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Abstract: Immune dysfunction and pro-oncogenic inflammation play critical roles in malignant
progression and non-response to immunotherapy for hepatocellular carcinoma (HCC). In particular,
PD-1/PD-L1 blockade therapy could induce durable tumor remissions and improve the prognosis of
patients to a certain extent. However, PD-L1, as a promising biomarker, has limited knowledge about
its relevance to tumor microenvironment (TME) characterization and endogenous inflammatory
immune responses. In this study, we systematically investigated and characterized the important
intercommunication of PD-L1 with immunosuppressive TME and inflammatory response activity
in HCC and predicted promising therapeutic drugs to improve the current therapeutic strategy for
specific patients. We identified aberrant expression patterns of PD-L1 in HCC and completely different
clinical and molecular characteristics among the PD-L1 subgroups. PD-L1 positively associated with
immunosuppressive macrophages and macrophage-derived cytokines, which may contribute to
the polarization of macrophages. Moreover, inflammatory response activity exhibited significant
differences between high and low PD-L1 expression groups and had robust positive correlativity of
the infiltration level of tumor-associated macrophages. Notably, given the immunosuppressive and
inflammatory microenvironment in HCC, we screened four candidate drugs, including dasatinib,
vemurafenib, topotecan and AZD6482, and corroborated in two pharmacogenomics databases, which
might have potential therapeutic implications in specific HCC patients. Our results enhanced the
understanding of linkage in PD-L1 expression patterns with macrophages and inflammation, which
may provide new insight into the pathogenic mechanisms and potential therapeutic strategy for HCC.

Keywords: PD-L1; tumor-associated macrophages; immunosuppressive tumor microenvironment;
inflammatory response; immunotherapy

1. Introduction

Hepatocellular carcinoma (HCC), a global health challenge, is the second most-
prevalent cause of cancer-associated mortalities worldwide [1]. The incidence of HCC
is growing worldwide, and by 2025, there will be an estimated incidence of >1 million
individuals with liver cancer annually [2]. Despite breakthroughs in imaging technology,
chemotherapy, interventional radiology, hepatic resection, and liver transplantation for
early-stage HCC patients in recent years, there is no effective treatment method to date for
advanced patients with dismal prognosis [3,4]. Therefore, further efforts are still demanded
to develop effective therapeutic targets and alternative treatment strategies for HCC.

It is worth noting that the immune system plays a multifaceted role in HCC devel-
opment, either containing tumor onset and growth through immunologic surveillance or
accelerating progression through pro-tumorigenic inflammation. In particular, increased
infiltration of tumor-associated macrophages (TAMs) has been implicated in high TNM
stage, large tumor size, and immune suppression, ultimately resulting in tumor pro-
gression and drug resistance [5–7]. Meanwhile, HCC represents a classic paradigm of
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inflammation-related cancer, where persistent inflammation strongly influences tumor
progression and therapeutic effect [8,9]. TAMs are important mediators of the link be-
tween inflammation and cancer, especially in HCC [10,11]. Notably, macrophages are
heterogeneous cell populations that have been traditionally classified into two phenotypes
(M1 and M2). The macrophages M1, which are classically activated, kill tumor cells and
produce large amounts of pro-inflammatory cytokines. The macrophages M2, which are
alternatively activated, suppress the inflammatory response as well as promote cancer
development. It is important that macrophages are also plastic cells whose phenotype
of polarized M1–M2 could be reversed in vitro and in vivo under certain circumstances,
evading immune surveillance.

Cancer immunotherapy, including immune checkpoint inhibitors (ICIs), chimeric
antigen receptor T cells, and oncolytic virotherapy, have proven their efficacy and revolu-
tionized cancer treatment in basic and clinical studies over the past decade [12]. Especially
programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1
(PD-L1), ICIs expressed on the cell surface, can activate negative regulatory and dampen
antitumor immune responses, leading to the escape of cancer cells from the host immune
system [13,14]. Accumulating data have suggested that therapeutic monoclonal anti-
bodies targeting PD-1/PD-L1 have shown remarkable benefits in prolonging survival in
melanoma [15], breast cancer [16], and lung cancer [17]. However, it appears that only
a small percentage of HCC patients benefit from immunotherapy [18,19]. PD-L1 is up-
regulated in the context of the chronic inflammation [20] and is often induced or maintained
by inflammatory cytokines [14,21], which could be considered as a reflection of endogenous
inflammatory immune responses. Meanwhile, the inflammatory TME plays a critical role
in resistance to traditional antitumor therapies [22,23], where TAMs have been demon-
strated to induce immunosuppression and diminish the efficacy of the drug sorafenib
in HCC [24,25]. Nevertheless, the association between PD-L1, TAMs, and inflammatory
response in HCC remains currently unclear.

Given the dissatisfied efficacy that PD-1/PD-L1-targeted cancer immunotherapy in
HCC necessitates, we need to improve our understanding of the impact of PD-L1 on
immune cells and inflammation. In the present study, we systematically investigated the
PD-L1-related transcriptome profile of HCC and characterized its potential role of PD-L1
in the immunosuppressive TME, focusing on its relationship with TAMs and inflammatory
response activities. In addition, we also identified the most promising therapeutic drugs
for specialized populations among HCC patients, offering the potential to improve current
therapeutic strategies.

2. Methods and Materials
2.1. Acquisition of Data

HCC gene expression profile and corresponding clinicopathological characteristics
were downloaded from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/,
accessed on 1 March 2021) and the Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/, accessed on 1 November 2021). In the TCGA, the RNA sequencing
data of 342 HCC samples and 48 normal samples were collected (TCGA LIHC cohort).
Furthermore, we organized clinicopathological information on age, gender, tumor-node-
metastasis (TNM), pathologic stage, World Health Organization grade, survival time and
status. In addition, 81 HCC patient samples, as the validation cohort, were extracted based
on the disease state in the GSE62232 cohort from GEO [26].

2.2. Molecular Characteristics of Different PD-L1 Subgroups

In order to investigate the Molecular characteristics of PD-L1 in HCC, the abnormally
expressed genes and potential biological processes or pathways between PD-L1High and
PD-L1Low subgroups were identified. The abnormally expressed genes in PD-L1High and
PD-L1Low subgroups were calculated with the edgeR R package and defined by the thresh-
old criteria of |log2 (Fold Change)|>1 and adj. p value (False Discovery Rate) < 0.05 as the

https://portal.gdc.cancer.gov/
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differentially expressed genes (DEGs). To acquire overrepresented enrichment of biological
processes and pathways, we performed Gene ontology (GO) function enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
the DEGs in PD-L1High and PD-L1Low subgroups using the clusterProfiler R package and
followed by adj. p value (Benjamini-Hochbergs) <0.05. In particular, biological processes are
grouped according to functional themes by measuring semantic similarity among GO terms
(GOSemSim R package) [27]. Fisher-exact tests were used to determine any differences in
clinicopathological characteristics between PD-L1High and PD-L1Low subgroups.

2.3. The Infiltration Characteristics of Immune Cell Subpopulations

The infiltration levels of immune cell subpopulations in PD-L1High and PD-L1Low

subgroups were quantified. The specific gene sets for immune cell subpopulations were
obtained from previous studies by Bindea et al. [28] and Newman et al. [29]. Twenty-
six types of immune cells with corresponding gene signatures were utilized for analysis,
such as following activated dendritic cells (aDC), B cells, activated CD8+ T cells (CD8
T cells), cytotoxic cells, dendritic cells (DC), eosinophils, immature dendritic cells (iDC),
macrophages M0, macrophages M1, macrophages M2, mast cells, neutrophils, CD56bright
natural killer cells (NK CD56bright cells), CD56dim natural killer cells (NK CD56dim
cells), natural killer cells (NK cells), plasmacytoid dendritic cells (pDC), T cells, T helper
cells, T central memory (Tcm), T effector memory (Tem), T follicular helper cells (TFH),
T gamma delta (Tgd), type-1 T helper cells (Th1 cells), type-17 T helper cells (Th17 cells),
type-2 T helper cells (Th2 cells), regulatory T cells (Treg). The single sample Gene Set
Enrichment Analysis (ssGSEA) was performed to quantify the immune cell infiltration
levels of a single sample.

2.4. Inflammatory Response Activity of Different PD-L1 Subgroups

We curated gene sets for various inflammatory response biological processes using the
Molecular Signatures Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/,
accessed on 1 March 2021) C5 ontology gene sets (biological process) [30]. GSVA is com-
monly employed for estimating the variation in biological process and pathway activity in
the samples of an expression dataset [31]. For each sample, a score for the enrichment of
each inflammatory response category was calculated with GSVA analysis. The Wilcoxon
test was performed to identify differences in the enrichment of inflammatory response
categories between the PD-L1High and PD-L1Low subgroups.

2.5. Correlation of PD-L1 with Immune Cells and Cytokine Markers

We explored the correlation between the expression of PD-L1 expression, the infiltra-
tion levels of immune cells, the activation of inflammatory response and the expression of
cytokine markers. The cytokine markers included the classical cytokines of macrophages
M1 (IL12A, IL12B, IL23A, IL23R, IFNG and TNF) and macrophages M2 (IL4, IL10, IL13,
TGFB1, TGFB2 and TGFB3) [32,33]. The correlation was calculated by Pearson correlation
coefficient and defined |correlation (cor)| > 0.4 and p value < 0.05 is statistically significant
correlation. We also utilized the Search Tool for the Retrieval of Interacting Genes Database
(STRING, https://www.string-db.org/, accessed on 1 August 2021) [34] to evaluate the
interaction between PD-L1 and cytokine markers.

2.6. Prediction of Sensitivity to Immunotherapeutic Response

The Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/,
accessed on 1 December 2021), a computational framework, was used to evaluate the potential
of tumor immune escape from the gene expression profiles of cancer samples [35,36]. We
performed the TIDE algorithm to predict the TIDE score for each tumor sample to assess the
response to immune checkpoint blockade (Wilcoxon test, p value < 0.05).

http://www.gsea-msigdb.org/gsea/msigdb/
https://www.string-db.org/
http://tide.dfci.harvard.edu/
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2.7. Estimation of Drug Response in Special Populations of HCC

Two pharmacogenomics datasets, the Cancer Therapeutics Response Portal (CTRP,
https://portals.broadinstitute.org/ctrp/, accessed on 1 January 2022) [37,38] and the
PRISM Repurposing dataset (PRISM, https://depmap.org/portal/prism/, accessed on 1
January 2022), provide molecular data across hundreds of cancer cell lines and large-scale
drug screening, which make it possible to accurately predict drug response in samples.
The human cancer cell lines (CCLs) used for subsequent CTRP and PRISM analysis were
obtained from the Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.
org/ccle/, accessed on 1 January 2022) project [39]. The area-under-curve (AUC) values
for the dose response are provided from two pharmacogenomics datasets as a measure
of drug sensitivity, in which lower values indicate increased sensitivity to the treatment.
In addition, messages were filtered due to the inclusion criteria: (i) cell lines with more
than 20% of missing value in hematopoietic and lymphoid tissues were excluded; (ii) com-
pounds with more than 20% of missing AUC values were excluded and other missing
AUC values are imputed by applying K-Nearest Neighbor imputation; (iii) compounds
common to CTRP and PRISM datasets were included. Subsequently, we calculated the
AUC values of drug response using the ridge regression model (pRRophetic R package) [40]
to estimate the response to candidate drugs for clinical patients in this study, and used
10-fold cross-validation based on the expression profiles and drug response data of CCLs
training set to evaluate predictive accuracy (Wilcoxon test, p value < 0.05) [41].

3. Results
3.1. Abnormal Pattern of PD-L1 in HCC

To initially explore the role of PD-L1 in cancer, we used TIMER [42] to obtain an
understanding of the expression levels of PD-L1 in each cancer type. We recognized that
PD-L1 mRNA expression levels were significantly abnormal in many cancer types, in
particular, its expression was significantly downregulated in HCC compared to normal
tissue (p value < 0.001) (Figure 1A). We further explored the impact of PD-L1 expression on
prognosis using GEPIA [43]. Although we did not observe a significant association of PD-L1
with overall survival or disease-free survival in the TCGA LIHC cohort (Figure 1B,C), a
series of studies indicated that PD-L1 expression affects the prognosis of HCC. Next, we
preliminarily investigated the impact of PD-L1 on the immune systems. We found that
the immune cell infiltration levels changed with PD-L1 gene copy number, especially in
macrophages and neutrophils, which significantly correlated with copy number variant
type (Figure 1D).

3.2. The PD-L1 Subgroups Reflected Different Clinical and Molecular Characteristics

To explore the abnormal clinical and molecular characteristics among different expres-
sions of PD-L1, we divided the HCC patients into PD-L1High and PD-L1Low subgroups by
median value of PD-L1 expression. In clinicopathological characteristics, we identified
pathologic stage and T distribution with significant differences between PD-L1High and
PD-L1Low subgroups (Figure 2A). The results of differential expression analysis showed
that 1314 genes were significantly upregulated in PD-L1High subgroup and 332 genes were
significantly upregulated in PD-L1Low subgroup (Figure 2B). Figure 2C illustrated the
expression levels of the top 10 DEGs in PD-L1High and PD-L1Low subgroups, respectively.
Notably, we found that TAMs characteristic cytokines (such as IL10, IL13, IFNG, EGF and
HGF) were significantly differentially expressed. In addition, GO enrichment analysis
showed that DEGs in PD-L1High subgroup were significantly enriched in the biological
processes of leukocyte cell activation and proliferation (such as T cell activation, regulation
of T cell activation and regulation of lymphocyte activation), while DEGs in PD-L1Low

subgroup were significantly enriched in the biological processes of amine and monoamine
transport (such as regulation of amine transport and catecholamine transport) and others
(Figure 2D). In parallel, KEGG analysis showed similar results; DEGs in PD-L1High sub-
group were significantly enriched in immune-related pathways, particularly cytokines and

https://portals.broadinstitute.org/ctrp/
https://depmap.org/portal/prism/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ccle/
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signaling related pathways, while DEGs in PD-L1Low subgroup were significantly enriched
in neuroactive ligand–receptor interaction pathways (Table S1).
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ferent. (B) The volcano plot demonstrated differences in gene expression levels, particularly for
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PD-L1Low subgroups, respectively. (D) TOP 20 biological processes in GO summary of DEGs in
PD-L1 subgroups. GO biological processes are grouped according to the functional theme and plotted
for PD-L1 subgroups.
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3.3. PD-L1 Was Positively Correlated with Immunosuppressive Macrophages

To investigate the immune cell subpopulations that may correlate with PD-L1, We first
assessed the infiltration level of each immune cell in the HCC microenvironment by using
ssGSEA analysis (Figure 3A). Then, we calculated the association between the expression
level of PD-L1 and the infiltration level of immune cells in HCC and identified seven PD-L1-
associated immune cell subpopulations in the TCGA LIHC cohort (p value < 0.05 and cor
> 0.4) (Figure 3B and Table S2). In particular, PD-L1 expression was positively correlated
with the infiltration level of macrophages M0 (cor = 0.413, p value < 0.001), macrophages
M1 (cor = 0.509, p value < 0.001) and M2 (cor = 0.426, p value < 0.001) (Figure 3C–E). In
addition, all the above results were verified in the GSE62232 validation cohort (Figure
S1A,B), especially with macrophages M1 (cor = 0.718, p value < 0.001) and M2 (cor = 0.601,
p value < 0.001) (Figure S1C–E and Table S2). The above results indicated that PD-L1
was positively correlated with the infiltration of macrophages in HCC, which may be an
important source of enhanced immunosuppression.
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3.4. PD-L1 Was Associated with Macrophage-Derived Cytokines

To further elaborate on the association between PD-L1 and macrophages, we further
analyzed the correlation of PD-L1 with macrophage markers, especially inflammatory
response-related macrophage cytokines. The results revealed that macrophages M1-related
cytokines (IL12A, IL-12B, IL23A, IL23R, TNF, and IFNG) (Figure 4A and Table S3) and
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macrophages M2-related cytokines (TGFB1, TGFB2, TGFB3 and IL10) (Figure 4B and
Table S3) were positively correlated with PD-L1 in the TCGA LIHC cohort (p value < 0.001).
Notably, macrophages M1 cytokine IFNG displayed a robust positive correlation with
PD-L1 (cor = 0.617, p value < 0.001), and macrophages M2 cytokine IL10 displayed a robust
positive correlation with PD-L1 (cor = 0.677, p value < 0.001). We also observed that most
of the PD-L1 macrophages M1 and M2 cytokines showed a positive correlation with each
other (Figure 4C). The analysis of the GSE62232 validation cohort also presented similar
results (Figure 4C and Table S3). We also constructed a protein–protein interaction network
of PD-L1 and cytokines using STRING, and multiple potential interactions were displayed
between the PD-L1 and cytokines (Figure 4D and Table S4). These findings supported that
PD-L1 was intimately and positively correlated with macrophages M1 and M2 and the
cytokines enhanced the polarization of TAMs in an HCC microenvironment.
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3.5. Intense Relevance to the PD-L1 Subgroups and Inflammatory Response Activity

DEGs in PD-L1High subgroup are similarly significantly enriched for multiple inflam-
matory response processes (Table S5). Furthermore, we observed that macrophages and
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cytokines, relevant to the inflammatory response, were both implicated in PD-L1. Therefore,
we further explored the role of PD-L1 in inflammatory response activity in HCC. GSVA
enrichment analysis showed the activation states of inflammatory response biological
processes at distinct expression levels of PD-L1 in the TCGA LIHC cohort (Figure 5A). We
identified that the activation of most inflammatory response processes significantly corre-
lated with PD-L1 expression (Figure 5B) and distinctly varied among the PD-L1 subgroups
(Figure S2A and Table S6), as confirmed in the GSE62232 validation cohort (Figure S2B and
Table S6). Specifically, positive regulation of cytokine production involved in inflammatory
response (cor = 0.538, p value < 0.001). Inflammatory response activity and macrophage
infiltration level also had a robust positive correlation (Figure 5C). In summary, these
findings indicated an important link between PD-L1 and the function of inflammatory
immune response in HCC.
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ment score of inflammatory response (IR) biological processes using GSVA. (B,C) The correlation of
activation of inflammatory response (IR) with the expression level of PD-L1 and infiltration level of
macrophages, respectively.

3.6. Differences in Sensitivity of Potential Therapeutic Drugs in PMI Subgroups

In response to the small number of patients with durable responses to immunotherapy,
we sought to identify more promising drugs for specific populations to improve treatment
outcomes. We focused on a specific population with high PD-L1 expression, TAMs infiltra-
tion and high inflammatory response activity, termed PMIHigh patients, because they all
have immunosuppressive mechanisms. So, we extracted and defined PMIHigh subgroup
(83 patients) and PMILow subgroup (84 patients), and integrated PD-L1 expression, TAMs
infiltration level and inflammatory response pathway enrichment score as PMI scores. It
also demonstrated that the PMIHigh subgroup displayed higher TAMs (M0, M1 and M2)
infiltration level and inflammatory response activity compared to the PMILow subgroup
(p value < 0.001, Figure S3). The TIDE was utilized to evaluate the potential clinical efficacy
of immunotherapy in PMI patients. We observed that the PMIHigh subgroup had a higher
TIDE score and T cell dysregulation score, but a lower microsatellite instability (MSI) and T
cell exclusion score (Figure 6A). In general, patients in the PMIHigh subgroup had a higher
potential for tumor immune escape; hence, we urgently need to focus on their therapeutic
schedule.
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(B,C) The results of Pearson correlation analysis and differential drug response analysis of four drugs
in CTRP and PRISM datasets, respectively. The asterisk character represent the statistical significance
of difference, * p < 0.05; *** p < 0.001.

In order to seek candidate drugs with higher drug sensitivity in PMIHigh patients, we
performed drug response prediction using CTRP- and PRISM-derived drug response data,
respectively. Firstly, we screened 113 common drugs or compounds in CTRP and PRISM
databases to facilitate subsequent analyses that could be corroborated with each other. Then,
we performed differential drug response analysis in PMI subgroups to identify significantly
different drugs or compounds, of which only lower AUC estimates in the PMIHigh subgroup
were retained. Furthermore, we collected drugs or compounds with negative correlation
coefficients using Pearson correlation analysis of AUC values and PMI scores (cor < −0.40).
Ultimately, in the cross-corroboration of the two pharmacogenomics databases, we predicted
four drugs or compounds (including dasatinib, vemurafenib, topotecan and AZD6482) with
promising therapeutic potential in PMIHigh patients (Figure 6B,C and Table S7), which had
lower estimated AUC values and were negatively correlated with PMI scores.

4. Discussion

HCC, with a 5-year survival rate of approximately 20%, has a high risk of recur-
rence and metastasis [44,45]. Tumor-associated macrophages are abundant in tumor and
peritumoral tissues, which form immunosuppressive TME and promote chronic inflamma-
tion, and ultimately the progression of disease and resistance to conventional antitumor
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therapies [22,23]. Likewise, PD-L1 expression is usually induced or maintained by in-
flammatory cytokines [14,21,46]. However, the expression level of PD-L1 has not been
used as a predictive biomarker to select patients who would benefit from treatment in
clinical practice with satisfactory results [47–49]. Therefore, it is essential to understand
the expression level and relevance of PD-L1 between pro-tumorigenic inflammation and
anti-tumor immunity. In our study, we systematically characterized the abnormal pattern
of PD-L1 in HCC and investigated the correlation between the expression patterns of
PD-L1 and prognosis, clinicopathological features and molecular characteristics. To further
understand the relationship between PD-L1 and TME as well as inflammation, we then
calculated the correlation of PD-L1 expression levels with immune cells, especially TAMs
and their released cytokines, and inflammatory response activity. More importantly, given
that immunotherapy relying only on PD-L1 expression levels has not yielded satisfactory
results, we predicted and screened potential therapeutic drugs targeting specific popula-
tions who have high PD-L1 expression levels, high macrophage infiltration levels, and high
inflammatory response activities, which may provide promising therapeutic approaches
for HCC PMI patients.

The overexpression of PD-L1 occurs in many common cancers and serves as a promis-
ing predictive marker for therapeutic response to PD-1/PD-L1 antibody [50]. Thus, a
more comprehensive landscape of expression pattern and molecular function of PD-L1 in
HCC is needed. In this study, we found that the expression pattern of PD-L1 exhibited a
pathological stage- and T stage-dependent manner. In particular, stage II was accompanied
by higher levels of PD-L1 expression, which may be induced by cytokines and reflect the
contribution of an endogenous anti-tumor immune response, as it generally occurs in the
early stages of carcinoma progression [51,52]. Unfortunately, PD-L1 was not available as a
predictor of stable prognosis in our analysis, but patients with positive PD-L1 expression
had shorter overall survival and disease-free survival compared to PD-L1-negative patients
in several experimental studies [53–56]. The PD-L1High subgroup had multiple highly ex-
pressed cytokines (such as IFNG, IL10 and HGF) and its DEGs were significantly enriched
in immune signaling pathways that related to leukocyte cell activation and proliferation,
suggesting the essential involvement of PD-L1 in regulating TAMs function. Therefore,
PD-L1 requires consideration of the additional tumor immune environment as a promising
prognostic marker.

Immune cells in tumors are an important source of immunosuppression formation.
Among them, TAMs, the major components of the TME, have been playing several tumor-
promoting roles, such as immune suppression and neoplasm metastasis [5,6,57,58]. In
response to micro-environmental stimulus, TAMs classically differentiate into macrophages
M1 with pro-inflammatory and cancer-suppressive effects [59]. Alternatively, TME pro-
motes the polarization of TAMs into macrophages M2 with anti-inflammatory and cancer-
promoting properties, which produce IL-10 and suppress CD8+ T cell responses [60,61].
Previous studies have shown that high TAMs density correlates with large tumor size, high
TNM stage, and metastasis [62]. In this study, we found a positive correlation between
the expression level of PD-L1 and the infiltration level of TAMs (both M0, M1 and M2),
which may implicate an important functional cohesion. We also noticed that PD-L1 is
positively correlated with the cytokines IL10, a canonical marker of macrophages M2,
which may participate in the induction and maintenance of macrophages M2-polarization
and accelerate pro-tumorigenic effects in HCC.

It is well known that HCC is a classic inflammation-related cancer. Previous studies involv-
ing PD-L1 expression are usually induced or maintained by inflammatory cytokines [14,21,46].
Consequently, the up-regulation of PD-L1 expression in tumor tissues can be seen as the
dominance of immunosuppression on the one hand, and response to endogenous inflamma-
tory immune response on the other hand. In this study, we identified a strong association
between PD-L1 expression and inflammatory response activity, as well as a higher inflam-
matory response activity accompanying the PD-L1High patients. Notably, the inflammatory
response activity was likewise significantly and positively correlated with the infiltration level
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of TAMs. It is implicated that enhanced inflammation, accompanied by sustained expression
of cytokines [63,64] and recruitment of immune cells to the liver [65–67], may promote HCC
carcinogenesis and progression by inducing immunosuppression formation and accelerating
cancer cell growth [66,68].

Despite immunotherapy bringing hopefulness to oncology patients, only a minority of
patients currently have a durable response to immunotherapy. The efficacy of the inhibitor
sorafenib is limited in HCC patients, because intrinsic therapeutic resistance contributes to
the development of intolerance and drug resistance [25]. Zhou et al. demonstrated that
TAMs induce immunosuppression [24], promoting tumor development and resistance to so-
rafenib [69]. Furthermore, an important driver of oxaliplatin resistance has been reported to
be that TAMs trigger autophagy and apoptosis evasion of HCC cells [70]. To more precisely
target HCC patients, we defined specific populations, called PMI subgroups, by combining
the characteristics of PD-L1 expression, TAMs infiltration, and inflammatory response
activity. The results showed that the PMIHigh subgroup had a higher immune evasion po-
tentiality and lower microsatellite instability, indicating that for specific patients it would be
more challenging to benefit from immunotherapy. To provide promising population-based
therapeutic strategies, we predicted four reliable drugs (including dasatinib, vemurafenib,
topotecan and AZD6482) for the PMIHigh patients, which were effective in the predic-
tion model of drug response from both CTRP and PRISM datasets. Immunotherapy and
chemotherapy will likely maximize the immune-stimulating effect of therapeutic drugs
through individualized dosing of patients in specific populations.

5. Conclusions

In summary, our study provided a systematic analysis of aberrant patterns of PD-L1
in HCC to assess the association between PD-L1 expression, immunosuppressive TME
(especially TAMs), macrophage-derived cytokines and inflammatory response activity. In
addition, we specifically screened and primarily validated four candidate drugs (including
dasatinib, vemurafenib, topotecan and AZD6482) with high confidence in both CTRP
and PRISM databases for PMIHigh patients against the microenvironment of immune
suppression and chronic inflammation in HCC. This comprehensive analysis has greatly
improved our understanding of the relationship between PD-L1 expression, immune cells
infiltration, and inflammatory response activity, which may be valuable in deciphering
immune escape and neoplastic progression, and provided insights into patient stratification
and therapeutic drugs to optimize precision medicine.
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