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Abstract: Critically ill pediatric patients often require complex medical procedures as well as in-
vasive testing and monitoring which tend to be painful and anxiety-provoking, necessitating the
provision of analgesia and sedation to reduce stress response. Achieving the optimal combination
of adequate analgesia and appropriate sedation can be quite challenging in a patient population
with a wide spectrum of ages, sizes, and developmental stages. The added complexities of criti-
cal illness in the pediatric population such as evolving pathophysiology, impaired organ function,
as well as altered pharmacodynamics and pharmacokinetics must be considered. Undersedation
leaves patients at risk of physical and psychological stress which may have significant long term
consequences. Oversedation, on the other hand, leaves the patient at risk of needing prolonged
respiratory, specifically mechanical ventilator, support, prolonged ICU stay and hospital admission,
and higher risk of untoward effects of analgosedative agents. Both undersedation and oversedation
put critically ill pediatric patients at high risk of developing PICU-acquired complications (PACs)
like delirium, withdrawal syndrome, neuromuscular atrophy and weakness, post-traumatic stress
disorder, and poor rehabilitation. Optimal analgesia and sedation is dependent on continuous patient
assessment with appropriately validated tools that help guide the titration of analgosedative agents
to effect. Bundled interventions that emphasize minimizing benzodiazepines, screening for delirium
frequently, avoiding physical and chemical restraints thereby allowing for greater mobility, and
promoting adequate and proper sleep will disrupt the PICU culture of immobility and reduce the
incidence of PACs.

Keywords: analgesia; sedation; PICU; critically ill pediatric patient; PICU-acquired complications;
delirium; withdrawal

1. Introduction

Despite an increase in acuity and medical complexity of pediatric patients in the
intensive care unit, the last two decades have demonstrated a significant drop in patient
mortality [1,2]. This success has been in large part a consequence of technological ad-
vancements in physiological monitoring and interpretation, invasive testing, and complex
medical procedures, many of which usually require a combination of analgesia, anxiol-
ysis, amnesia, and sedation [3,4]. Balancing this combination of analgesia and sedation
is challenging for this diverse spectrum of age, maturity (developmental and emotional),
and medical complexity [5]. Currently, the incidence of PICU acquired complications
(PAC) outnumbers the rate of PICU mortality. Improvements in sedation delivery have
been shown to decrease the incidence of physical restraints, post-traumatic stress disorder,
oversedation, delirium, and neuromuscular weakness [6].

This review will present all the most up-to-date and relevant literature that addresses
important aspects of PICU (and adult-related when relevant) sedation: national and inter-
national sedation guidelines, pharmacodynamics and pharmacokinetics of analgosedative
drugs, sedation and analgesia assessment rubrics, pain management, goal-directed seda-
tion strategies, adverse events and side effects, the need for neuromuscular blockade, and
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optimal analgesic and sedation practices. The authors searched PubMed, Medline, and the
Boston Children’s Hospital medical e-library using the following search terms: sedation in
critically ill patients/pain management in the intensive care unit (ICU)/current practices in
analgesia and sedation solely at first, then further specifying pediatric patients. The authors
also used supplementary search methods such as assessing the similar articles section in
PubMed search results and the reference lists of selected studies. The authors included both
pediatric and adult studies that are most relevant to clinical practice, while highlighting
studies that were published after 2000. Understanding the factors involved in attaining the
right balance of adequate analgesia and optimal sedation guided by therapeutic targets
that evolve with the changes in each patient’s medical condition is key to reducing PACs
as well as improving clinical outcomes and functional recovery in critically ill pediatric
patients [6].

1.1. National and International Analgesia and Sedation Guidelines

In 2006, the United Kingdom Paediatric Intensive Care Society Sedation, Analgesia
and Neuromuscular Blockade Working Group, a multi-disciplinary expert panel, used
a modified Delphi technique to create consensus guidelines on sedation, analgesia, and
neuromuscular blockade in critically ill children. The panel warned that the quality of
evidence available in the literature to support these recommendations is poor and that
there is little evidence to guide PICU staff with the common clinical problems of tolerance,
withdrawal, and the patient who requires long-term sedation or who are difficult to sedate
with standard agents [7,8]. In 2016, a multidisciplinary group of experts from members
of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC) produced a
position statement to help guide professionals in the assessment and reassessment of the
effectiveness of treatment interventions for pain, distress, inadequate sedation, withdrawal
syndrome, and delirium [9].

A retrospective study evaluated the pharmaceutical management of sedation, anal-
gesia, and neuromuscular blockade medications administered to 66,343 children in 161
ICUs in the United States between 2009 and 2016. The durations of opiate and sedative
administration were associated with predicted complications of tolerance and withdrawal.
Several medications were dispensed in conflict with Food and Drug Administration (FDA)
warnings [10]. Surveys of analgosedative practices in PICUs have demonstrated a wide
variability in clinical practice typically associated with individual provider preference, local
culture, the use of multiple drug combinations and classes, variations in dosing and routes
of administration, as well as the use of off-label drugs [11–14]. The relative scarcity of high
quality pediatric studies and randomized controlled trials in the area of analgosedation
makes it challenging to develop consensus guidelines and best practice recommendations.

1.2. Pharmacokinetics and Pharmacodynamics in Critically Ill Children

Pharmacokinetics (PK) and Pharmacodynamics (PD) are important when considering
sedation and analgesia, particularly as the clearance, metabolism, and duration of effect
can be impacted by end-organ (hepatic, renal, cardiac) failure and dysfunction [15,16]. The
key factors that impact PK and PD in the PICU patient can be divided into two elements:
Patient Factors and PICU Factors. Patient factors include body fluid shifts that impact drug
volume of distribution; altered protein binding that can impact plasma concentration of
drugs; end organ dysfunction that can alter drug absorption, metabolism, and excretion;
natural age-related physiology that can impact drug absorption, metabolism, and excretion;
and inflammatory states that alter drug-metabolizing enzymes and transporters and impact
drug absorption, efficacy, and clearance [17–21]. PICU factors include non-pharmacologic
interventions such as continuous renal replacement therapy (CRRT), extra-corporeal mem-
brane oxygenation (ECMO), and therapeutic hypothermia, all of which affect volume of
distribution, metabolism, absorption, and clearance [17–25].

Recent advancements in neonatal resuscitation combined with a significant decline
in mortality introduce complex combinations of baseline multi-organ dysfunction which
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complicate the pharmacokinetic and pharmacodynamic profile of sedatives and analgesics
in the PICU setting. As a result of the increasing complexity of interactions between the
sedatives and the individual response, PICU sedation has evolved to encompass a special
area of expertise [15,21].

2. Analgesia

Effective and tailored acute, procedural, and chronic pain management is critical in
the PICU. These conditions are often overlapping and require acute sensitivity to different
components. The goal of analgesic therapy is to provide comfort, reduce physiological
stress response, and minimize analgesic-associated adverse events such as respiratory
depression, risk of addiction, hemodynamic instability, and end organ injury. In the
severely critically ill pediatric patient, this balance is a delicate one that, if unsuccessful,
can subject children to inadequate pain management [15,26].

2.1. Pain Assessment

In order to titrate analgesic therapy to effect, manage pain adequately, and monitor
for signs of medication toxicity or adverse effects, pain assessment is of utmost importance.
Self-assessment to report pain scores, although considered the gold standard for moni-
toring the efficacy of analgesic therapy, is largely not possible for the majority of PICU
patients [15,27]. Physiologic indicators (tachycardia, rise in blood pressure, tachypnea,
pupillary dilatation, increased muscle tone, sweating, etc.) are equally unreliable mark-
ers as they lack sensitivity and specificity to pain. Pain-related behaviors, distinguished
by verbal (vocalized description of intensity, quality, location with concomitant displays
of moaning or crying) and non-verbal (facial expression, body posturing/repositioning,
decrease in activity) cues have been shown to be similarly unreliable [27,28].

In children <3 years of age, despite the limitations and challenges to assessing and
interpreting the physiological indicators of pain and pain-related behaviors, behavioral
observation scales are the standard of care. Subjective and objective indicators are used to
interpret facial expression and physiologic and motor responses, frequently engaging the
opinions of family members and primary caregivers [15,27]. Children ages 4 to 8 years are
usually able to self-report pain, facilitating the practice of matching their subjective feedback
to a developmentally appropriate pain tool [15,29–31]. Older children (8 years and above),
are typically able to give a self-assessment of their pain using more validated methods
such as a verbal rating scale, numeric rating scale (NRS), and the Visual analog Scale (VAS),
similar to adults [27,30]. Not all pain scales require self-reporting and interpretation of
verbal cues. The Wong-Baker FACES scale and the Bieri Faces Pain Scale Revised (FPS-R) are
suitable for children of any age and developmental stage and rely on non-verbal cues [30].
Each scale has its limitations. The Neonatal Pain, Agitation, and Sedation Scale (N-PASS),
Non-Verbal Pain Scale (NVPS), and the Face, Legs, Activity, Cry, and Consolability scale
(FLACC) are observational scales that are unable to quantify the intensity or quality of
pain. Regardless, especially for sedated and pharmacologically paralyzed PICU patients,
these scales are a valuable means to identify the presence of pain [30,32].

2.2. Systemic Analgesia: Opiates and Non-Opiates
2.2.1. Opioids

Opioids work on opiate receptors which are found in the brain, spinal cord, and
peripheral tissue: mu (µ) receptors (analgesia, euphoria, miosis, respiratory depression),
kappa (k) receptors (spinal analgesia), sigma (σ) (dysphoria, respiratory and vasomotor
stimulation, and hallucinations), and delta (∆) (unclear effects) [27,33,34]. All opioids
exhibit a dose-dependent respiratory depression which increases in risk when given in
conjunction with other sedatives, commonly benzodiazepines [34,35]. Due to the risk of
dependence and withdrawal, opiates should be weaned slowly in those patients who have
received opioid infusions ≥7 days [33,34]. In general, in the PICU setting, opiates are
favored for the relief of severe pain, especially perioperative and non-neuropathic. The
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Collaborative Pediatric Critical Care Research Network (CPCCRN) performed a prospec-
tive, observational study (the MOTIF (Measuring Opioid Tolerance Induced by Fentanyl
(or morphine)) to characterize the exposure to opioid analgesia among mechanically venti-
lated children. Mechanically ventilated children required increasing opioid doses, often
associated with prolonged opioid exposure or the need for additional sedation [36].

Morphine

Discovered over 200 years ago, morphine is the oldest of the opiates and the only
hydrophilic opioid still in common use. A typical bolus dose of morphine achieves a
peak effect in 10 to 20 min and has a duration of action of approximately 2–4 h [21,27].
Morphine is metabolized by the liver via glucuronidation and its metabolites are then
renally excreted [37,38]. The active metabolite of morphine, morphine-6-glucuronide (10%),
stimulates the mu-receptors, and it is recommended that especially in patients with renal
insufficiency dosing of morphine should be carefully titrated or avoided altogether in order
to avoid oversedation and respiratory depression [21,34,39–41]. Dosing of morphine must
be done with consideration of the age, physiology, and medical condition of the child, as the
pharmacokinetics of morphine differ from premature infants through childhood. Neonates
<10 days old require less than half the dose of older children to attain similar plasma
levels of morphine with similar analgesia [21,27,42]. Morphine, still the most commonly
used sedative in the PICU, has important risks and side effects: vasodilation, hypotension,
bronchospasm, and pruritus should be considered, however they are not usually clinically
significant [21,27,30,34,42].

Fentanyl

Fentanyl is a synthetic morphine derivative that is highly lipophilic and fat soluble,
over 100 times more potent than morphine and exhibits very quick onset (<1 to 2 min)
and up to 60-min duration with intermittent doses [27]. With continuous prolonged ad-
ministration, fentanyl can accumulate in peripheral compartments, increasing the context
sensitive half-life and prolonging sedation [27,34]. Unlike morphine, fentanyl has an inac-
tive metabolite, norfentanyl, that does not cause histamine release. Be aware that because
fentanyl depresses the heart rate response, it can have a negative effect on children who are
heart rate dependent and rely on increased heart rate for augmentation of cardiac output.
Conversely, fentanyl has its advantages, particularly for blunting heart rate response to
intubation and laryngoscopy [43–47]. Although rare, there is a risk of chest wall rigidity,
usually with rapid large (>5 mcg/kg) doses, that can precipitate respiratory failure and
necessitate intubation or naloxone [5,21,48].

Remifentanil

Remifentanil is a newer synthetic opioid that is equipotent to fentanyl and has an ultra-
short half-life of about 3 to 4 min. Metabolized by plasma esterases, it does not accumulate
and demonstrates a small volume of distribution [27]. Remifentanil is optimal for the
patient with renal or hepatic dysfunction, as it avoids the risk of accumulation of active
metabolites, and prolonged context sensitive half-life and duration of action. Remifentanil
can facilitate the abrupt need to perform neurological exams, quickly wearing off even
after prolonged infusions. This rapid onset and offset favors its use in the PICU setting,
supporting rapid titration of analgesic and anesthetic depth with minimal fluctuations
in hemodynamics [49]. Similar to other opioids, remifentanil does have respiratory and
myocardial depressant effects that should be anticipated and managed appropriately. There
has been concern that the ultra-short acting nature of remifentanil leads to an increased
risk of rapid developmental of tolerance; also, it has been suggested that remifentanil has
the highest association with opioid-induced hyperalgesia (OIH) amongst the opiates and
OIH leads to prolonged post-operative recovery, increased length of stay, and significant
discomfort [49,50]. The RAPIP trial (remifentanil-based analgesia and sedation of pediatric
intensive care patients), a randomized controlled trial which aimed to compare remifentanil
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and fentanyl concerning the incidence of tolerance, withdrawal, and OIH, demonstrated no
association between remifentanil and increased risk for tolerance, withdrawal or OIH [51].

Hydromorphone

Hydromorphone is a semi-synthetic opioid (a hydrogenated ketone of morphine) that
selectively binds to the mu receptor [52]. Hydromorphone is hydrophilic and has 7 to
10 times the potency of morphine. Hydromorphone has an onset of 5 to 10 min and a
duration of action of 3 to 4 h, similar in profile to morphine’s. Metabolized by hepatic glu-
curonidation to hydromorphone-3-glucuronide and excreted in the urine, hydromorphone
is associated with less sedation, nausea, and pruritus than morphine [5,30,37,38]. Continu-
ous infusions of hydromorphone have been shown to be effective for prolonged (greater
than 24 h) sedation in the PICU setting. With a mean starting dose of 0.024 mg/kg/h, and
a maximum mean dose of 0.05 mg/kg/h, 66% of mean daily FLACC scores were <1 in
PICU patients sedated for a mean of 182 h [53].

Methadone

Methadone is a synthetic mu-receptor opioid agonist with rapid onset (5–10 min and
30–60 min via IV and oral route respectively). It has the longest duration of action of all the
opioids (4 to 24 h). Methadone’s lack of known active metabolites, high oral bioavailability,
and long duration of action supports its frequent choice to prevent opioid withdrawal for
children who have received continuous morphine or fentanyl for >5 days [54–56]. Enteral
administration of methadone has been shown to expedite opioid discontinuation and
reduce the risk of withdrawal in critically ill children at very high risk for opioid abstinence
syndrome [54–57].

The pharmacokinetic profile of methadone complicates an easy conversion to equipo-
tent dose ratios between narcotics. There is still no consensus on an ideal conversion factor
after prolonged IV fentanyl [54,58–60]. Methadone dose equivalents of 2.5 times the daily
fentanyl dose have demonstrated success for weaning [48]. Applying standard adult dose
conversion guidelines (23.7 mg oral morphine to 1 mg oral methadone) to the pediatric
population, 53.7% of children in the PICU were successfully converted to methadone and
41.7% appeared undermedicated [61]. Regardless of the conversion formula applied, it is
recommended that the Withdrawal Assessment Tool (WAT-1) and State Behavioral Scale be
performed daily, to guide opioid weaning schedules [62,63].

Methadone carries a Food and Drug Administration (FDA) Boxed Warning due to
its potential to prolong the corrected QT interval, potentially leading to life-threatening
arrhythmias. A retrospective study of 51 PICU patients <18 years of age did not report
an incidence of significant change of the corrected QT interval in this group. However,
those that did manifest an increase in corrected QT interval of ≤40 ms, had structural
heart disease. Caution should therefore be taken when administering methadone to PICU
patients with structural heart disease [64]. It is important to note that methadone is gaining
notoriety in the media as the premier agent for medication-assisted treatment of opioid
addiction. Parents will frequently raise concerns over its use.

2.2.2. Patient-Controlled Analgesia (PCA) and Parent/Nursing-Controlled Analgesia (PNCA)

PCA is a patient-controlled, on-demand, and intermittent means of administering
sedatives and analgesics. PNCA is reserved for those patients who do not have the abil-
ity to control their self-administration. In these cases, the nurse or health care provider,
often aided by the parent’s input, assume responsibility for the dosing. The relationship
between meperidine blood concentrations and minimum analgesic concentration of meperi-
dine for post-operative analgesia was discovered and used as the pharmacologic basis of
PCA [65,66]. Minimum effective analgesic concentration (MEAC) is defined as the smallest
concentration at which pain is relieved. PCA has evolved to include patient-controlled
epidural analgesia (PCEA) or Epidural PCA, peripheral nerve catheter PCA or patient-
controlled regional analgesia (PCRA), as well as a non-invasive method of transdermal
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PCA which delivers ionizable medications (fentanyl, for example) through the skin via
iontophoresis and the application of an external electrical field [66,67].

Although the safety and efficacy of PCA for children has been well established and
PCA for children is quite widely available [68,69], critically ill children as well as very young
and/or intellectually disabled children may lack the appropriate cognitive function neces-
sary for self-administration of analgesic medication. PCA by proxy via parent/nursing-
controlled analgesia (PNCA) can be effectively implemented through proper education of
the proxy and careful monitoring for pain, side effects, and adverse events [70–73].

2.2.3. Non-Opioids
Acetaminophen

Acetaminophen is a synthetic, non-opiate, centrally acting analgesic and antipyretic
derived from p-aminophenol [74,75]. Its high therapeutic index and efficacy to safety ratio
makes it an attractive and widely used option for PICU mono and multimodal treatment of
mild to severe pain as well as fever [74]. Acetaminophen does not affect platelet function
or kidney function and is void of gastrointestinal, respiratory, or cardiovascular effects.
The IV formulation of acetaminophen was approved for use in the United States in 2010
and has been in extensive use in over 80 countries since 2002 [75]. IV acetaminophen is
especially advantageous in the PICU setting for those who have Nil Per Os (NPO) status or
are intolerant of enteral feeds. IV acetaminophen achieves analgesic effects within 5 min of
administration and reaches higher max concentration (Cmax) at an earlier time (Tmax) than
the equivalent dosage administered by oral or rectal route [74,76–79]. Acetaminophen is
metabolized by the liver via glucuronidation, oxidation, and sulfation. Regardless of route
of administration, the terminal elimination half-life of acetaminophen is approximately
2 to 4 h in children, adolescents, and adults [74].

A limitation to the use of IV acetaminophen is often its high cost. In terms of cost
per dose and total doses dispensed, IV acetaminophen ranks at the top of the list of most
expensive medications used in the PICU, along with dexmedetomidine, eculizumab, and
botulism immunoglobulin [80]. The use of IV acetaminophen in the ICU setting has been
optimized through multidisciplinary quality improvement projects aimed at reducing the
associated medication-related variable costs [80,81].

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

NSAIDs work by blocking the production of prostaglandins which leads to the reduc-
tion of pain and inflammation. There are two types of NSAIDS: Non-Selective NSAIDs
(ibuprofen, naproxen, ketorolac, and acetylsalicylic acid) that block two enzymes involved
with inflammation–cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and COX-
2 (celecoxib) Selective NSAIDs. Most commonly, only the non-selective NSAIDs are
used in the PICU. The Cox enzymes catalyze the conversion of arachidonic acid into
prostaglandin [82]. The COX-1 enzyme regulates key cellular processes of platelet ag-
gregation, afferent arteriole vasodilation in the kidney, and acid protection of the gastric
mucosa. The COX-2 enzyme is an inducible enzyme that increases during inflammatory
processes and is present in the brain, kidney, bone, and female reproductive tract [83,84].
NSAIDs are widely used for their analgesic, anti-inflammatory, and antipyretic properties.
Ibuprofen has become the NSAID of choice for enteral administration, favored for its
efficacy and tolerability profile without the risk of Reye’s Syndrome [85]. Ketorolac (IV and
Oral), although not approved by the IV route for pediatric patients, is a frequent choice for
post-operative analgesia in the PICU [71,86–88].

NSAIDs are favored for their lack of opiate-related side effects of nausea, vomiting,
pruritus, respiratory depression, tolerance, withdrawal, sedation, and urinary retention [89].
Metabolized in the liver to inactive metabolites via oxidation and conjugation, NSAIDs are
excreted in the urine [90]. The risks associated with NSAIDS are related to their inhibition of
prostaglandin synthesis. Careful patient selection requires avoidance of its administration
to those at risk of acute renal failure, post-surgical bleeding, or gastrointestinal toxicity. In
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the pediatric population, NSAIDS have not been shown to increase the risk of renal and
bleeding complications for both cardiac and non-cardiac post-operative care [91].

Gabapentin

Though gabapentin is usually considered an antiepileptic, it is useful for opioid-
sparing pain management. Gabapentin inhibits presynaptic voltage-gated calcium channels
(upregulated during surgical trauma) in the dorsal root ganglia and spinal cord, preventing
release of excitatory neurotransmitters [92]. There is no well-established consensus on
the appropriate dosing regimen for gabapentin in the pediatric population. In adults,
administration every 2 h in the post-operative period has demonstrated effectiveness,
especially for those at highest risk of severe pain [92,93].

Ketamine

Ketamine is an N-methyl-D-aspartate (NMDA) antagonist which has been available
since the mid-20th century. NMDA receptors have been shown to play an important
role in central sensitization formation, so it makes sense that ketamine is an effective
opioid adjunct [92]. Studies have demonstrated that low-dose ketamine use with standard
opioid administration decreased opioid use and led to improved quality of pain, with no
reported serious side effects especially in patients for whom higher postoperative pain
scores were anticipated and patients with chronic pain and/or opioid dependency [92,94].
A retrospective study of 32 mechanically ventilated children reported that drug rotation
with ketamine in mechanically ventilated children with opioid tolerance is feasible and
seems to reduce the rate of fentanyl infusion [95].

Alpha 2 Agonists

The analgesic effect of alpha 2 agonists like dexmedetomidine and clonidine re-
sults from stimulation of α2-adrenoreceptors that are located both in the spinal cord
and supraspinal region [92]. Adult studies have shown that both alpha 2 agonists reduce
opioid consumption in the perioperative period with dexmedetomidine being more effec-
tive [96]. Clonidine is a potent analgesic adjuvant that improves the analgesic effects of
anti-inflammatory agents and has significant antinociceptive effects when it is combined
with opioids, ketamine, and local anesthetics [97]. Clonidine has been shown to be a
highly effective analgesic agent in the perioperative period for adenotonsillectomy and
ophthalmological surgery in children [98–100].

Dexmedetomidine has not been shown to reduce postoperative opioid requirements
or pain scores in children. In combination with opioids, it has been shown to increase time
to first analgesic, reduce the need for additional rescue analgesia doses and significantly
lower rescue medication requirements for nausea and vomiting postoperatively [101,102].

2.2.4. Multimodal Pain Management

In the practice of pediatric pain management, a multimodal approach considering anal-
gesics (opiate and non-opiate), local and regional analgesia is preferable to monotherapy.
Ketamine, gabapentin, and alpha2 agonists have been shown to produce profound antinoci-
ceptive effects and reduce opioid use when combined with acetaminophen, NSAIDs, and
opioids in both adult and pediatric literature [21,92,103,104]. Non-opioid analgesics have
a ceiling effect when used alone. A combination of acetaminophen and NSAIDS have
shown favorable results in decreasing opiate requirement and pain scores, avoiding the
ceiling effect which can occur when each is utilized alone [103–106]. Multimodal analgesia
has been demonstrated to be particularly effective in managing the pain associated with
acute vasoocclusive crises in children and adults with sickle cell disease [107]. Continuous
naloxone infusion is used in the PICU for treatment of opioid-induced pruritus.
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2.3. Neuraxials and Peripheral Nerve Catheters

Regional anesthesia, when used in combination with general anesthesia, has been shown
to reduce the amount of opioids and inhaled anesthetics used intraoperatively [103,108].
The European prospective observational multicenter cohort study (APRICOT) prospectively
collected data for over 31,000 pediatric procedures performed in 33 countries. Regional
anesthesia was performed perioperatively for 4377 surgeries, with central and truncal blocks
representing 43 and 42%, respectively. Caudal blocks were the most common (77%) central
block [108]. Ultrasound guidance with proper training can decrease time to perform block,
increase success rate, hasten onset time, prolong block duration, and decrease volume of local
anesthetic required [109,110]. Continuous epidural anesthesia (CEA) (caudal, lumbar, and
thoracic) is a common route of post-operative analgesia in the PICU. In the premature and
term infants, CEA has been shown to decrease opiate requirements, duration and need for
ventilatory support as well as duration of PICU stay [111–114]. Patient controlled epidural
anesthesia (PCEA), popular in adults, is another option that has been used with success in
older children and adolescents [103,115].

3. Sedation

Sedation in the PICU setting is especially challenging and poses issues that are unique.
Mechanical ventilation presents the most significant challenge, balancing sedation to syn-
chronize the patient’s native work of breathing with that of the ventilator. The optimal
condition for the non-neuromuscularly blocked patient would be that she is easily arous-
able or conscious, comfortable, and breathing in sync with the ventilator, a state that can
be referred to as the Goldilocks Zone (not too deep and not too light) [21]. Balancing the
depth of sedation is important because undersedation can lead to dislodged intravascular
access and catheters, unplanned extubation and potentially staff or patient injury. Overse-
dation, on the other hand, can lead to unstable hemodynamics, respiratory depression
and the potential for failure to extubate. Prolonged intubations pose an increased risk
for muscle deconditioning, delirium, cognitive impairment, tolerance, withdrawal, and
PICU-acquired complication (PACs) [1,6,21,116–120]. Naloxone and flumazenil boluses are
used for reversal of unwanted opioid- and benzodiazepine-induced respiratory depression
and oversedation.

3.1. Sedation Assessment

The State Behavioral Scale (SBS), the COMFORT scale, the COMFORT behavior scale
(COMFORT-B scale), and the Richmond Agitation Sedation Scale (RASS) have been vali-
dated in PICU patients.

The SBS follows 8 behavioral dimensions in mechanically ventilated children: respira-
tory drive, response to ventilation, coughing, best response to stimulation, attentiveness
to care provider, tolerance to care, consolability, and movement after being consoled [63].
Each behavioral marker can be assigned three–six levels, their sum intended to follow
the patient along the sedation-agitation continuum. The SBS, intended for use along the
entire pediatric age spectrum, purposely excluded descriptors which would not be met by
children <6 years: ability to communicate, follow commands, and attempt to sit or climb
out of bed [63]. Similarly, physiologic vital signs (heart rate, blood pressure, respiratory
rate) were also excluded, as they have been shown to have low sensitivity and specificity
for quantifying degree of sedation/agitation [63,121–123]. SBS score ranges from −3 (unre-
sponsive) to +2 (agitated) with a target of 0 intended to achieve the “Goldilocks zone” of
awake and able to calm. The SBS should be paired with pain assessment scores every 4 h
as well as prior to any interventions that would alter the analgosedative level [63].

The COMFORT scale is an observational scale that measures eight clinical parameters
to determine a critically ill child’s level of distress. Unlike the SBS, the COMFORT scale
contains two physiologic parameters and six behavioral dimensions: heart rate, mean
arterial pressure, alertness, calmness, respiratory response, movement, muscle tone, facial
expression. Heart rate and blood pressure, despite being reliable determinants and markers
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for sedation, have been shown to be of limited reliability and validity as determinants of
the total COMFORT score [123]. The COMFORT-B scale eliminates these two physiologic
parameters, identifying scores of ≤10 as oversedation and ≥23 as undersedation. A
limitation of this scale, however, is that the scores of 10–23 are not predictive of adequate
depth of sedation. Thus, the COMFORT-B scale is commonly used in conjunction with
other observational scales, some requiring nursing input (Nurse Interpretation of Sedation
Score) [21,124].

The RASS is an agitation and sedation scale which has been validated for both adults
and children (intubated and non-intubated) in the critical care setting [125–127]. The RASS
is a 10-point scale ranging from −5 (unresponsive) to +4 (combative) with 0 being alert and
calm [125–127]. For neonates and children with cognitive or developmental limitations for
whom level of arousal is difficult to assess, the original RASS has been adapted to replace
eye contact with eye opening when the RASS is −1 to −3 [127].

An important limitation of all of these assessment scales is their inability to be used
for children with neuromuscular blockade. For these patients, the Bispectral Index (BIS)
monitor has been shown to correlate well with the COMFORT scores, particularly for those
with deep sedation [128]. BIS should be considered for patients who are not able to mount a
response, taking into account however that BIS values are vulnerable to inaccuracy related
to some medications (ketamine, nitrous oxide), hemodynamics, electrical interference from
other monitors, and temperature shifts [129].

3.2. Sedatives
3.2.1. Benzodiazepines

Benzodiazepines, particularly midazolam, are the most commonly used sedative in
PICUs, used not only for sedation but also as muscle relaxants, anticonvulsants, amnestics,
and hypnotics [21,130]. Benzodiazepines work on the on the gamma amino butyric acid
(GABA)-A receptor, reducing the excitability of neurons thereby producing a calming effect
on the brain [131,132]. Benzodiazepines demonstrate a dose-dependent respiratory and
myocardial depressant effect and may cause hypotension, particularly in the hypovolemic
neonate [30,133,134].

Midazolam

Midazolam is a short acting benzodiazepine that is the sedative of choice in most
PICUs [30,130]. Midazolam can be administered orally (PO), rectally (PR), intramuscularly
(IM), intranasally (IN) and intravascularly (IV). Fastest onset is via the IV route at 1–3 min,
followed by IM/IN at 5–10 min and then PO/PR at 10–30 min [5]. IV midazolam has
a duration of action of 45 to 60 min. When used for sedation, the IV bolus dose is 0.05
to 0.1 mg/kg (maximum of 20 mg per dose) and the maintenance infusion ranges from
0.05 to 0.12 mg/kg/h. For refractory status epilepticus, a bolus of up to 0.2 mg/kg with a
maintenance infusion up to 0.4 mg/kg/h is common [135,136]. Midazolam is metabolized
by hydroxylation to an active metabolite (1-OH midazolam) and subsequently undergoes
glucuronidation to 1-OH-midazolam-glucuronide, also an active metabolite, which is then
renally excreted. Patients with renal insufficiency or failure may experience oversedation
with midazolam if there is no dose adjustment [137]. Adverse effects include tolerance,
dependence, and withdrawal; there is also a risk of paradoxical hyperactivity when given
as a bolus dose [116,117].

Lorazepam

Lorazepam is a long-acting benzodiazepine that is commonly used in the PICU for
its antiepileptic and anxiolytic properties. Lorazepam can be administered PO, IM, and
IV at the same dose of 0.5 mg/kg (maximum of 2 mg per dose) [5,21]. IV lorazepam is
dissolved in propylene glycol which at high levels can produce metabolic acidosis and
renal dysfunction. Therefore, IV lorazepam is not used as an infusion [21,138,139]. Oral
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lorazepam plays an important role for converting and weaning patients from long term
midazolam infusions to an oral regimen [21,140].

Diazepam

Diazepam is a long-acting benzodiazepine that is administered for its anxiolytic, mus-
cle relaxant, and antiepileptic properties. It can be given PO or IV [5]. IV Diazepam is highly
water insoluble and is dissolved in propylene glycol. Diazepam can burn on injection and
may cause phlebitis with prolonged infusion. IV Diazepam has an onset of action of 4–5 min
and a duration of action of 60 to 120 min [141]. Diazepam is metabolized in the liver—it is
N-demethylated by CYP3A4 and 2C19 to the active metabolite N-desmethyldiazepam, and
is hydroxylated by CYP3A4 to the active metabolite temazepam. N-desmethyldiazepam
and temazepam are both further metabolized to oxazepam, and all are eliminated via
glucuronidation. These metabolites are active, accumulate in renal failure, and lead to a
half-life of diazepam which can range from 20 to 120 h [142,143].

3.2.2. Barbiturates

Barbiturates are useful for their antiepileptic properties and their ability to control
intracranial hypertension. Similar to benzodiazepines, barbiturates act primarily via
GABA agonism [144,145]. Respiratory depression and hypotension can occur with barbi-
turates and caution should be taken when weaning from prolonged infusions in order to
avoid withdrawal.

Sodium Thiopental

Thiopental is short-acting and is used more commonly in the operating room for the
induction of general anesthesia and in the pediatric critical care setting for neuro-protective
intubations. Its peak onset is 1–2 min and the duration of action is 30 min [146]. The dose is
age-dependent with infants requiring much higher induction doses of 5–8 mg/kg compared
to children, teens and adults at 3–4 mg/kg [144,147,148]. Thiopental is metabolized by
hydroxylation and oxidation via hepatic metabolism and it has a long elimination half-life
of up to 12 h [144,149]. It is important to note that thiopental is no longer available in the
US as its manufacturer embargoed its import to protest its use for death by lethal injection.

Pentobarbital

Pentobarbital is a long-acting barbiturate used for sedation, status epilepticus, and
the treatment of refractory intracranial hypertension after severe traumatic brain injury.
When administered via the IV route, pentobarbital has an onset of action at 5 min, peaks
at 15 min and has a duration of action >6 h. Pentobarbital undergoes hepatic metabolism
via cytochrome p450-induced hydroxylation and glucuronidation [144]. Pentobarbital has
an elimination half-life of 12–24 h [144]. Pentobarbital therapy can be effective for severe
traumatic brain injury (TBI) of adults with refractory intracranial hypertension. A study of
55 patients reported a one-year survival at discharge of 40% with good functional outcomes
in 68% of survivors at 1 year [144]. In pediatric patients with TBI, pentobarbital reduced
ICP to below their treatment threshold of 20 mm hg in 28% of patients within 6 h. Side
effects of myocardial depression with resultant hypotension, necessitating pressors, should
be anticipated during treatment [150]. Pentobarbital is a valuable option for refractory
intracranial hypertension not amenable to surgical intervention [151].

3.2.3. Alpha Agonists

Alpha agonists are often used alone or as adjuncts to sedative, opiates, or benzodi-
azepines [92]. The sedative-hypnotic effects of alpha 2 agonists are the result of inhibition
of norepinephrine release from noradrenergic receptors in the locus ceruleus area of the
brainstem [152]. The advantage of alpha 2 agonists is lack of respiratory depressant effect,
advantageous in extubating children on prolonged sedatives [153–155]. Bradycardia, brad-
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yarrhythmia, and hypotension, not typically requiring pharmacologic intervention, should
be anticipated [154,156].

Clonidine

Clonidine can be delivered PO, IV, transdermally, or epidurally. Typical clonidine
dose is 4 to 5 mcg/kg. Clonidine IV bolus dose is 1 to 2 mcg/kg with 1 mcg/kg/hour
as an infusion rate. The dose for neuraxial Clonidine is 1–2 mcg/kg. The transdermal
patch delivers 0.1 mg per 24 h and is changed weekly [157–161]. Fifty percent of a dose of
clonidine is metabolized by the liver to inactive compounds while the other unchanged
drug, along with the metabolites, is excreted in urine and stool. The elimination half-life
of enteral clonidine is 12 to 16 h; the CSF elimination half-life is 1.3 h [162]. Clonidine
and midazolam have comparable profiles for the sedation of ventilated children [156].
Clonidine has been used to wean children from prolonged dexmedetomidine and opiate
infusions [163].

Dexmedetomidine

Dexmedetomidine is approved for administration only by the IV route but is effective
also by the IM, IN, and sublingual route. It is metabolized by the liver via glucuronida-
tion and oxidation and it has no active metabolites; the half-life of dexmedetomidine is
2 h [21,164]. Dexmedetomidine’s sedative effect closely mimics natural sleep, with EEG
activity in children resembling Stage 2 sleep [165]. When comparing dexmedetomidine to
midazolam and propofol in adults, dexmedetomidine improves arousability and patient
cooperation, decreases duration of mechanical ventilation, and shortens time to extubation.
Length of ICU stay and mortality rate were similar amongst the groups [15]. In children,
dexmedetomidine is synergistic with propofol, decreasing propofol requirements by up
to 50% when used for procedural sedation for gastrointestinal endoscopy [166]. An open-
label, pilot, prospective, multicenter, randomized controlled trial with dexmedetomidine
was designed to evaluate the sedation of mechanically ventilated children. Dexmedeto-
midine as the primary sedative was feasible, appeared safe, achieved early, light sedation
(State Behavioral Scale −1 to +1), and reduced midazolam requirements. There were more
episodes of hypotension and bradycardia with the dexmedetomidine group (including
one serious adverse event) but no difference in vasopressor requirements [167]. An ob-
servational prospective multicenter (9 PICUs) study (PROSDEX) evaluated the efficacy
and effects of dexmedetomidine for prolonged sedation (≥24 h) in critically ill pediatric
patients. Dexmedetomidine assured comfort, spared use of other sedatives, and atten-
uated withdrawal and delirium symptoms. The loading dose and infusion dosages of
dexmedetomidine were independent risk factors for hemodynamic adverse events [168].

3.2.4. Propofol

Propofol is a GABA agonist and a diisopropyphenol anesthetic that is advantageous
in the critical care setting due to its rapid onset (1–2 min), high potency that consistently
produces the desired sedative effect, short duration of action (2–8 min), and antiemetic and
euphoric properties that lead to more positive patient experience [15,141,169]. The bolus
dose of propofol is 0.5 to 1 mg/kg with an infusion rate of 1 to 3 mg/kg/h. In general, the
half-life of propofol after an infusion is 30 to 60 min, longer with prolonged infusions as it is
highly lipophilic, redistributed from fat stores [15,141,169,170]. Propofol is metabolized by
hepatic glucuronidation and hydroxylation [169]. The adverse effects of propofol are pain
on injection, vasodilation or negative inotropy leading to hypotension and/or bradycardia,
respiratory depression, apnea, hypertriglyceridemia, and pancreatitis [15,141,169,170].
With prolonged infusion rates of >4 to 5 mg/kg/h and use of long-term propofol infusion
in pediatric patients, there is a risk of propofol infusion syndrome (PRIS) characterized by
lactic acidemia, rhabdomyolysis, dysrhythmias, cardiac arrest, and a high mortality rate
(52% in children and 48% in adults) [15,169,171]. Despite the concern for PRIS, propofol is
still widely used in PICUs [172–174].
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3.2.5. Ketamine

Ketamine has both analgesic and sedative properties. Ketamine is a phencyclidine
derivative and an NMDA antagonist and is typically used as an adjunctive sedative agent
or as part of a multimodal analgesic regimen as discussed earlier [30,94]. Ketamine is rapid-
acting and it preserves laryngeal reflexes allowing for spontaneous respirations during
procedural sedation. Ketamine is also a powerful bronchodilator which makes it the agent
of choice in patients with severe bronchospasm like status asthmaticus [30]. Although
ketamine is a myocardial depressant with vasodilating properties, its indirect sympa-
thomimetic activity (stimulating catecholamine release and inhibition of catecholamine
reuptake) preserves cardiac output and leads to increase in blood pressure and heart
rate [15,30].

Ketamine has a rapid onset of 30 to 60 s when given IV with effective procedural sedation
conditions achieved in 1 min and lasting up to 5 to 10 min. Adverse effects of ketamine include
sialorrhea, as well as psychotogenic reactions such as emergence delirium, disorientation,
hallucinations, and combativeness at higher serum concentrations [30,141,175–178]. Ketamine
is metabolized by the liver to an active metabolite, norketamine; ketamine and norketamine
are then further metabolized by the liver to water soluble compounds that are then renally
excreted [179].

3.2.6. Antihistamines and Antipsychotics in the PICU

First generation (sedating) antihistamines such as promethazine, trimeprazine, and
diphenhydramine have antidopaminergic and anticholinergic actions. These agents are
non-specific and act on histaminic, serotonergic, and cholinergic receptors with marked
central nervous system (CNS) effects such as hypnosis, sedation, antiemesis, and paradoxi-
cal excitation in children [21,180]. Although not commonly used for PICU sedation, they
can be adjuncts for the management of acute agitation and delirium [21].

Antipsychotics (haloperidol, chlorpromazine, risperidone, olanzapine, and quetiapine)
are useful treatments for refractory delirium [181]. First-generation antipsychotics, such as
haloperidol and chlorpromazine, have high rates of extrapyramidal symptoms (EPS) due
to their strong dopamine D2 antagonism [181]. Haloperidol is popular in the critical care
setting because of its IV formulation. Second-generation antipsychotics such as risperidone,
olanzapine, and quetiapine have lower rates of EPS and tardive dyskinesia but with long
term use they are associated with an increased risk of weight gain, metabolic side effects,
and dyslipidemia. Risperidone and quetiapine are often favored for their favorable side
effect profile in the treatment of delirium [181–183].

3.3. Sedation Protocols

The efficacy of protocolized sedation is unclear in pediatrics due to the paucity of
randomized, controlled clinical trials [184,185]. Sedation protocols for mechanically venti-
lated PICU patients have been shown to improve PICU resource utilization, decrease the
benzodiazepine and opiate days and increase the amount of ventilated-time awake [4,186].
Nurse-implemented, goal-directed sedation protocols, however, have not been shown to
decrease the days of mechanical ventilation. Figure 1 compares an updated and more appro-
priate analgosedation approach to a traditional benzodiazepine-based sedation regimen.

3.4. Daily Sedation Interruption (DSI)

Daily sedation interruption (DSI) has been used to mitigate the negative effects of
oversedation and prolonged benzodiazepine use. A study comparing daily interruption
versus continuous sedative infusions in mechanically ventilated children demonstrated
that the length of mechanical ventilation, duration of intensive care unit stay, total dose
of midazolam, and average calculated cost of the therapy were significantly reduced in
the interrupted [187]. Conversely, a multicenter, randomized controlled trial comparing
daily sedation interruption (DSI) plus protocolized sedation (DSI + PS) to protocolized
sedation only (PS) found that interruption did not improve clinical outcome in critically
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ill children and was associated with increased mortality. The value of interrupted daily
sedation still remains unclear. The differences in outcomes between these two groups could
be attributed to differences in patient populations, medical conditions, and baseline ICU
clinical practices [21,188]. These authors recommend, based on clinical experience, that
should DSI be implemented, it be done with caution.
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3.5. Drug Cycling

The rationale behind drug cycling is that cycling sedative agents will limit the patient
tolerance and tachyphylaxis to the sedatives, decrease the body total deposit of sedatives,
and subsequently decrease emergence time when the patient is ready for extubation. Some
PICUs use drug cycling or drug rotating to decrease the adverse effects of continuous
sedation, despite minimal data to support this practice [21,189,190].

3.6. Delirium in the PICU

The American Psychiatric Association’s fifth edition of the Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM-5) define delirium as a disturbance in attention
(i.e., reduced ability to direct, focus, sustain, and shift attention), awareness (reduced
orientation to the environment), and cognition (e.g., memory deficit, disorientation, lan-
guage, visuospatial ability) that develops over a short period of time (a few hours to a
few days), tends to fluctuate in severity in the course of a day, is not better explained
by a pre-existing, established, or evolving neurocognitive disorder, and there is evidence
that the disturbance is a physiological consequence of another medical condition, sub-
stance intoxication, withdrawal syndrome, or multifactorial [191]. Delirium in the PICU
leads to prolonged mechanical ventilation, increased length of PICU admission and hos-
pital stay in general, higher rates of morbidity and mortality, and increased medical care
cost [184–198]. Prolonged exposure to sedative medications, higher depths of sedation,
young age, baseline developmental disorders, and PICU environmental factors are risk
factors for delirium [185,192–194,199]. Diagnosing delirium can be especially challenging
in the PICU setting as the symptoms of cognitive disturbance, hallucinations, and hypoac-
tive delirium are not always able to be verbalized and expressed, especially in the young,
preverbal, developmentally challenged patient [21,200,201].
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Delirium Monitoring and Treatment

Risk factors associated with delirium may be reduced by decreasing medication
exposure by measuring sedation depth, avoiding benzodiazepines and anticholinergics as
much as possible, and protecting sleep by clustering patient cares, minimizing overhead
pages, dimming lights at night, and using ear plugs and eye masks [130,202]. It is important
to screen PICU patients regularly for delirium via validated assessment tools.

There are a variety of assessment tools. The Cornell Assessment of Pediatric Delirium
(CAPD), considered the standard of care in most PICUs in North America, was validated
in children of all ages for mechanically ventilated children [9,185,203]. The CAPD is 94%
sensitive and 79% specific [203]. A prospective observation double-blind cohort study
to improve the specificity of the CAPD, to allow for accurate detection of delirium in
developmentally delayed children admitted to the PICU, demonstrated that, when used
in conjunction with RASS score fluctuation, the CAPD is a sensitive and specific tool for
the detection of delirium in children with developmental delay and this allows for reliable
delirium screening in this hard-to-assess population [204].

The Pediatric Confusion Assessment Method for the ICU (pCAM-ICU) for age five
years and older and the Preschool Confusion Assessment Method (psCAM-ICU) are also
validated in children and have high reliability, with a high sensitivity and specificity of 83%
and 99%, respectively [200]. The Sophia Observation withdrawal Symptoms scale-Pediatric
Delirium scale (SOS-PD) is another validated tool for delirium screening in critically ill
children, with measurement properties comparable to the CAPD, psCAM-ICU, and the
pCAM-ICU and an overall sensitivity of 92.3% and specificity of 96.5% [205–207].

Treating delirium may involve non-pharmacologic and pharmacologic approaches. A
retrospective matched cohort study in the PICU suggests that antipsychotics may be more
effective for early vs late-onset delirium refractory to non-pharmacologic treatment [21,181].
Table 1 depicts a comparison of pediatric delirium screening tools [30].

Table 1. Comparison of Pediatric Delirium Screening Tools. Reprinted with permission from Beckman E. Analgesia and
Sedation. In Buck ML, Manasco KB, eds. Pediatric Self-Assessment Program, 2017 Book 3. Sedation and Analgesia. Lenexa,
KS: American College of Clinical Pharmacy, 2017 [30].

DRS-88 DRS-R-98 PAED pCAM-ICU psCAM-ICU CAPD
PICU population

(n)
Med/surg

(154)
Med/surg

(154)
Med/surg a

(154)
Med/surg,
cardiac (68)

Med/surg,
cardiac (300)

General
(111)

Age (year) 1–17 1–17 1–17 ≥5 0.5–5 Birth–21 year
Include mechanical

ventilation? No No No Yes Yes Yes

Include developmental delay? No No No No No Yes

Type of delirium Hyperactive Hyperactive Hyperactive Hyperactive
Hypoactive

Hyperactive
Hypoactive

Hyperactive
Hypoactive

No. of questions or domains 10 16 5 4 4 8
Administering provider Psychiatrist Psychiatrist Anesthesia Bedside b Bedside b Bedside b

a Included postoperative patients, not PICU patients. b Bedside provider includes nurse, advanced practice provider and physician.
CAPD = Cornell Assessment of Pediatric Delirium; DRS-88 = Delirium Rating scale, 1988; DRS-R-98 = Delirium Rating Scale, Revised,
1998; IRR = interrater reliability; PAED = Pediatric Anesthesia Emergence Delirium; pCAM-ICU = pediatric confusion assessment method
for the ICU; psCAM-ICU—preschool confusion assessment method for the ICU.

3.7. Withdrawal

Prolonged infusions of analgosedative agents, especially opioids and benzodiazepines,
leave patients at high risk of developing withdrawal with discontinuation.

A multidimensional predictive model identified younger age, preexisting cognitive or
functional impairment, higher nursing workload, >one-to-one nurse staffing, ≥3 prewean-
ing sedative classes, higher preweaning mean daily opioid dose, higher sedative doses and
longer exposure periods are risk factors for iatrogenic withdrawal syndrome in critically ill
children [208].

Although opioid withdrawal syndrome can occur as early as two–three days, it
tends to occur after five days of continuous opioid administration [209–211]. The most
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common symptoms of opioid withdrawal include diarrhea, vomit, sweat, and fever [209].
A mean benzodiazepine dose of 0.35 mg/kg/h increases the risk of developing withdrawal
symptoms which include anxiety, insomnia, irritability, restlessness, hand tremors, muscle
spasms, and seizures [210,211]. The incidence of withdrawal after >3 days of infusions
is cited as 37%, with high benzodiazepine dosing as a predictor. Other studies report
withdrawal in up to 50% after 48 h, increasing to up to 80% after >5 days continuous
infusion [211,212].

Withdrawal Monitoring and Treatment

Differentiating between delirium and withdrawal can be difficult using the current
assessment tools which rely on clinical, physiologic, and behavioral signs [213]. Patients
at high risk for withdrawal should be identified prior to initiating the infusion [209–211].
There are three validated iatrogenic withdrawal assessment scales specific for the pediatric
population: Withdrawal Assessment Tool-1 (WAT-1) scale, the Opioid and Benzodiazepine
Withdrawal Score (OBWS), and the Sophia Observation Withdrawal Symptoms (SOS) [212].
A major limitation of all these scales is their failure to accommodate for age and develop-
ment. For example, the OBWS includes the Moro reflex which is a significant manifestation
of withdrawal in newborns but disappears by three months of age. Future research needs to
be directed to create new assessment tools or adapt these existing scales to developmental
stages [212,214].

Dexmedetomidine and clonidine have been shown to minimize the manifestations
of iatrogenic withdrawal symptoms [212,215]. Enteral and parenteral methadone reduce
the risk of iatrogenic withdrawal symptoms produced by opioids [57,212]. Phenobarbital
has also been shown to be efficient in alleviating and reducing the intensity of refractory
withdrawal from opioids and benzodiazepine [212]

4. Neurodevelopmental Outcomes

The majority of the studies assessing neurodevelopmental outcomes of pediatric
patients exposed to analgosedative agents have focused mainly on general anesthesia.
Brief (<1 h) exposure to general anesthesia has not been shown to alter neurodevelop-
mental outcome at age five years as compared to awake/regional anesthesia and general
anesthesia exposure before age three years and is not associated with deficits in general
intelligence [216,217]. Systematic review of studies evaluating neurodevelopmental out-
comes and prospectively enrolling children exposed to a single GA procedure compared
with unexposed children demonstrated that a single GA exposure is associated with sta-
tistically significant increases in parent reports of behavioral problems with, again, no
difference in general intelligence [218]. Given key differences between general anesthesia
and ICU sedation, such as the duration of exposure and the use of multimodal analgoseda-
tive regimen in the ICU, it is difficult to draw conclusions about PICU sedation from these
general anesthesia studies.

Cumulative opioid dosing has shown an association with worse cognitive scores in
extremely low birth weight NICU infants, even after adjusting for social and neonatal risk
factors [219]. It is important to consider that the long-term neurocognitive outcomes of
midazolam infusion for neonatal sedation in the intensive care unit is unclear and requires
further study [220]. Another study failed to show an association between perioperative
and post-operative anesthesia/sedation administration and neurodevelopmental outcomes
up to two years following cardiac surgery [221]. A four year follow up of the same
cohort demonstrated a small statistically significant association between days on chloral
hydrate and Performance Intelligence Quotient (PIQ), and benzodiazepine cumulative
dose and lower Beery-Buktenica Developmental Test of Visual Motor Integration (VMI-V).
Despite these finding, there was no association between sedation/analgesia drugs and
neurodevelopmental outcomes [222].

Adult ICUs have initiated care bundles to address neurocognitive patient outcomes.
For example, each arm of the ABCDEF care bundle (Assess, prevent and manage pain; Both
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spontaneous awakening and breathing trials; Choice of sedative and analgesic; Delirium
assessment, prevention, and management; Early mobilization and exercise; Family engage-
ment and empowerment) helps prevent and decrease incidence of delirium and has been
shown to enhance the rehabilitation potential of adult ICU patients [223]. Pediatric ICUs
must continue to follow the adult model by actively working to adapt similar bundles to
deliver well rounded patient care in order to optimize analgosedative regimens, engaging
patients to participate in higher level physical and cognitive exercises [224].

5. Early Mobilization

Study data in critical care medicine suggest that survivors of both adult and pediatric
critical illness tend to suffer significant physical, cognitive, and psychosocial morbidities
that often lead to delayed recovery, poor rehabilitation, functional impairments, and
decreased quality of life [225,226]. Early mobilization, a key aspect of the ICU Liberation
ABCDEF bundle mentioned earlier, is gaining in popularity in critical care medicine, with
PICUs taking the lead from adult ICUs. In the past, critically ill children were sedated
and immobile because of concerns for their physiological fragility and risk of dislodging
vital equipment; however, the ICU Liberation movement has led to a major cultural
shift [224]. Large scale studies are still needed to accurately determine the outcomes
of early mobilization in critically ill pediatric patients as the published data currently
available reveal substantially variable outcome measures. Andelic et al., in their study to
evaluate whether a continuous chain of rehabilitation that begins with the acute phase
could improve the functional outcome of severe traumatic brain injury (TBI) patients,
compared to a broken chain of rehabilitation that starts in the sub-acute phase of TBI,
found that better functional outcome occurs in patients who receive an early onset and
continuous chain of rehabilitation [227]. Jacobs et al. in their study to report the safety and
efficacy of a postoperative approach that avoids pharmacologic and physical restraints, and
allows liberal physical activity after single-stage laryngotracheal reconstruction in children,
demonstrated that, for developmentally appropriate children, postoperative management
after single-stage laryngotracheal reconstruction does not require the use of physical and
pharmacologic restraints and that older children who are not sedated or restrained and
who are allowed liberal physical activity have shorter pediatric intensive care unit and
hospital lengths of stay, and a decreased incidence of postoperative adverse events [228].

Even though the data do suggest that early mobilization is safe, feasible, and can be
employed in a variety of pediatric critically ill populations, implementing guidelines in the
PICU can be quite challenging due to the vast differences in cognitive ability and physical
capacity of pediatric patients, the scarcity of pediatric physiotherapy resources, and the
great variability of medical diagnoses found in the PICU.

An observational quality improvement project called “PICU up!” studied 200 critically
ill children to assess the feasibility of early mobility in the PICU, and demonstrated that
implementation of a structured and stratified early mobilization program in the PICU
was feasible and resulted in no adverse events. PICU Up! increased physical therapy and
occupational therapy involvement in the children’s care and increased early mobilization
activities, including ambulation [229]. Simone et al., in their study, examined the impact of
an ICU bundle on delirium screening and prevalence as well as described characteristics
of delirium cases and found that implementation of an ICU bundle, along with staff edu-
cation and case conferences, is effective for improving delirium screening, detection, and
treatment and is associated with decreased delirium prevalence [207]. Family engagement
is also crucial as some data suggest that family involvement helps propel early mobility
efforts forward [227]. Bundled interventions that emphasize optimizing sedation such that
frequent sedation assessment with validated tools helps guide the titration of analgoseda-
tive agents to goal-specific effects, minimizing benzodiazepines, screening for delirium
frequently, and promoting sleep in the PICU will transform PICU culture of immobility
and reduce the incidence of PICU-acquired complications (PACs).
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6. Neuromuscular Blockade

Neuromuscular blockade may be a necessary adjunct to analgosedative agents in
patients who have serious to severe critical illness as it has been shown to help facilitate
endotracheal intubation, prevent ventilator dyssynchrony, reduce barotrauma, facilitate
mechanical ventilation in patients with high peak inspiratory pressures not responsive
to conventional ventilation, decrease oxygen consumption in severe respiratory failure,
minimize ventilator-induced lung injury (VILI), control intracranial pressure spikes in
critical traumatic brain injury, control intraabdominal pressure spikes in patients with
open abdomens post-operatively, and treat therapeutic hypothermia-induced shivering in
post-cardiac arrest critical care [15,230–235]. Neuromuscular blocking agents (NMBAs) are
selected based on indication, patient’s comorbidities (hepatic or renal failure), and inter-
actions with other drugs that may enhance or prolong their action [230]. Given the major
concerns surrounding prolonged deep sedation and immobilization of patients in the PICU,
neuromuscular blockade use in critical illness has decreased. There has been a concern for
the development of critical illness myopathy (CIM), critical illness polyneuropathy (CIP),
or the combination—critical illness polyneuromyopathy (CIPNM) with neuromuscular
blockade and glucocorticoid administration in the ICU; however, most studies have shown
no consistent relationship between critical illness neuromuscular abnormalities and the
use of glucocorticoids and NMBAs [236]. Cisatracurium is more and more the agent of
choice for maintenance of muscle relaxation in the PICU because it is a non-steroidal
benzylisoquinoline that is broken down via Hoffman degradation independent of hepatic
or renal metabolism or excretion and it has been shown to be associated with more rapid
spontaneous recovery of neuromuscular function compared with vecuronium; however,
there is no evidence that this observed difference in neuromuscular recovery affects out-
comes [237,238]. It is also important to note that Cisatracurium is more expensive than
all the other neuromuscular blocking agents. Regardless of the choice of muscle relaxant,
the recommendation is to monitor the degree of neuromuscular blockade with regular
clinical assessment (such as patient’s spontaneous movements or triggering ventilator)
and peripheral nerve stimulation using train of four or tetanic stimulation [239,240]. Also,
neuromuscular blockade should be discontinued as quickly as safely possible in order to
potentially decrease the incidence of prolonged recovery secondary to drug and metabolite
accumulation and to potentially decrease the incidence of neuromuscular weakness related
to critical illness [240].

7. Conclusions

A benchmark of successful sedation in PICU practice should target a situation in which
a child is easily arousable or conscious, breathes in synchrony with a ventilator, tolerates
procedures and general care routines, and generally appears comfortable. Optimal analgesia
and sedation are dependent on the implementation of validated tools to guide the titration of
analgosedative agents, and screen for withdrawal and delirium. Optimal sedation should
minimize physical and chemical restraints, encourage safe liberal activity, promote restorative
sleep, and reduce the incidence of PICU-acquired complications (PACs).
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