tagged in the wrong context, e.g. general mentions 

Table 8. Disease names (with MeSH identifiers in parentheses) presenting 
the highest number of co-occurrences with regulatory elements (number 
of publications after semi-colon). For instance, in our annotated collection 
the disease adverse drug reaction (ADR) with MeSH identifier ‘D064420’ 
is co-occurring with a promoter mention in 8560 publications.

Enhancer Promoter TFBS

1 Neoplasms 
(D009369): 
11 276

Neoplasms 
(D009369): 
40 011

Neoplasms 
(D009369): 
25 437

2 Infections 
(D007239): 6316

Breast Neoplasms 
(D001943): 
12 292

Infections 
(D007239): 7676

3 ADR (D064420): 
4247

Infections 
(D007239): 
10 867

ADR (D064420): 
7511

4 Death (D003643): 
3667

Inflammation 
(D007249): 
10 561

Breast Neoplasms 
(D001943): 7352

5 Inflammation 
(D007249): 3124

Colorectal 
Neoplasms 
(D015179): 9933

Anodontia 
(D000848): 6397

6 Breast Neoplasms 
(D001943): 2959

Carcinoma, Hep-
atocellular 
(D006528): 8742

Genetic Dis-
eases, Inborn 
(D030342): 5946

7 Drug Hypersensi-
tivity (D004342): 
2798

ADR (D064420): 
8560

Inflammation 
(D007249): 5892

8 Diabetes Mellitus 
(D003920): 2290

Death (D003643): 
7791

Protein S 
Deficiency 
(D018455): 5836

9 Colorectal 
Neoplasms 
(D015179): 2239

Carcinogenesis 
(D063646): 7279

Colorectal 
Neoplasms 
(D015179): 4504

10 Carcinoma, Hep-
atocellular 
(D006528): 2160

Prostatic 
Neoplasms 
(D011471): 6652

Death (D003643): 
4294

(example 2.c) or multi-word expressions (examples 1.e and 
2.d). Related to trigger words is the erroneous annotation 
of chemical binding sites by the TFBS model (example 3.d). 
Example 3.b shows how our models are capable of generaliza-
tion: the TFBS model correctly tags ‘ERE half-site’ (‘Estrogen 
Receptor Element’) since it was exposed to ‘ARE’ (‘Androgen 
Receptor Element’) during training.

Discussion
We introduce the RegEl corpus, the first corpus providing 
annotations at the mention level of non-coding regulatory 
elements in the genome. The corpus comprises 305 PubMed 
abstracts and covers, besides standard entities like genes and 
diseases, the most well-characterized types of regulatory ele-
ments, i.e. enhancers, promoters and TFBSs. We observe 
that many abstracts mentioning a regulatory element do not 
describe their specific location, which makes their automatic 
normalization unfeasible. Nevertheless, the NER developed 
based on RegEl can quickly guide users to putative mentions 
of regulatory elements, covering a much wider spectrum of 
possible descriptions than retrievable by pure keyword search.

As mentioned in Section ‘Regulatory element entities’ reg-
ulatory elements are typically described in terms of their 
relation to genes, e.g. ‘enhancer region of GENE’. Therefore, 
one option for annotation would be to frame regulatory ele-
ments as ‘relations’, e.g. (region, enhances, gene) as in a ‘event 



Table 9. Examples of mentions of regulatory elements detected by the 
HunFlair models. Sentences marked with a ✓ present a correct mention 
while those marked with a × a wrong one.

Enhancer:

1.a) ✓: A polymorphic enhancer near GREM1 influences bowel 
cancer risk […]

1.b) ✓: Significantly, this enhancer is active specifically in hemogenic 
endothelial cells […]

1.c) ×: The findings also suggest that IES may be an effective strategy 
for the prevention of DTI.

1.d) ×: The results showed that Ei-151 produced at least three kinds
of acylated homoserine lactone.

1.e) ×: The use of an echo enhancer (Levovist) accentuates these 
differences […]

Promoter:
2.a) ✓: A common mutation (G-455→ A) in the promoter region of 

the beta-fibrinogen gene […]
2.b) ✓: […] failure to recruit chromatin remodeling complexes to the 

Ifng gene promoter.
2.c) ×: […] three CXXC domains also suppressed 

unmethylated promoter activities in mammalian cells.
2.d) ×: Luciferase promoter activity and immunocytochemistry of 

nuclear factor-𝜅B (NF-𝜅B) were investigated.
2.e) ×: The 125-day animals were treated with 2A11 on Postnatal Day 

1 (P1), P3 and P6.

TFBS:
3.a) ✓: […] a 267-bp fragment that contains 

putative Sp-1, AP-1, Ets, Stat and other binding sites.
3.b) ✓: Mutation of the ERE half-site in the Hsp 27-derived 

oligonucleotides […]
3.c) ×: In the title compound, 

[Nd(NO(3))(3)(C(18)H(12)N(6))(H(2)O)]⋅2H(2)O, the Nd(3+) ion 
[…]

3.d) ×: […] a construct expressing a Z mutant in zinc-binding site 2
of the RING domain […]

3.e) ×: Proliferation of omega 3 binding sites in the immune organs 
and leg infiltrate of rats […]

extraction’ (34) task. However, we found it more conceptually 
effective to frame them as ‘entities’ since (i) these elements are 
actual regions in the DNA and (ii) we are interested in their 
normalization, i.e. assigning the corresponding genomic coor-
dinates, for which ‘relations’ are less intuitive to use, with 
the only minor drawback of introducing nested annotations 
(e.g. gene within a regulatory element).

The corpus achieves an overall high IAA of 0.73 phrase-
level F1-score. Following common practice (19) we used 
PubTator to all pre-annotated documents with genes, diseases, 
species and variants, which introduces a bias. When consider-
ing only the regulatory element entities, the phrase-level IAA 
drops to 0.46 F1. This shows that correctly and consistently 
identifying still evolving (and yet rather vaguely defined) con-
cepts such as regulatory elements is challenging. However, 
as these entities lack normalization, we consider the token-
level IAA to be the most relevant measure. This reached a 
0.60 F1, with the overall F1 being at 0.75, suggesting that 
the annotators in three-quarters of all cases agreed on core 
text spans. In the final disagreement analysis, we amended all 
incongruities and re-annotated the entire corpus to ensure the 
highest possible level of consistency.

We trained specific models for NER using the pre-trained 
models from the HunFlair library. These fine-tuned mod-
els are capable of achieving surprisingly good performances 

(>0.7 F1) on new entities even with the rather limited data. 
Expanding the current corpus, however, would most likely 
greatly benefit these models, since the variety of expressions 
denoting regulatory elements is currently greatly dispropor-
tionate to the amount of available training examples. The 
effect of this limitation can be observed especially when we 
apply the entity detection models ‘in the wild’, i.e. over 
PubMed, where, as expected, we register a notable drop in 
estimated precision (up to 39 pp for enhancers). However, our 
error analysis (see Section ‘Regulatory element models: error 
analysis’) reveals that a significant amount of errors is caused 
by abbreviations (enhancer) and the overlap with other enti-
ties, specifically chemicals (TFBS). These errors could proba-
bly be reduced significantly by deploying a more sophisticated 
IE pipeline, for instance by using abbreviation resolution tools 
(e.g. Ab3P (35)) and discarding mentions annotated by other 
entity models.

Our co-occurrence analysis at PubMed scale leads to sets of 
regulatory elements co-occurring with thousands of genes and 
diseases, which can be an important foundation for more com-
prehensive investigations. For instance, researchers focusing 
on the impact of regulation in diabetes can inspect a selection 
of ∼2K documents, which could be further filtered with more 
comprehensive IE pipelines. We observe that results of this 
analysis reflect those types of diseases for which regulatory 
elements are known to play a role, namely: (rare) genetic dis-
eases (36) and diabetes (37). This include cancer (38) as well, 
although it might be an artifact caused by the predominance 
of the literature on this type of diseases. Ultimately, the anno-
tated documents we provide can assist the expert curation of 
existing databases on regulatory elements.

Conclusion and Future work
We provide the RegEl corpus, the first biomedical corpus 
annotated with non-coding regulatory DNA elements. The 
corpus can be used to train information extraction models to 
automatically inspect the scientific literature for publications 
on the topic.

Future work should consider the annotation of full text 
articles, in order to broaden the number of mentions with 
linked genomic location. This would open the way to the 
development of systems to automate the normalization of 
regulatory elements. A second direction is the annotation of 
the relation (e.g. effects) between variants in regulatory ele-
ments and gene expression. This would allow the training 
of readily available algorithms to automatically identify this 
information in the literature.
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Funding
Deutsche Forschungsgemeinschaft via the research unit 
‘Beyond the Exome’ (FOR 2841).

Conflict of interest.
There is no conflict of interest.

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baac043#supplementary-data


Author contributions statement
U.L., D.S. and M.S. conceived the study and supervised the 
work. F.L.-G., S.P. and S.H. performed the annotation and 
further refined the annotation guidelines. Material prepara-
tion and information extraction experiments were performed 
by S.G. The first draft of the manuscript was written by 
S.G. All authors reviewed and edited previous versions of the 
manuscript.

References
1. Maurano,M.T., Humbert,R., Rynes,E. et al. (2012) Systematic 

localization of common disease-associated variation in regulatory 
DNA. Science, 337, 1190–1195.

2. Chatterjee,S. and Ahituv,N. (2017) Gene Regulatory Elements, 
Major Drivers of Human Disease. Ann. Rev. Genomics Hum. 
Genet., 18, 45–63.

3. Noguchi,S., Arakawa,T., Fukuda,S. et al. (2017) Fantom5 cage 
profiles of human and mouse samples. Sci. Data, 4, 1–10.

4. ENCODE Project Consortium (2012) An integrated encyclopedia 
of DNA elements in the human genome. Nature, 489, 57–74.

5. Howe,K.L., Achuthan,P., Allen,J. et al. (2021) Ensembl 2021. 
Nucleic Acids Res., 49, D884–D891.

6. Gonzalez,J.N., Zweig,A.S., Speir,M.L. et al. (2021) The UCSC 
Genome Browser database: 2021 update. Nucleic Acids Res., 49, 
D1046–D1057.

7. Zhang,G., Shi,J., Zhu,S. et al. (2018) DiseaseEnhancer: a resource 
of human disease-associated enhancer catalog. Nucleic Acids Res.,
46, D78–D84.

8. Flintoft,L. (2013) Exomes in the clinic. Nat. Rev. Genet., 14, 
824–824.

9. Xuan,J., Ying,Y., Qing,T. et al. (2013) Next-generation sequencing 
in the clinic: Promises and challenges. Cancer lett., 340, 284–295.

10. Wheeler,D.L., Barrett,T., Benson,D.A. et al. (2008) Database 
resources of the National Center for Biotechnology Information. 
Nucleic Acids Res., 36, D13–D21.

11. Bai,X., Shi,S., Ai,B. et al. (2020) ENdb: a manually curated 
database of experimentally supported enhancers for human and 
mouse. Nucleic Acids Res., 48, D51–D57.

12. Neves,M. and Leser,U. (2014) A survey on annotation tools for the 
biomedical literature. Brief. Bioinform., 15, 327–340.

13. Stenetorp,P., Pyysalo,S., Topi ́c,G. et al. (2012) BRAT: a web-
based tool for NLP-assisted text annotation. In: Proceedings of the 
Demonstrations at the 13th Conference of the European Chapter 
of the Association for Computational Linguistics, pp. 102–107.

14. Cooper,G.M. (2000) The Cell: A Molecular Approach. 2nd edn. 
Regulation of Transcription in Eukaryotes.

15. Weber,L., S ̈anger,M., Münchmeyer,J. et al. (2021) HunFlair: an 
easy-to-use tool for state-of-the-art biomedical named entity recog-
nition. Bioinformatics, 37, 2792–2794.

16. Thomas,P., Rockt ̈aschel,T., Hakenberg,J. et al. (2016) SETH 
detects and normalizes genetic variants in text. Bioinformatics, 32, 
2883–2885.

17. Krallinger,M., Rabal,O., Lourenço,A. et al. (2015) Overview of the 
CHEMDNER patents task. pp. 63–75.

18. Wei,C.-H., Phan,L., Feltz,J. et al. (2018) tmVar 2.0: inte-
grating genomic variant information from literature with 
dbSNP and ClinVar for precision medicine. Bioinformatics, 34,
80–87.

19. Islamaj,R., Wei,C.-H., Cissel,D. et al. (2021) NLM-Gene, a richly 
annotated gold standard dataset for gene entities that addresses 
ambiguity and multi-species gene recognition. J. Biomed. Inform.,
118, 103779. 

20. Wei,C.-H., Allot,A., Leaman,R., et al. (2019) Pubtator central: 
automated concept annotation for biomedical full text articles. 
Nucleic Acids Res., 47, W587–W593.

21. Brown,G.R., Hem,V., Katz,K.S. et al. (2015) Gene: a gene-centered 
information resource at NCBI. Nucleic Acids Res., 43, D36–D42.

22. Federhen,S. (2012) The NCBI Taxonomy database. Nucleic Acids 
Res., 40, D136–D143.

23. Sherry,S.T., Ward,M.-H., Kholodov,M. et al. (2001) dbSNP: the 
NCBI database of genetic variation. Nucleic Acids Res., 29, 
308–311.

24. Gremse,M., Chang,A., Schomburg,I. et al. (2011) The BRENDA 
Tissue Ontology (BTO): the first all-integrating ontology of 
all organisms for enzyme sources. Nucleic Acids Res., 39, 
D507–D513.

25. Vasilevsky,N., Essaid,S. and Matentzoglu,N. et al. (2020) Mondo 
Disease Ontology: Harmonizing Disease Concepts Across the 
World. Vol. 2807 CEUR–WS.

26. Wei,C.-H., Kao,H.-Y. and Lu,Z. (2015) GNormPlus: an integra-
tive approach for tagging genes, gene family and protein domain. 
BioMed Res. Internat., Text Mining for Translational Bioinformat-
ics Special Issue.

27. Wei,C.-H., Kao,H.-Y. and Lu,Z. (2012) Sr4gn: a species 
recognition software tool for gene normalization. PLoS One,
7, e38460.

28. Sung,M., Jeon,H., Lee,J. and Kang,J., (2020) Biomedical Entity 
Representations with Synonym Marginalization. In: Proceedings 
of the 58th Annual Meeting of the Association for Computational 
Linguistics, pp. 3641–3650.

29. Lee,J., Yoon,W., Kim,S. et al. (2020) BioBERT: a pre-trained 
biomedical language representation model for biomedical text 
mining. Bioinformatics, 36, 1234–1240.

30. Kingma,D.P. and Jimmy,B. (2017) Adam: A Method for Stochastic 
Optimization. arXiv:1412.6980 [cs].

31. Neumann,M., King,D., Beltagy,I. et al. (2019) ScispaCy: Fast 
and Robust Models for Biomedical Natural Language Processing. 
Association for Computational Linguistics, pp. 319–327.

32. Pyysalo,S., Ohta,T. and Ananiadou,S. (2013) Overview of the can-
cer genetics (cg) task of bionlp shared task 2013. In: Proceedings 
of the BioNLP Shared Task 2013 Workshop. pp. 58–66.

33. Bretonnel Cohen,K., Verspoor,K., Fort,K. et al. (2017) The col-
orado richly annotated full text (craft) corpus: Multi-model anno-
tation in the biomedical domain. In: Handbook of Linguistic 
annotation. Springer, Dordrecht, pp. 1379–1394.

34. Kim,J.-D., Wang,Y. and Yasunori,Y. (2013) The genia event extrac-
tion shared task, 2013 edition-overview. In: Proceedings of the 
BioNLP Shared Task 2013 Workshop, pp. 8–15.

35. Sohn,S., Comeau,D.C., Kim,W., et al. (2008) Abbreviation defini-
tion identification based on automatic precision estimates. BMC 
Bioinform., 9, 1–10.
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