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Appropriate activation of coagulation requires a balance between procoagulant and
anticoagulant proteins in blood. Loss in this balance leads to hemorrhage and
thrombosis. A number of endogenous anticoagulant proteins, such as antithrombin and
heparin cofactor II, are members of the serine protease inhibitor (SERPIN) family. These
SERPIN anticoagulants function by forming irreversible inhibitory complexes with target
coagulation proteases. Mutations in SERPIN family members, such as antithrombin, can
cause hereditary thrombophilias. In addition, low plasma levels of SERPINs have been
associated with an increased risk of thrombosis. Here, we review the biological activities
of the different anticoagulant SERPINs. We further consider the clinical consequences
of SERPIN deficiencies and insights gained from preclinical disease models. Finally, we
discuss the potential utility of engineered SERPINs as novel therapies for the treatment
of thrombotic pathologies.
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INTRODUCTION

Appropriate activation of coagulation is essential in limiting blood loss from a closed circulatory
system. On vascular injury, exposure of sub-endothelial tissue factor (TF) results in activation
of the extrinsic pathway of coagulation through exposure of the TF: factor (F) VIIa complex to
substrate FX resulting in generation of FXa (Figure 1) (1). Coagulation can also be initiated by
activation of the intrinsic pathway through autoactivation of FXII to FXIIa (2, 3). FXIIa generation
is enhanced by reciprocal activation of FXII by plasma kallikrein and its cofactor high molecular
weight kininogen. FXIIa activates FXI to FXIa that itself activates FIX to FIXa. FIXa in complex with
cofactor FVIIIa catalyzes additional FXa generation (Figure 1). FXa, in complex with the essential
cofactor FVa and in the presence of additional cofactors phospholipid and calcium, catalyzes the
conversion of prothrombin zymogen to thrombin. As the terminal coagulation protease thrombin
catalyzes cleavage of soluble fibrinogen to insoluble fibrin leading to the formation of a fibrin
mesh that functions to limit blood loss at the site of injury. Additionally, thrombin facilitates the
formation of a platelet rich plug at the site of vascular injury through direct activation of platelets.

Thrombin generation can be further enhanced through feedback activation of the intrinsic
pathway of coagulation by the extrinsic pathway. The TF:FVIIa complex is an effective activator
of FIX and the TF:FVIIa:FXa ternary complex can activate FVIII (4, 5). In addition, thrombin
can directly activate FXI leading to further intrinsic pathway derived thrombin generation
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(6). Together these feedback pathways can generate significant
quantities of thrombin and contribute to hemostasis in a tissue
specific manner (7).

Inappropriate activation of coagulation underpins a number
of common cardiovascular and hematological diseases. An
impaired ability to mount an effective hemostatic response to
vascular injury can lead to bleeding disorders, such as those
observed in individuals with genetic deficiencies for FVIII
and FIX that cause hemophilia A and B, respectively (8).
Alternatively, excessive activation of coagulation can lead to
thrombotic disorders such as venous thromboembolism (VTE)
that includes both deep vein thrombosis (DVT) and pulmonary
embolism (PE) (1, 2, 9). Excessive activation of coagulation can
be caused by resistance of coagulation factors to inhibition, such
as is observed in Factor V Leiden, (10).

For this reason, the coagulation system must be tightly
regulated. Negative regulation of coagulation is achieved by
anticoagulant proteins. These anticoagulant proteins take the
form of protease inhibitors that together function to inactivate
all proteases of the coagulation system. A number of these
protease inhibitors are members of the serine protease inhibitor
(SERPINs) superfamily (11). Anticoagulant SERPINs include
antithrombin (AT), heparin co-factor II (HCII), protein Z
dependent protease inhibitor (PZPI), protease nexin 1 (PN1)
and C1-inhibitor (C1INH) (Figure 1). The inhibitory activity
of SERPINs is complemented by a number of non-SERPIN
anticoagulants. This includes tissue factor pathway inhibitor,
which is the primary inhibitor of the TF:FVIIa complex (12).
In addition, activated protein C (aPC) and its essential cofactor
protein S function as an important physiological inhibitor of FVa
and FVIIIa (13).

In this review, we introduce the properties of SERPIN family
members that facilitate inhibition of target coagulation proteases.
We further discuss the anticoagulant properties of specific
SERPINs and consider how these properties enable regulation
of hemostatic and thrombotic processes. Particular attention is
paid to congenital SERPIN deficiencies, more broadly referred
to as serpinopathies, that are associated with altered thrombotic
risk (14, 15). Finally, we review advances in the development of
variant SERPIN proteins with therapeutic potential.

STRUCTURE AND FUNCTION OF
ANTICOAGULANT SERINE PROTEASE
INHIBITOR

Nomenclature
Despite the identification of numerous non-inhibitory family
members, the SERPIN superfamily name remains. Members
are subdivided into clades based on phylogenetics. To date,
sixteen clades, named A through P, have been identified with an
additional number of SERPINs remaining as unclassified orphan
members (16, 17). Based on the clade naming system, alpha
1 antitrypsin (A1AT) is the first member of clade A and is
designated SERPINA1 encoded by the SERPINA1 gene (16, 17).
Despite the unifying clade-based nomenclature for SERPINs the

FIGURE 1 | The coagulation cascade and anticoagulant SERPIN targets.
A schematic representation of the coagulation cascade annotated with
anticoagulant SEPRIN targets. For clarity only the top targets of each SERPIN
with second order inhibitory rate constants > 1.0 × 105 are represented.
A comprehensive list of targets and second order inhibitory rate constants is
provided in Table 1.

majority of family member proteins are referred to by the name
given to them on first description. SERPINs with anticoagulant
activities are dispersed throughout the clades (Table 1).

Protein Structure
The initial identification of the SERPIN family of serine protease
inhibitors was based on primary sequence similarities identified
between AT and A1AT (18). Subsequent structural studies
demonstrated that, despite relatively low sequence identity,
relatively high levels of sequence homology enabled SERPINs
to retain a well-preserved sequence of secondary structures
consisting of three β-sheets and 8–9 α-helices that form a
core structural domain (Figure 2) (16). In addition, SERPINs
contain a reactive center loop (RCL) that functions as a critical
determinant for protease specificity (19). As a result of these
structural similarities the SERPIN family of proteins demonstrate
a remarkable degree of structural homology (20). Outside of
this core structural domain SERPINs possess variable N and C
terminal regions that contribute to the wide range of observed
molecular weights. For example, unlike the smaller SERPINs
A1AT and PCI that are 45–55 kDa in weight, C1INH inhibitor
possesses a heavily glycosylated N-terminal extension resulting in
an observed molecular weight of 105 kDa.

The Reactive Center Loop
The RCL is a 16–17 amino acid sequence found toward the
SERPIN C terminus (Figure 2) (21). This sequence is critical to
the inhibitory specificity of a given SERPIN. The RCL contains a
protease recognition sequence that functions as molecular “bait”
for target proteases (19). A target protease binds to the SERPIN
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TABLE 1 | Anticoagulant SERPINs and targets.

Protein Gene Molecular weight
(kDa)

Coagulation targets Rate constant
(M−1 s−1)

References Non-coagulation
targets

Rate constant
(M−1 s−1)

References

A1AT SERPINA1 53 FXa
FXIa

1.3 × 102

1.0 × 102
(207)
(37)

NE
PR3
CG

1.3 × 107

8.1 × 106

4.1 × 105

(208)
(206)
(204)

PCI SERPINA5 46 FIIa
aPC
FXIa
PKa
FXa

2.4 × 106 tm

1.5 × 106 h

7.4 × 105 h

1.8 × 105 h

9.0 × 104 h

(192)
(191)
(191)
(191)
(191)

PZPI SERPINA10 72 FXIa
FIXa
FXa

7.7 × 105 h

5.4 × 105

3.6 × 105 h

(114)
(116)
(114)

AT SERPINC1 58 FIIa
FXa
FIXa
PKa
FXIa

6.1 × 107 h

4.4 × 107 h

9.0 × 106 h

1.9 × 105 h

1.5 × 103 ds

(41)
(41)

(266)
(267)
(37)

HCII SERPIND1 65 FIIa
FXa

4.5 × 108 h

3.0 × 105 h
(83)
(83)

PN1 SERPINE2 50 FIIa
FXIa
FXa

1.2 × 109 h

1.7 × 106 h

3.5 × 105 h

(173)
(174)
(173)

Trypsin
uPA

Plasmin

1.0 × 107 h

9.6 × 105

1.0 × 105 h

(173)
(173)
(173)

C1INH SERPING1 105 PKa
FXIIa
FXIa
FIIa

2.9 × 106

4.3 × 105

2.1 × 105 ds

1.3 × 104

(268)
(269)
(37)

(270)

C1r
C1s

Plasmin
tPA

NR
3.4 × 105

NR
NR

(244)

ds, in the presence of dermatan sulfate; h, in the presence of heparin; tm, in the presence of thrombomodulin. NR, not reported.

through the protease recognition sequence and forms a reversible
Michaelis-Menten complex. The protease recognition sequence
contains a proteolytic cleavage site with RCL amino acid residues
being annotated with P for N terminal residues to the cleavage
site and P’ for C terminal residues to the cleavage site as per
convention (Figure 2) (22). The specificity of a given SERPIN
for a given protease appears to be particularly dependent on
the amino acids present at the P1-P1’ positions but can also be
influenced by the sequence of amino acids in the P4-P4’ positions
(Figure 2) (19). Cleavage of the SERPIN by a target protease
results in the formation of a covalent bond between the protease
and the main chain carbonyl bond of the SERPIN P1 residue (21).
This SERPIN cleavage event results in a marked conformational
change as discussed below.

Conformational Change
SERPINs can exist in either a native metastable or a non-
native hyperstable conformational state (Figure 2). In the native
metastable conformation, the RCL is externalized and free to
interact with target proteases (21). Upon cleavage by a target
protease the RCL inserts into β-sheet A forming the hyperstable
conformation. Insertion of the RCL into the SERPIN body results
in translocation of the target protease interrupting the final
hydrolysis of the bond between SERPIN and protease. Trapping
of the protease in this manner prevents release and results
in the formation of an irreversible SERPIN-protease complex
(21). The speed with which a SERPIN, when cleaved by a
protease, transitions between the native metastable state and
latent hyperstable state is important in determining inhibitory
capacity (19, 21). A slow transition allows for hydrolysis

of the bond between the SERPIN and protease regenerating
functional protease and leaving hyperstable SERPIN. In addition
to inhibiting the proteolytic function of the protease, SERPIN
complex formation also significantly disrupts the structure
of the protease making it more susceptible to proteolytic
degradation (23).

It is also possible for SERPINs to be present in a latent
conformational state. The latent conformational state bears some
structural similarity to the hyperstable state in that the RCL
inserts into β-sheet A but this process is not dependent on
interaction with a target protease (21). Interestingly, AT has been
found to be present as a conformational heterodimer with one
monomer present in the latent state (24).

Glycosaminoglycan Based Activation
The inhibitory capacity of most anticoagulant SERPINs,
including AT, C1INH, HCII PCI, and PN1, is enhanced by
binding to negatively-charged glycosaminoglycans (GAGs),
such as heparin (Figure 3) (25). The inhibitory activity of these
SERPINs can be increased by as much as several thousand-fold by
GAG binding. The ability of the GAG heparin to potentiate the
activity of anticoagulant SERPINs has been leveraged clinically
with unfractionated and low molecular weight formulations used
as thromboprophylactic agents to prevent VTE (26).

Two major mechanisms of GAG mediated rate enhancement
have been proposed. First, GAGs can act as a bridge binding
to both the SERPIN and the protease bringing them together
in a confirmation preferable for the protease to interact with
the RCL. This interaction has been described to occur between
AT and thrombin in the presence of heparin (Figure 2) (27,
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FIGURE 2 | Anticoagulant SERPIN structure and RCL. (A) Crystal structure of
the anticoagulant SERPIN AT in the native conformation with a protease
accessible RCL (B) Crystal structure of AT in the latent conformation in which
the RCL is buried in the protein body and inaccessible to protease. The AT
RCL is colored red, β sheets are colored in blue and α helices in gray.
(C) Crystal structure of AT in complex with thrombin (green) in the presence of
heparin (orange). Images made in PyMol using PDB files 1T1F, 2BEH, and
1TB6. (D) Amino acid residues in anticoagulant SERPINs in the P4-P4’ region
of the RCL.

28). Second, binding of the GAGs to the SERPIN, which may
occur at a distal site, can result in a conformational change
in the SERPIN that makes it more reactive toward the target
protease. GAGs have been found to facilitate this interaction
between HCII and thrombin (29–31). It is likely that GAGs
function as both bridging molecules and allosteric modulators for
a given SERPIN (32). Indeed, the native forms of both AT and
HCII have RCLs that are partially incorporated into the SERPIN
body with GAG binding promoting RCL exposure (31, 33, 34).
GAGs are present on the endothelial surface forming part of the

glycocalyx. Binding of SERPINs to GAGs facilitates localization
of these inhibitors to the vessel surface and may help prevent
inappropriate intravascular coagulation. At sites of vessel injury
where endothelial bound GAGs are not present activation of
coagulation is allowed to continue to form a hemostatic plug.
This property of SERPINs may be of particular interest when
considering the use of these inhibitors as therapeutic agents.

ANTITHROMBIN

Biological Properties
AT is a 58 kDa serine protease inhibitor encoded by the
SERPINC1 gene. AT is present in plasma at a concentration
of approximately 120 µg/ml with a circulating half-life of
roughly 3 days. AT functions as a major endogenous inhibitor
of thrombin and FXa but also inhibits FIXa, FXIa, FXIIa,
and plasma kallikrein (Table 1) (35–41). The ability of AT to
inhibit target proteases is dramatically enhanced (2,000–4,000
times) in the presence of heparin (42–44). Interestingly, the
GAG heparan sulfate appears to be a much more effective
potentiator of AT activity than others, such as dermatan sulfate
and chondroitin sulfate (45). This is likely due to the fact
that heparin and heparan sulfate contain a specific sulfated
pentasaccharide (46–48). The RCL of native AT was shown
to be partially incorporated into the SERPIN body limiting
interaction with target proteases (33, 34). Critically, binding of
the specific heparin pentasaccharide induced a confirmational
change in native AT expelling the RCL from the SERPIN body
providing accessibility to target proteases (49, 50). The altered
presentation of the AT reactive center loop may underpin the
enhanced inhibitory activity observed in the presence of heparin.
As discussed earlier native and latent AT can form heterodimers
(24, 33). Formation of heterodimers was found to reduce the
thrombin inhibitory capacity of AT (24). It has been proposed
that some AT variants associated with VTE, that retain significant
activity against thrombin, may have an increased tendency to
be present in the latent conformation and may disrupt the
inhibitory capacity of native AT through heterodimer formation
(24, 51, 52).

Clinical Phenotypes
Congenital deficiency for AT is relatively common in the general
population with an estimated prevalence of between 1:500 and
1:2,000 (53, 54). To date more than 200 mutations in the
SERPINC1 gene have been identified that cause AT deficiency
(55). Mutations in the SERPINC1 gene can lead to reduced
levels of AT, causing type I AT deficiency, or to expression
of AT with reduced anticoagulant activity, causing type II AT
deficiency (56). Type II AT deficiency can be further divided into
additional subtypes: type IIa caused by mutations in the thrombin
binding site, type IIb caused by mutations in the heparin binding
site or type IIc in which mutations near the reactive center
loop have pleiotropic effects on both heparin and thrombin
interactions (56). Interestingly, a SERPINC1 variant causing
type II AT deficiency has been shown to induce polymerization
of AT in the plasma (57). This mechanism is distinct from
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FIGURE 3 | Source and site of activity of anticoagulant SERPINs. Anticoagulant SERPINs AT, HCII, PZPI, C1INH, and PCI are present in the plasma whereas PN1 is
stored in platelet alpha granules where it can be released on platelet activation. Anticoagulant SERPINs bind to glycosaminoglycans (GAGs) or protein cofactors on
the endothelial surface that potentiate inhibition of target proteases. Created with BioRender.com.

other SERPIN family variants described that destabilize protein
structure and cause intracellular aggregation and retention. Type
II AT deficiencies are much more common in the general
population than type I deficiencies (58).

Between 1 and 2% of all VTE events are associated with AT
deficiency (59, 60). Strikingly, individuals with AT deficiency
have a 50% chance of suffering a VTE by the age of 50 (61,
62). Consistent with this, individuals with AT deficiency have
a markedly increased risk of a first VTE compared to controls
(relative risk 8.1) (Table 2) (61). Further, a number of studies have
reported an increase in the rate of VTE recurrence in individuals
with overt (< 70% normal AT levels) deficiency (hazard ratios
1.9–5.9) (63–65). On presenting with a first proximal DVT
event individuals with AT deficiency had an increased risk of
symptomatic PE (relative risk 2.4) (60). Interestingly, individuals
with mild AT deficiency (70–80% of normal) also have an
increased risk of venous thromboembolism recurrence (hazard
ratio 3.9) (64). The robustness of this observation is unclear,
however, with a subsequent study finding a weaker not significant
association (65). AT deficiency appears to be associated with a
modestly increased risk of arterial thrombosis (66, 67). Further,
low plasma levels of AT were found to be associated with a
significantly increased risk of arterial thrombotic events (68).
Additional studies are warranted to determine the effect of AT
deficiency on risk of arterial thrombosis. Importantly, human
purified plasma-derived AT products with elimination half-
lives of 2–3 days are used for thromboprophylactic replacement
therapy in patients with AT deficiency undergoing surgical
procedures (69).

AT is a negative acute phase reactant, being depleted
under inflammatory conditions, that is also thought to
have important anti-inflammatory functions (70). In the
inflammatory setting of sepsis patients that did not survive
had significantly lower plasma levels of AT than those
that survived (71). Consistent with the anti-inflammatory
effects of AT, treatment of sepsis patients with exogenous
AT significantly reduced plasma levels of interleukin 6 and
c reactive protein (72). Given the proinflammatory activities
of AT targets FXa and thrombin it is likely that the anti-
inflammatory effects of AT are secondary to inhibition of
FXa (70).

Preclinical Phenotypes
Attempts have been made to generate AT deficient mice
(73). Complete deficiency for AT was found to result in
embryonic lethality at mid-gestation (73). AT deficient embryos

TABLE 2 | Associations between SERPIN abnormalities and
atherothrombotic diseases.

Condition Disease association Potential therapies References

AT deficiency ↑ VTE AT replacement (59–65)

HCII deficiency ↑ Atherosclerosis - (96–100)

PZPI deficiency ↑ VTE - (118–120)

Low plasma C1INH ↑ VTE C1INH replacement (165)

A1AT deficiency ↑ VTE A1AT replacement (219, 220)

A1AT Pittsburgh ↑ Bleeding (222, 226)
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had evidence of intravascular fibrin deposition and extensive
hemorrhage consistent with a consumptive coagulopathy (73).
Interestingly, transgenic mice expressing an AT variant, R48C,
with reduced ability to bind heparin cofactor have also been
generated (74). Embryos homozygous for this variant AT
were present at mid-gestation at the expected frequency (74).
However, reduced peri and post-natal survival was observed
with mice homozygous for the variant AT (74). In addition,
adult mice homozygous for the variant AT had evidence of
spontaneous thrombosis, particularly in the heart and liver
(74). In a complementary approach short interfering RNA
mediated silencing of the SERPINC1 gene in mice resulted in
acute and extensive thrombus formation in the head, limbs
and liver (75). Crossing of AT deficient mice with those
expressing low levels of TF enabled deficient embryos to
persist to late gestation but was not sufficient to generate
viable mice (76). Disruption of AT in zebrafish also resulted
in reduced survival of AT deficient offspring with evidence
of spontaneous thrombosis (77). Surprisingly, AT deficient
larvae demonstrated prolonged occlusion times in a caudal
vein laser injury thrombosis model (77). This was explained
by the presence of hypofibrinogenemia in AT deficient larvae
likely caused by a consumptive coagulopathy (77). These studies
demonstrate that the anticoagulant activity of AT is essential for
appropriate regulation of coagulation in vivo. Further, loss of AT
anticoagulant activity can lead to spontaneous thrombotic events.

In light of the critical anticoagulant activity of AT, inhibition
of this protein has been explored as a potential therapy
for hemophilia (78). FVIII deficient mice that were also
heterozygous for AT had increased thrombin generation and
demonstrated shortened bleeding times in a tail transection
model compared to FVIII deficient mice (79). Short interfering
RNA mediated gene silencing of the SERPINC1 gene was
also found to reduce bleeding in FVIII deficient mice subject
to a saphenous vein transection model (80). SERPINC1 gene
silencing in FVIII deficient mice supported increased platelet
and fibrin accumulation at sites of vascular injury in a cremaster
arteriole laser injury model of thrombosis (80). A single-domain
inhibitory anti-AT antibody has also been developed (81).
FVIII or FIX deficient mice administered an adenoviral vector
expressing the single-domain inhibitory anti-AT antibody had
significantly reduced blood loss in a tail vein transection bleeding
model compared to controls (81). Importantly, this anti-AT
antibody was equally as effective in reducing blood loss in FIX
deficient mice with inhibitory FIX autoantibodies compared to
those without (81). Based on these studies, a SERPINC1 targeting
short interfering RNA is currently being evaluated in patients
with hemophilia A and B (82).

Summary
AT functions as a potent inhibitor of thrombin and FXa.
A significant body of clinical evidence indicates that AT
deficiency is associated with an increased risk of VTE. Consistent
with the essential anticoagulant functions of AT mice deficient for
this SERPIN are not viable. AT inhibitors have shown promise
as prohemostatic therapies in preclinical models of hemophilia
supporting enhanced thrombin generation.

HEPARIN COFACTOR II

Biological Properties
HCII, encoded by the SERPIND1 gene, is a 65 kDa serine
protease inhibitor that serves as a potent and selective inhibitor
of thrombin and to a lesser extent FXa (Table 1) (83). HCII is
present in plasma at a concentration of approximately 80µg/ml
with a circulating half-life of 2–3 days (83, 84). Unlike AT, HCII
is a stronger inhibitor of thrombin and has markedly weaker
activity against FXa (83). As is the case with AT, native HCII is
a poor inhibitor of thrombin owing to the lack of accessibility
of the RCL in this conformation (31). Binding of HCII
to GAGs drives the conformational transformation of native
inactive HCII into the native active form expelling the partially
incorporated RCL and markedly enhancing activity toward target
proteases (31). Unlike AT, that is selectively activated by specific
pentasaccharides present in a small percentage of GAGs, HCII
is less selective and can be activated by a host of GAGs,
including heparan sulfate, chondroitin sulfate, and dermatan
sulfate (85–87).

Clinical Phenotypes
HCII deficiency in humans has been described, with a number
of individuals identified after episodes of arterial or venous
thrombosis (88–92). In two studies patients with a history of
arterial and venous thrombosis were found to have plasma HCII
levels 50% of normal (88, 89). Further, an individual presenting
with multiple episodes of DVT and PE was found to have
a homozygous deficiency for HCII (91). This individual was
also found to have a heterozygous AT deficiency that likely
contributed to the thrombotic phenotype given that another
family member with a homozygous HCII deficiency had no
history of VTE (91). It is possible that additional thrombophilias
are required to reveal the thrombotic phenotype of HCII
deficiency. Indeed, compound heterozygous mutations in HCII
and either factor V or protein C have been reported to result in
thrombotic manifestations (93).

Anecdotal case series-based evidence has led to further
systematic studies aimed at identifying a formal association
between HCII deficiency and risk of thrombosis. In a study of
277 individuals with unexplained VTE 3 cases of HCII deficiency
were identified (94). However, it was determined that HCII
deficiency was equally prevalent in a healthy control population
and thus unlikely to be a major driver of thrombotic risk
(94). In a study of 583 individuals with anticoagulant protein
deficiencies no association between HCII deficiency and VTE was
observed (95). It is important to note, however, that this study
included only 6 individuals with HCII deficiency, of which 4 had
suffered a thrombotic event (95). Owing to the small number of
HCII deficient individuals the study was likely not sufficiently
powered to determine an association between HCII deficiency
and VTE risk (95). Taken together, the available evidence does not
support an association between HCII deficiency and thrombotic
events. This is in contrast to the strong association between
AT deficiency and VTE, suggesting that HCII may be a less
important anticoagulant compared to AT. However, given the
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apparent rarity of HCII deficiency additional larger scale studies
may provide further insights.

The presence of advanced atherosclerotic disease in several
patients with HCII deficiency has led to the suggestion
that HCII may have additional vascular protective effects
(90, 96). Despite the lack of an association between plasma
HCII and thrombosis, significant associations between plasma
levels of HCII and atherosclerotic disease have been reported
(Table 2) (97). In one study of 306 elderly individuals
higher plasma levels of HCII were associated with reduced
carotid artery plaque thickness (98). In a second study of
134 sequential patients undergoing percutaneous coronary
intervention high plasma levels of HCII were associated with
a reduced rate of in-stent restenosis (99). Complementary
findings were made in a similar study of 63 patients undergoing
percutaneous interventions for peripheral artery disease where
high plasma levels of HCII were associated with reduced
restenosis (100).

Preclinical Phenotypes
HCII deficient mice have been used to study the anticoagulant
effect of endogenous HCII (101). On first description HCII
deficient mice were generated at the expected frequency
demonstrating normal development and survival (102).
However, in a subsequent study strain dependent embryonic
lethality of homozygous HCII deficient mice was observed
(103). In a carotid artery rose bengal induced thrombosis model
HCII deficient mice were found to have significantly shortened
occlusion times. Importantly, administration of dermatan sulfate
was found to prolong occlusion times in wildtype mice but not
HCII deficient mice (104). Moreover, in contrast to wildtype
HCII protein or HCII variant protein with reduced heparin
binding (K173Q), variant HCII protein with reduced affinity for
dermatan sulfate (R189H) was not able to normalize occlusion
times (105). These findings suggest that dermatan sulfate is
an important activator of HCII in vivo. Consistent with the
anticoagulant activity of HCII, administration of exogenous
purified HCII was found to significantly prolong occlusion
times in a rat femoral artery rose bengal induced thrombosis
model (106).

In addition to anticoagulant functions an important
vascular protective function of HCII has been described (101).
When crossed onto a ApoE deficient background mice with
heterozygous or homozygous HCII deficiency demonstrated
enhanced atherosclerotic lesion development (107, 108).
A number of studies have also shown that heterozygous
or homozygous HCII deficient mice had increased intimal
hyperplasia in arteries subject to cuff or wire-based injury
(103, 107, 108). The mechanism by which HCII deficiency
promotes these pathologic processes has yet to be determined.
Taken together these studies indicate that HCII has important
anticoagulant and vascular protective activity in preclinical
models of atherothrombotic disease (101). Further preclinical
studies are warranted to evaluate if endogenous HCII plays a role
in venous thrombosis.

Summary
HCII is a potent GAG-enhanced inhibitor of thrombin. Available
clinical evidence is limited and does not support an association
between HCII deficiency and VTE. However, in preclinical
studies endogenous and exogenous HCII inhibited arterial
thrombosis. Critically high plasma levels of HCII have been
associated with reduced atherosclerosis, a finding that has been
complemented by preclinical studies.

PROTEIN Z DEPENDENT PROTEASE
INHIBITOR

Biological Properties
PZPI is a 72 kDa serine protease inhibitor encoded by the
SERPINA10 gene. PZPI is present in plasma at a concentration of
approximately 5 µg/ml (109). PZPI, in complex with the vitamin
K-dependent cofactor protein Z (PZ), functions as a selective
inhibitor of FXa, FIXa, and FXIa (Table 1) (110, 111). Lipid
membrane surface and heparin have been identified as additional
co-factors that enhance the inhibitory activity of PZPI toward
FXa and FXIa (111–114). Although it was initially thought that
FXa bound to FVa in the prothrombinase complex was protected
from PZPI mediated inhibition, recent work has demonstrated
that FXa is effectively targeted for inhibition by PZ bound PZPI
(115). Whereas binding of PZ to PZPI was found to markedly
enhance inhibitory activity toward FXa, PZPI efficiently inhibits
FIXa in the absence of PZ (116). In fact, PZ binding has
been found to reduce the efficiency with which PZPI inhibits
FXIa (117).

Clinical Phenotypes
Mutations in the PZPI gene SERPINA10 have been associated
with an increased risk of VTE (Table 2). In one study,
sequencing of the SERPINA10 gene revealed a significantly
increased prevalence of loss of function PZPI variants (R67X,
W303X) in 250 VTE patients compared to a cohort of 250 control
individuals (118). A subsequent study of 1,018 VTE patients
and 1,018 healthy controls confirmed that the presence of the
R67X variant was associated with a significantly increased risk
of VTE (119). Assessment of an additional set of SERPINA10
mutations resulting in nonsense and loss of function PZPI
variants (R88X, W324X, Q384R, F145L) in a cohort of 550
VTE patients and 600 healthy controls found that these variants
were significantly more prevalent in VTE patients (120). It
is important to note that the association between PZPI loss
of function mutations and VTE risk was not confirmed in
other similarly sized independent studies (121–124). It is
possible that the association only holds for specific populations.
The conflicting reports of the association between PZPI and
thrombosis mirror that reported for the cofactor PZ in the
setting of ischemic stroke with both positive and negative
studies reported (125–128). Further population-based studies
are required to more conclusively determine if an association
between PZPI and VTE exists.
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Preclinical Phenotypes
Preclinical studies have demonstrated an important role for PZPI
and the cofactor PZ as regulators of coagulation. Mice deficient
for PZ were generated at the expected frequency. However,
when PZ deficient mice were crossed onto a prothrombotic
homozygous FV Leiden background complete postnatal lethality
was observed (129). A high proportion of FV Leiden embryos
deficient for PZ had evidence of hemorrhage, which was
thought to be secondary to a consumptive coagulopathy, and
intravascular deposition of fibrin (129). Similarly, PZPI deficient
mice were generated at the expected frequency but when crossed
onto a homozygous FV Leiden background demonstrated
complete postnatal lethality (130). When crossed to generate
FV Leiden heterozygotes, deficiency for PZPI, but not PZ,
was found to result in embryonic lethality at mid to late
gestation (130). The stronger phenotype associated with PZPI
deficiency in this setting suggests that PZPI may be an important
regulator of FIXa and FXIa during embryonic development
(130). Interestingly, equivalent phenotypes have been observed
in PZPI deficient and PZ deficient mice in the absence of an
additional procoagulant phenotype. Both PZPI and PZ deficient
mice demonstrated significantly reduced survival in a collagen
epinephrine model of pulmonary embolism. Further, both PZPI
and PZ deficient mice demonstrated increased occlusion in
a carotid artery ferric chloride model (130). The equivalent
phenotype associated with PZPI and PZ deficiency alone suggests
that an additional procoagulant stimulus is required to reveal
phenotypic differences between the SERPIN and cofactor (130).
Modulating the anticoagulant activity of PZPI and PZ has also
been evaluated as a potential therapy for hemophilia. Deficiency
for either PZPI or PZ was found to significantly reduce bleeding
times in FVIII deficient mice and supported enhanced plasma
thrombin generation (131).

Summary
PZPI is a selective inhibitor of FXa, FIXa, and FXIa. Clinical
studies provide evidence of a potential association between
loss of function PZPI variants and VTE risk. Complementary
preclinical studies have shown that loss of PZPI or its cofactor PZ
enhances arterial thrombus formation in mouse models. PZPI is a
potential target for novel hemophilia therapies given its function
as an inhibitor of FIXa. Indeed, PZPI deficiency improved the
hemostatic response in a mouse model of hemophilia A.

C1-INHIBITOR

Biological Properties
C1INH is a 105 kDa serine protease inhibitor encoded by the
SERPING1 gene. C1INH is present in plasma at a concentration
of 200 µg/ml with a circulating half-life of approximately 3
days (132). C1INH is also present in platelet alpha granules
and is released upon platelet activation (133). C1INH serves as
the major endogenous inhibitor of FXIIa and plasma kallikrein
(Table 1) (134–137). C1INH is also an effective inhibitor of FXIa
(138). As the name indicates, C1INH was first identified for
the ability to inhibit the first component of complement (139).

C1INH also inhibits a host of other proteases, including plasmin,
tissue plasminogen activator, mannan-binding lectin serine
protease 1 and mannan-binding lectin serine protease 2 (140–
142). Importantly GAGs have been found to selectively enhance
the activity of C1INH toward FXIa (37, 143). However, GAGs
were found to decrease inhibitory activity of C1INH toward
FXIIa (37, 144). More recently the polyanion polyphosphate
has been found to enhance the inhibitory activity of C1INH
toward the first component of complement (145). The effect
of polyphosphate on inhibition of coagulation proteases by
C1INH has yet to be determined. Unlike other anticoagulant
SERPINs, C1INH undergoes extensive glycosylation resulting
in a markedly increased apparent molecular weight. C1INH
contains 3 C-terminal and 3 N-terminal N-linked glycosylation
sites and up to 26 O-linked N-terminal glycosylation sites (146).
The impact of glycosylation on C1INH function remains unclear
with conflicting reports on the contribution of glycosylation to
circulating half-life and inhibitory efficacy of C1INH (147–150).

Clinical Phenotypes
C1INH deficiency in humans results in a condition called
hereditary angioedema (HAE), a life-threatening syndrome
triggered by episodes of bradykinin induced swelling that can
lead to asphyxiation (151). Mutations in the SERPING1 gene can
result in reduced expression of C1INH, leading to type I HAE,
or expression of C1INH with reduced function, leading to type II
HAE (151). Interestingly, the vast majority of patients presenting
with HAE are heterozygous for these mutations indicating an
autosomal dominant pattern of inheritance (152). HAE patients
with heterozygous mutations in the C1INH gene typically present
with plasma levels of C1INH antigen or activity markedly lower
than the expected 50% (153). This may be due to the fact
that variant C1INH proteins can form intracellular aggregates
with wildtype protein leading to reduced secretion (154). To
date over 500 disease-causing SERPING1 variants have been
reported (152).

A number of treatments have been used to manage attacks in
patients with HAE (151). C1INH products have been developed
to serve as replacement therapies and include human purified
plasma-derived and recombinant C1INH protein preparations
(151). Plasma-derived C1INH products have elimination half-
lives of 2–5 days depending on the route of administration (132).
Additional therapies including the bradykinin receptor inhibitor
icatibant and the kallikrein inhibitors ecallantide and berotralstat
have also been developed (151). These therapies function by
either inhibiting bradykinin generation or inhibiting activation of
the bradykinin receptor that drives swelling in patients with HAE.

Given that the primary phenotype of patients with HAE is
related to excess activation of FXIIa and kallikrein mediated
bradykinin generation, efforts have been made to evaluate the
effect of C1INH deficiency on the contact system (155). Levels
of plasma kallikrein and FXIIa activity were markedly elevated in
patients with HAE when compared to controls (156). Similarly,
levels of FXIIa and cleaved kininogen were markedly higher in
patients with HAE during acute attacks compared to when in
remission (157).
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HAE patients have been reported to have elevated plasma
levels of markers of activation of coagulation and fibrin
degradation, including prothrombin fragment F1+2, thrombin-
antithrombin (TAT) complexes and D-Dimer compared to
healthy controls (157–159). Further, these markers are elevated
in HAE patients during acute attacks compared to when in
remission (157–159). Activated partial thromboplastin times
were significantly shorter in patients with HAE when compared
to controls and significantly shorter in HAE patients during
attacks than during remission (159). Plasma from patients with
HAE was also found to support a modest but significant increase
in TF-initiated thrombin generation when compared to controls
(160). This study was conducted in the absence of a contact
pathway inhibitor, such as corn trypsin inhibitor, and as such this
phenotype could be attributed to residual activation of the contact
pathway (160).

The relationship between C1INH deficiency and thrombosis
has been less clear. Initial observations suggested that treatment
of HAE patients with C1INH was associated with an increased
risk of thrombosis (161). However, a large-scale registry study
did not observe an association between C1INH treatment and
thrombotic events (162). In a recent study HAE was associated
with an increased risk of ATE (odds ratio 6.7) and VTE (odds
ratio 4.2) (163). Further, in a retrospective study treatment of
HAE patients with C1INH resulted in a 10-fold reduction in the
incidence of VTE on long-term follow-up compared to untreated
patients (164). In a small plasma proteomics-based biomarker
discovery study an association between plasma levels of C1INH
and future risk of VTE was observed (Table 2) (165). In this study,
low plasma levels of C1INH were found to negatively associate
with future risk of VTE (165). This finding is consistent with
the anticoagulant activity of C1INH and suggests that plasma
levels of C1INH modulate VTE risk in the general population.
Epidemiological studies have also demonstrated that elevated
plasma levels of complement factor C3 and C5 are associated with
an increased risk of VTE (166, 167). It is possible that the anti-
complement activities of C1INH could contribute to the observed
association with VTE. Further work is required to investigate this
association and the contributing mechanisms.

It is interesting to note that in addition to possessing
anti-complement and anti-coagulant properties, C1INH is also
an acute phase reactant with anti-inflammatory properties
(168). Indeed, C1INH administration reduced plasma levels
of inflammatory cytokines in a clinical endotoxemia model
(169). Further, C1INH administration reduced plasma levels
of inflammatory cytokines and mortality in patients with
sepsis (170).

Preclinical Phenotypes
Mice deficient for C1INH have been generated to model HAE
(171). C1INH deficient mice developed normally and were
present at the expected frequency (171). As observed in patients
with HAE, mice with a heterozygous deficiency for C1INH
had markedly lower plasma C1INH levels than the expected
50% (171). Consistent with the clinical phenotype, bradykinin-
mediated vascular permeability was increased in C1INH deficient

mice upon challenge and could be corrected by C1INH
replacement or inhibition of bradykinin receptor signaling (171).

The anticoagulant activity of exogenous C1INH has been
evaluated in the preclinical setting. Administration of human
purified C1INH to rabbits significantly reduced intrinsic
pathway-initiated thrombin generation and prolonged the
activated partial thromboplastin time (172). In a rabbit femoral
artery ferric chloride thrombosis model administration of human
C1INH significantly reduced vessel occlusion (172). This study
demonstrates that exogenous C1INH is effective in limiting
activation of coagulation and arterial thrombosis. Additional
studies are required to evaluate the role of C1INH in other
thrombotic pathologies.

Summary
C1INH is a major endogenous inhibitor of intrinsic pathway
factors PKa, FXIIa, and FXIa. A congenital deficiency in C1INH,
causing HAE, has been shown to result in increased plasma levels
of markers of activation of coagulation. Epidemiological evidence
has indicated that low plasma levels of C1INH are associated
with an increased risk of VTE. Preclinical studies indicated that
exogenous C1INH is able to effectively suppress intrinsic pathway
mediated activation of coagulation and arterial thrombosis.

PROTEASE NEXIN 1

Biological Properties
PN1 is a 50 kDa protein encoded by the SERPINE2 gene and
functions as a broad serine protease inhibitor. PN1 is a potent
inhibitor of the coagulation proteases thrombin and FXIa, and to
a lesser extent FXa (Table 1) (173, 174). PN1 also shows inhibitory
activity toward trypsin, urokinase plasminogen activator and
plasmin (173). As with other anticoagulant SERPINs the
activity of PN1 toward target proteases is significantly enhanced
by heparin (173). However, unlike the majority of other
anticoagulant SERPINs, PN1 is not expressed by the liver and is
not present at detectable levels in plasma (175). Instead, PN1 is
expressed in a number of other tissues, including the brain, heart,
spleen, kidney and lung (176). PN1 is also present in platelets
and monocytes (177). PN1 is stored in platelet alpha granules
that may serve as a labile pool of this SERPIN (178). It is likely
that release of PN1 from activated platelets accumulating at sites
of vascular injury results in high localized levels of this SERPIN.
Such a regulated mechanism would be distinct from that of other
anticoagulant SERPINs that are present at high levels in plasma.

Clinical Studies
The SERPINE2 gene was identified as a candidate susceptibility
gene for chronic obstructive pulmonary disease (179). The
association between SERPINE2 gene polymorphisms and
chronic obstructive pulmonary disease was confirmed in
a subsequent study (180). Additional studies indicate that
SERPINE2 polymorphisms may be associated with a wider
spectrum of lung diseases, including asthma and emphysema
(181–183). To date, SERPINE2 polymorphisms have not been
associated with thrombotic pathologies.
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Preclinical Studies
PN1 deficient mice have been developed as a tool to study the
biological function of this SERPIN (184). PN1 deficient mice
were viable and developed normally with no overt phenotype
(184). Subsequent studies demonstrated that mice deficient
for PN1 had markedly enhanced thrombus formation in both
mesenteric venule and arteriole ferric chloride injury models
(178, 185). Platelet PN1 was found to inhibit thrombin activity
with platelet-rich plasma from PN1 deficient mice supporting
increased thrombin generation (178). Interestingly, platelets
from PN1 deficient mice also demonstrated enhanced P-selectin
exposure and aggregation in response to thrombin (178). These
findings suggest that the platelet is an important source of
PN1 and confers anticoagulant activity through the ability to
inhibit thrombin (185). Consistent with the clinically observed
lung phenotype, PN1 deficient mice have reduced survival in a
bleomycin induced lung injury model (186). Loss of PN1 led to
increased inflammation and activation of coagulation in the lung
(186). Bone marrow chimeras demonstrated that this phenotype
was driven by loss of PN1 in hematopoietic cells and could be
reversed by inhibition of thrombin or PAR4 activation (186).

The effect of PN1 on hemostatic processes has also been
investigated. Plasma from FVIII deficient mice also deficient
for PN1 or treated with an anti-PN1 antibody supported
enhanced thrombin generation (187). FVIII deficient mice also
deficient for PN1 demonstrated markedly reduced bleeding in a
tail amputation model compared with controls (187). Further,
translating these findings anti-PN1 single domain antibodies
have been developed (188). The anti-PN1 antibodies restored
thrombin activity in purified and plasma-based systems (188).
The procoagulant effect of anti-PN1 antibodies could find utility
as a novel hemostatic therapy for patients with hemophilia.

In addition to inhibiting procoagulants PN1 also inhibits
fibrinolytic enzymes. Ex vivo, tPA initiated clot lysis was
enhanced in plasma from PN1 deficient mice. In vivo, thrombi
formed in PN1 deficient mice were found to be more susceptible
to tPA induced lysis (189). This suggests that PN1 has important
anticoagulant and antifibrinolytic functions. While PN1 may
inhibit thrombus formation, thrombi formed in the presence of
PN1 may be more resistant to lysis.

Summary
PN1 functions as an inhibitor of thrombin, FXa and FXIa.
Although PN1 variants are associated with pulmonary
pathologies, their effects on thrombotic and hemostatic
disorders have not been reported. In preclinical studies, PN1
deficiency was found to enhance thrombus formation in mice.
Additional studies indicate that PN1 may be a suitable target
for novel hemophilia therapies with inhibition of PN1 found to
normalize hemostasis in a mouse model.

PROTEIN C INHIBITOR

Biological Properties
PCI is a 46 kDa serine protease inhibitor encoded by the
SERPINA5 gene and is present in plasma at a concentration

of roughly 5 µg/ml (190). PCI is a potent inhibitor of the
anticoagulant aPC conferring PCI with procoagulant activity,
unlike the other SERPINs reviewed here (190). However, in
addition to aPC, PCI also inhibits several coagulation proteases,
including thrombin, FXa, FXIa, and plasma kallikrein providing
PCI with anticoagulant activity (Table 1) (191). As with other
SERPINs the activity of PCI against coagulation proteases is
enhanced by heparin (191). In addition, the activity of PCI against
thrombin is markedly enhanced by thrombomodulin (192).

Clinical Studies
To date no congenital deficiency for PCI has been described.
Early studies postulated that PCI deficiency may underpin
combined FV and FVIII deficiency as plasma PCI activity
was undetectable in patients with this deficiency (193).
Mechanistically, an inability to inhibit aPC could lead to a
constitutive reduction in FVa and FVIIIa activity. Subsequent
studies revealed that individuals with combined FV and
FVIII deficiency had normal levels of functional PCI (194).
Involvement of PCI in the combined deficiency was more
conclusively excluded when the locus for the SERPINA5 gene was
mapped on chromosome 14 with the genetic defect associated
with FV and FVIII deficiency mapped to chromosome 18
(195, 196). Although there have been no reports on individuals
with congenital PCI deficiency, available evidence from the
whole exome sequencing database gnomAD indicates that
predicted loss of function variants are present at the expected
frequency (197).

Preclinical Studies
Studies of PCI in mice are complicated by the fact that the
pattern of tissue expression in this species differs compared
to humans. Whereas PCI is expressed in the liver in humans
expression is largely absent in the liver of mice (198). Given
that the liver is a critical organ for release of proteins into
the blood the lack of expression in this organ in mice likely
explains the observed absence of PCI in mouse plasma (199).
These species differences notwithstanding, PCI deficient mice
have been generated (199). PCI deficient mice were generated
at the expected frequency and did not demonstrate any gross
hemostatic defects. However, male PCI deficient mice were found
to be infertile (199). PCI was found to be present at very high
levels in human seminal fluid suggesting an important role
in male fertility (200). Further studies demonstrated impaired
spermatogenesis in PCI deficiency mice (201). To study the role
of plasma PCI in the mouse a transgenic approach was used
in which human PCI was expressed in the mouse liver (198).
Transgenic overexpression of PCI resulted in mouse plasma
levels of human PCI roughly double that observed normal
human plasma (198). As expected, human PCI transgenic mouse
plasma was able to effectively inhibit exogenous human aPC
(198). However, in an LPS endotoxemia model no difference
in survival was observed between human PCI transgenic mice
and controls (198). An additional transgenic mouse expressing
human PCI under the control of the human promoter resulted
in plasma levels of PCI approximately four times that found in
human plasma (202). In these mice expression of human PCI
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resulted in shortened activated partial thromboplastin plasma
clotting times (202). Interestingly, in an LPS endotoxemia model
these human PCI transgenic mice demonstrated an enhanced
prolongation of activated partial thromboplastin times and an
enhanced reduction in plasma fibrinogen compared to controls
(202). The high plasma levels of PCI in these mice likely inhibited
endogenous mouse aPC leading to a consumptive coagulopathy.
The findings with human PCI transgenic mice indicate that the
predominant effect of PCI is as a procoagulant.

Summary
Despite being an inhibitor of multiple coagulation proteases the
potent activity of PCI toward aPC confers this SERPIN with net
procoagulant activity. No clinical association between PCI and
bleeding or thrombosis has been established. Preclinical studies
indicate that PCI potently enhances activation of coagulation
induced by endotoxemia.

ALPHA 1 ANTITRYPSIN

Biological Properties
A1AT is a 53 kDA serine protease inhibitor encoded by the
SERPINA1 gene. A1AT circulates in plasma at a concentration
of approximately 1.2 mg/ml with a half-life of 4–5 days.
Although A1AT is primarily expressed in the liver it is also
produced in monocytes and macrophages owing to the presence
of an alternative promoter (203). A1AT serves as the major
endogenous inhibitor of neutrophil elastase (204). A1AT also
functions as a potent inhibitor of other neutrophil related
proteases, including proteinase 3 and cathepsin G (205, 206).
A1AT demonstrates weak inhibitory activity against FXa and
FXIa (Table 1) (37, 207). Although GAGs enhance the inhibitory
activity of a number of SERPINs in the case of A1AT the presence
of heparin has been found to markedly reduce inhibitory activity
(37, 208).

Clinical Phenotypes
Congenital A1AT deficiency is a common genetic disease (209).
The vast majority of severe A1AT deficiencies result from
homozygosity for a single variant that causes an amino acid
substitution (Q342K) frequently referred to as the Z allele (209).
The Z allele is particularly prevalent in individuals of European
descent (heterozygous, 1:25: homozygous 1:2,000) (209). Variant
Z allele protein polymerizes in the endoplasmic reticulum
resulting in reduced secretion (210). Another single acid
substitution (Q264V) referred to as the S allele is less common
and results in more modest A1AT deficiency (211). Despite a
preponderance for the Z and S alleles in individuals with A1AT
deficiency to date more than 120 variants have been described
causing some degree of A1AT deficiency (212). Individuals
with A1AT deficiency are at increased risk of emphysema and
chronic obstructive pulmonary disease (213, 214). Indeed, 5%
of all chronic obstructive pulmonary disease diagnoses may be
attributable to A1AT deficiency (215). Individuals with A1AT
deficiency were also found to be at increased risk of liver disease
(213, 216). Variant Z allele A1AT has been shown to fold

incorrectly forming toxic aggregates in hepatocytes that function
as a driver of liver disease in this patient population (217).
Human purified plasma-derived A1AT augmentation therapies
with elimination half-lives of 2–3 days have been developed as
effective treatments for patients with A1AT deficiency associated
chronic obstructive pulmonary disease (218).

More recently, it was found that individuals with A1AT
deficiency are at increased risk of VTE (Table 2). In one study,
individuals with severe A1AT deficiency, caused by homozygosity
for the Z allele, had a significantly increased risk of VTE
compared to controls (hazard ratio 4.2) (219). In a second
population-based study individuals homozygous for the Z allele
were also found to have a significantly increased risk of VTE
(hazard ratio 2.2) (220). Interestingly, severe A1AT deficiency
has been associated with a reduced risk of ischemic heart disease
(221). The mechanism by which loss of endogenous A1AT results
in an increased risk of VTE but reduced risk of ischemic heart
disease remains to be determined.

A naturally occurring A1AT variant, M358R, termed A1AT-
Pittsburgh was identified as the underlying genetic cause of
recurrent bleeding events in a young patient (222). Subsequent
studies revealed that the M358R single amino acid substitution
transformed A1AT from an inhibitor of neutrophil proteases to
a broad inhibitor of coagulation associated proteases, including
thrombin, aPC, plasmin, FXIa, FXa, plasma kallikrein, and FXIIa
(223–225). The A1AT-Pittsburgh variant is very rare with only
2 pedigrees reported to date and is associated with a variable
bleeding phenotype (222, 226).

A1AT is an acute phase reactant reported to have important
anti-inflammatory and immunomodulatory functions. A1AT
deficiency is associated with the inflammatory condition
rheumatoid arthritis (227, 228). The anti-inflammatory and anti-
viral properties of A1AT products are currently being evaluated
in the setting of COVID-19 (229).

Preclinical Phenotypes
A1AT deficiency has proven challenging to model in mice
owing to the presence of fives SERPINA1 paralogs. Early efforts
deleting a single SERPINA1 paralog resulted in unexpected
embryonic lethality (230, 231). This is not consistent with the
observed phenotype of humans with a severe A1AT deficiency
and suggested that murine A1AT may have gained additional
developmental functions in the mouse. More recently, however,
a complete A1AT deficient mouse has been developed lacking
all five of the murine SERPINA1 paralogs (232). These A1AT
deficient mice demonstrated normal survival (232). Consistent
with the reported role of A1AT deficiency in lung disease,
aged deficient mice demonstrated spontaneous emphysema with
evidence of increased neutrophil, monocyte and lymphocyte
counts in bronchial alveolar lavage fluid (232). Further studies
are required to determine if these deficient mice can model the
prothrombotic phenotype observed in humans (232).

Summary
The primary activity of A1AT is as a potent inhibitor of
neutrophil-derived proteases. A1AT possesses relatively weak
anticoagulant activity. Despite this weak anticoagulant activity
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recent clinical studies have revealed that patients with A1AT
deficiency are at increased risk of VTE. The mechanism by which
endogenous A1AT prevents VTE remains to be elucidated.

ENGINEERED SERINE PROTEASE
INHIBITOR

Generation of SERPIN variant proteins was initially used as a
powerful tool to decipher what components of a given SERPIN’s
structure contributed to the observed biological activity. For
example, generation of variants has facilitated the identification
of GAG binding regions and provided mechanistic insights into
how these molecules enhance SERPIN activity. However, based
on the important contribution of anticoagulant SERPINs to
hemostatic and thrombotic processes considerable efforts have
also been made to engineer variants with altered biological
activities and properties (19, 233, 234). Engineered variant
SERPIN proteins are typically designed to either alter substrate
selectivity or improve biological stability. The overarching goal of
these efforts is to generate novel engineered SERPINs that possess
attractive biochemical and biophysical properties for potential
use as novel therapeutic agents.

Altered Substrate Selectivity
Significant efforts have been made to alter and refine the
selectivity of a number of anticoagulant SERPINs. This has
primarily been achieved by substitution of residues in the
RCL that serves as an important determinant of selectivity.
Initial efforts focused on generating chimeric SERPINs that
substituted partial RCL sequence of one SERPIN into another.
Using this approach chimeric SERPINs have been made that
swap portions of the RCL of AT into A1AT and plasminogen
activator inhibitor 1 (235–237). While in both cases insertion
of the AT RCL conferred thrombin inhibitory capacity the
second order rate constants were markedly lower than that of
wildtype AT. This reinforces that although the RCL sequence
is an important determinant of substrate selectivity other
regions play a role.

Further efforts have focused on single or multiple amino
acid substitutions of the RCL in a given SERPIN. A1AT has
been the focus of concerted efforts likely owing to the presence
of the naturally occurring A1AT-Pittsburgh variant, M358R,
that demonstrated the profound effects that a single amino
acid substitution could have on substrate selectivity (223–225).
An additional amino acid substitution at the preceding P2
residue (357AR358) further modified the activity of the A1AT-
Pittsburgh variant conferring increased activity toward plasma
kallikrein (238). This substitution was found to protect mice from
bradykinin induced hypertension (238). Greater selectivity of
A1AT toward plasma kallikrein was achieved by substituting the
P3 and P2 residues in the A1AT-Pittsburgh variant (356PFR358)
(239). Two additional A1AT-Pittsburgh based variants have been
developed (355SLLRV359 and 355SMTRV359) that demonstrate
improved activity against plasma kallikrein and reduced activity
against both thrombin and aPC (240). These variants were
effective in reducing bradykinin induced edema and arterial

thrombosis in mouse models (240). To improve the selectivity of
the A1AT-Pittsburgh variant for thrombin over aPC additional
A1AT-Pittsburgh based variants have been evaluated (357AR358,
357GR358, and 358RT359) but no marked difference in selectivity
was observed (237).

A1AT variant design has also been informed by the crystal
structure of target proteases. In one approach the A1AT variant
357KRK359 was designed to selectively inhibit aPC over thrombin
due to the steric constraints of the thrombin active site (241).
As predicted, the A1AT variant 357KRK359 was highly selective
for aPC and significantly enhanced thrombin generation in the
plasma of hemophilia A patients (241). In FVIII deficient mice
the A1AT variant 357KRK359 was also found to reduce bleeding
in a tail amputation model and increase platelet and fibrin
accumulation at sites of vascular injury (241).

The effect of RCL amino acid substitutions in other SERPINs
has also been evaluated. Systematic substitution of the P1
residue of C1INH demonstrated the importance of this amino
acid to inhibitor activity and selectivity (242). The majority of
C1INH P1 variants demonstrated reduced or absent activity
toward C1s, plasma kallikrein, FXIIa and plasmin (242).
However, one variant, R442K, demonstrated preserved activity
toward C1s with reduced activity toward plasma kallikrein
and FXIIa (242). A naturally occurring C1INH P2 variant,
A443V, has been identified and was found to have increased
specificity toward plasma kallikrein and FXIIa (243). In a
systematic substitution approach for the P2 residue of C1INH
the naturally occurring A443V variant was found to have
increased activity toward trypsin and thrombin (244). Similarly,
the P1 variant R444L was found to have increased heparin
dependent activity toward thrombin (245). One additional
variant of particular interest, A443T, showed markedly enhanced
specificity for plasma kallikrein and FXIIa over C1s, thrombin
and plasmin (244).

Larger scale systematic approaches have also been evaluated.
A phage display approach has been used to identify A1AT
RCL sequences with enhanced specificity for FXIa (246).
In a multistage approach, fragments of the A1AT-Pittsburgh
RCL sequence were mutated and screened for the ability
to inhibit FXIa in a process termed biopanning. A1AT
containing the FXIa optimized RCL (346HASTGQFLEAIPR358)
demonstrated strong selectivity for FXIa over thrombin (246).
In another approach the P4 to P4’ residues of A1AT,
covering a region particularly important for substrate selectivity,
were systematically substituted (247). Recombinant variant
A1AT proteins containing single amino acid substitutions for
every amino acid at each of these positions were generated
and their activity toward target proteases evaluated (247).
A platform was developed to predict the effect of multiple
amino acid substitutions on substrate specificity (247). Using
this platform variants with predicted potency and specificity
for aPC were selected for evaluation as novel hemophilia
therapies (247). A number of these predicted A1AT variants
were found to be selective inhibitors of aPC. One variant,
355KMPRRIPA362, restored hemostasis more effectively in
FVIII deficient mice than the previously reported A1AT
357KRK359 (247).
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Improved Half-Life
Numerous efforts have been made to improve the circulating
half-life of anticoagulant SERPINS. This is due to the fact
that some natural SERPINs and other recombinantly produced
SERPINs have relatively short circulating half-lives.

One approach to improve the half-life of circulating SERPINs
is to modify protein glycosylation in a process termed
glycoengineering (248). N-linked glycosylation of natural A1AT
aids in correct folding of the protein into the metastable state
and extends the circulating half-life (249, 250). While purified
A1AT contains normally glycosylated protein, A1AT produced
recombinantly often contains sub optimally glycosylated protein.
In one approach the effect of adding additional glycosylation sites
to A1AT on the circulating half-life was assessed. A recombinant
A1AT variant containing one additional N-linked glycosylation
site (G147N/K149T) had a significantly longer circulating half-
life in mice (251). Similar findings were made with a further
recombinant A1AT variant containing two additional N-linked
glycosylation sites (Q9N and D12N/S14T) that resulted in a
significantly prolonged circulating half-life in rats (252). As
an alternative approach, efforts have also been undertaken
to improve glycosylation of natural sites in recombinantly
produced A1AT. An optimized Chinese ovarian hamster cell
line that overexpresses a human glycosylation gene produced
recombinant A1AT with a glycosylation profile similar to
that of purified A1AT (253). However, it remains to be
determined to what extent this improves the circulating half-life
of recombinant A1AT.

It should be noted that SERPIN glycosylation has effects
beyond simply prolonging the circulating half-life. Wildtype
AT contains four sites for N-linked glycosylation with one
site demonstrating poor glycosylation. Addition of N-linked
glycosylation sites has had variable effects on secretion with
modifications at some positions impairing secretion while at
other sites modification improved secretion (254). These differing
results are likely a result of the effect of N-linked glycosylation
on protein folding. Indeed, N-linked glycosylation has been
shown to contribute to the efficient folding and secretion of AT
(255). Additional N-linked glycosylation could also alter SERPIN
activity. The potential for this to occur has been highlighted by
the varying activities of the two naturally occurring forms of AT,
the α and β forms. The α form of AT, that is glycosylated at all four
sites, demonstrates impaired activity against thrombin compared
to the β form, that is glycosylated at three sites, with the additional
glycosylation being found to disrupt heparin interactions (256).
This indicates that although N-linked glycosylation may improve
biological half-life this modification may have unpredictable, and
possibly deleterious, effects on protein secretion and function.

In an additional approach the effect of conjugating A1AT
with polyethylene glycol (PEG), in a process termed PEGylation,
has been evaluated. PEGylation of recombinant A1AT markedly
reduced renal clearance resulting in a prolonged circulating
half-life (257). PEGylation of a single amino acid residue of
recombinant A1AT (C232) increased the circulating half-life in
mice with longer PEG polymers having a greater effect (258).

A PEGylated version of the Myxomavirus derived SERPIN Serp-
1 has also been developed demonstrating improved efficacy in
a mouse model of diffuse alveolar hemorrhage (259). Serp-1
is a broad acting SERPIN with anti-inflammatory and anti-
fibrinolytic activities (260). In addition, however, Serp-1 also
functions as a heparin dependent inhibitor of thrombin (261,
262). Serp-1 is currently being evaluated as a novel therapy for
treatment of acute coronary syndrome (263). It is interesting
to consider if the thrombin inhibitory activity of Serp-1 may
contribute to the therapeutic effect of this SERPIN.

The generation of A1AT fusion proteins has also been
explored. A1AT has been conjugated to the Fc portion of
immunoglobulin (264). Conjugation of intact A1AT with the
Fc portion of immunoglobulin resulted in a fusion protein that
retained inhibitory activity. Although not directly determined it
was inferred that this fusion protein should have a prolonged
circulating half-life through interaction with Fc receptors present
on immune cells (264). Importantly, A1AT-Fc was found to be
more effective in preserving lung function in murine emphysema
models than purified A1AT (265).

CONCLUSION

Anticoagulant SERPINs serve as critical negative regulators
of coagulation. Consistent with their essential anticoagulant
function congenital deficiencies of specific SERPINs, such as
AT and HCII, are associated with an increased risk of VTE in
humans. Moreover, targeting of these anticoagulants is being
explored as a novel approach to reduce bleeding in hemophilia
patients. Concerted efforts have been made to develop novel
therapeutic SERPINs with altered selectivity and specificity for
target coagulation proteases. Such therapeutic SERPINs may find
utility as novel therapies for thrombotic pathologies.
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