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ABSTRACT: Most available antimicrobial peptides (AMP) prediction methods use common approach for different classes of
AMP. Contrary to available approaches, we suggest that a strategy of prediction should be based on the fact that there are several
kinds of AMP that vary in mechanisms of action, structure, mode of interaction with membrane, etc. According to our suggestion
for each kind of AMP, a particular approach has to be developed in order to get high efficacy. Consequently, in this paper, a
particular but the biggest class of AMP, linear cationic antimicrobial peptides (LCAP), has been considered and a newly
developed simple method of LCAP prediction described. The aim of this study is the development of a simple method of
discrimination of AMP from non-AMP, the efficiency of which will be determined by efficiencies of selected descriptors only and
comparison the results of the discrimination procedure with the results obtained by more complicated discriminative methods.
As descriptors the physicochemical characteristics responsible for capability of the peptide to interact with an anionic membrane
were considered. The following characteristics such as hydrophobicity, amphiphaticity, location of the peptide in relation to
membrane, charge density, propensities to disordered structure and aggregation were studied. On the basis of these
characteristics, a new simple algorithm of prediction is developed and evaluation of efficacies of the characteristics as descriptors
performed. The results show that three descriptors, hydrophobic moment, charge density and location of the peptide along the
membranes, can be used as discriminators of LCAPs. For the training set, our method gives the same level of accuracy as more
complicated machine learning approaches offered as CAMP database service tools. For the test set accuracy obtained by our
method gives even higher value than the one obtained by CAMP prediction tools. The AMP prediction tool based on the
considered method is available at http://www.biomedicine.org.ge/dbaasp/.

■ INTRODUCTION

Antimicrobial peptides (AMP) are small peptides of low length,
which interact with the bacterial cells and kill them. The great
interest in these proteins is explained by their possible use for
clinical purposes as a substitute for conventional antibiotics
when resistance takes place.1 Most of AMP act directly on the
bacterial membrane, consequently it is difficult for bacteria to
develop immunity against antimicrobial peptides.2 Recently,
there has been a large number of both theoretical and
experimental studies that were focused on the properties of
AMP, their mechanism of action and the design of novel
peptides (see, for example, ref 3). Of particular interest are in
silico methods of research of AMP that allow the capability to
both predict the antimicrobial activity of the peptides based on
their sequence and to serve as the first step to design new
antimicrobial peptides. Methods for predicting AMP are based
on some general properties that distinguish AMP from similar
peptides that do not have antimicrobial activity.

Available prediction methods are generally based on
discriminative analysis and essentially machine learning
methods.4−12 These methods, as a positive training set, have
used a full set of antimicrobial peptide sequences, not taking
into account variation in mechanisms of action, structure, mode
of interaction with membrane and other differences. Contrary
to available approaches, we think that strategy of prediction
should be based on the fact that there are at least four kinds of
AMPs for which four independent algorithms of prediction
have to be developed in order to get high efficacy. For these
four types of AMPs, we can consider: linear cationic
antimicrobial peptides (LCAP), cationic peptides stabilizing
structure by interchain covalent bond (CCP), peptides rich in
proline and arginine (PRP) and anionic antimicrobial peptides
(AAP).
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Cationic antimicrobial peptides (CAP) of LCAP type, in
addition to positive charge and amphiphilicity, possess simple
mechanism of structure stabilization in membrane, hydrogen
bonding only.13,14 Absence of any other stabilization factors
gives possibilities to determine the forces governing peptide−
lipid or peptide−peptide interactions and predict structure of
the peptides in water and membrane environment on a base of
only sequence information. Consequently, quantitative charac-
teristics for prediction would be easily revealed on the basis of
sequence only. Structures of CAP of CCP type due to
interchain bonds are more stable and structurally complicated
both in water and in membrane environments. But despite the
fact that the forces governing CCP membrane or CCP−CCP
interactions are identical to the case of LCAP, complicated 3D
structure and lack of information about 3D structure require a
principally different approach for the development of CCP
prediction algorithm. It is known that peptides of PRP type are
penetrating. In other words, they do not destabilize membranes
and as a rule, have a target inside cell.15,16 It is clear that the
development of the algorithm for the prediction of CAP of PRP
type requires a peculiar approach. For AMP of AAP type, the
mode of action principally differs from CAP and the
development of the algorithm for prediction AAP indeed
requires its own approach. In this work is considered CAP of
LCAP type only. According to the available databases,17 this is
the biggest class of antimicrobial peptides.
Prediction accuracy is largely determined by the set of

descriptors that can be used in prediction. Most current
methods use a large number of characteristics for AMP
prediction, using their optimization by machine learning
methods, such as artificial neuron networks (ANN) and
support vector machines (SVM).4−12 Meanwhile, the influence
of the individual characteristics on the AMP prediction is
studied much less extensively. In this paper, we describe the
influence of the characteristics that may be responsible for the
prediction of LCAP on the basis of their basic function−
interaction with the bacterial membrane.
There are a large number of proteins that interact with the

membrane also and so resemble AMP in this regard. For
instance, the so-called transmembrane proteins are generally
inserted into the membrane but without destroying it. It is clear
that a selection pressure on sequence random variation directs
evolution of peptides with particular function (for instance,
transmembrane protein fragments (TMP), LCAP, etc.). So, in
order to determine what characteristics efficiently distinguish
LCAP from other peptides (other membrane-interactive or
nonfunctional (random)), we think that it is reasonable to
make comparative analysis of sequences of the three sets of
peptides: LCAP, TMP and randomly selected fragments from
the soluble proteins (RFP). This work concerns just the
comparative analysis of LCAP, TMP and RFP sequences.
Consequently, an attempt to reveal that characteristics that

can discriminate antimicrobial peptides from both soluble
nonmembrane proteins and transmembrane proteins (or
fragments of membrane proteins) has been done. Taking into
account the structure of the bacterial membrane, which is an
anionic lipid bilayer, amphiphatic in nature, it can be assumed
that, for discriminators, the following characteristics are
convenient: (1) hydrophobicity, (2) amphiphaticity, (3) charge
density, (4) propensity to the aggregation and (5) propensity
to disordering. We think that just the values of these
characteristics are responsible for: (a) capability of the peptide

to interact with an anionic membrane and (b) the results of
interaction (mechanisms of action).
Quantitative estimation of all the characteristics except

amphiphaticity requires information on amino acid sequences
of the peptides only. Amphiphaticity in addition needs three-
dimensional structure information. The exact three-dimensional
structure of most linier antimicrobial peptides is unknown. But
in the case of linier peptides, based on the theory of Wimly and
White13,14 and the fact that all transmembrane domains of
membrane proteins consist mainly of regular secondary
structure elements (α-helices or β-sheets saturated with
hydrogen bonds), we can assume that the membrane
environment will impel the peptide to regular conformation.
So, we are motivated estimate in regular structure approx-
imation and evaluate the hydrophobic moment of LCAP in
order to see whether the hydrophobic moment can be a good
discriminator and which regular structure is more suitable for
effective discrimination.
There are various statistical approaches for the prediction of

AMP that take into account a number of different character-
istics.4,5,11,18−23 In this paper, our goal is (a) to develop the
simplest method of discrimination (based on threshold value
only) of AMP from non-AMP, efficiency of which will be
determined by efficiencies of selected descriptors only and (b)
to compare the results of the discrimination procedure with the
results obtained by more refined and complicated discrim-
inative methods such as SVM, ANN, etc.

■ METHODS
Benchmarks. Training Sets. For the analysis of the

characteristics, the following benchmarks were selected: set
for LCAP, set for randomly selected fragments from the soluble
proteins and set of fragments from transmembrane proteins.
The LCAP set was selected from APD2 database17 and consists
of 1083 peptides (positive set). To estimate the discriminative
efficiency of characteristics, a set of nonantimicrobial peptides
has been required. Because there is a small number of peptides
with experimentally verified no antimicrobial activity,5 we have
used a voluminous set of random sequences; in other words, a
set of sequences with a great variety of functions. So, the last set
can be considered as a nonfunctional set on average, as well as
nonantimicrobial (negative set). The set of random sequences
was selected from an UniProt using the filters: non-AMP, non-
membrane and non-secretory proteins. Three such sets were
used. The first set (RFP10000) was used for optimizing
parameters for various descriptors and consists of randomly
chosen fragments in the amount of 10 000 for each length of
peptides from 4 to 50 amino acids. The other sets were used for
the estimation of the descriptors by receiver operating
characteristic (ROC) curves. 500 (for RFP500) and 10 (for
RFP10) randomly selected fragments from globular proteins
with lengths corresponding to each peptide from LCAP set
have been included into these sets. The last set was used for
comparing our results with other available prediction tools.
For membrane proteins, a full set of transmembrane

(helices) fragments of more than 11 residues from database
of transmembrane proteins PDB-TM24,25 was chosen. This set
contains 1691 sequences (TMP set).

Test Sets. Two test sets were used for the evaluation of AMP
descriptors. The first test set, compiled on the basis of CAMP11

predicted data set, contained 1153 sequences identified as
antimicrobial based on the evidence of similarity or annotations
in NCBI as “antimicrobial regions”, without experimental
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evidence. After eliminating sequences: containing nonstandard
amino acids; disulfide bonds; having full negative charges; with
the length of more than 50 amino acids and rich in Pro and
Arg, only 98 sequences were left (TPS1). TPS1 will serve as an
independent positive test data set. An additional test set was
obtained from DBAASP database (http://www.biomedicine.
org.ge/dbaasp) (TPS2). Only experimentally validated peptides
with AMP activity have been included in this set. After peptides
that were found in the training LCAP set were excluded, the
above-mentioned conditions proposed for TPS1 and peptides
with more than 80% homology, the TPS2 set contains 174
peptides. As mentioned above, we could not use any additional
independent sample as an independent negative test set. So, we
have used RFP10 as a negative data set for the evaluation of the
accuracy for the selected descriptors.
Optimization of the Parameters Defining the Charac-

teristics of AMP. There is evidence, especially for disulfide-
bounded AMP, that despite their short length, they are unions
of functional (structural) blocs.26 So, we can propose that linear
peptides are arranged in bloc principle also and not all the
considered peptide, but part of it can participate in the
interaction with the membrane. Accordingly, for each peptide,
the descriptors were calculated for all fragments (windows) of a
certain length and peptides are characterized by the particular
fragment selected on certain criteria.
The values of different descriptors, in most cases, depend on

various parameters, such as length of the fragment for which
considered characteristic for the peptide is computed, hydro-
phobicity scale (see below), etc. It is necessary to choose
optimal parameters for descriptors on the base of the LCAP set.
Optimization of the descriptors was made by the requirement
of increasing the ratio (percent) of the peptides for which the
probability of appearance of their sequence as a result of
random normal process is less than P. The value of P was
determined by z-score. That is, for each peptide’s particular
descriptor, its own z-score is defined as zpd (where d is
hydrophobicity, hydrophobic moment and other descriptors, p
corresponds to certain peptide defined by its sequence). Main
criterion of optimality (MOC) of descriptors was the
maximality of the number of peptides from the LCAP set
having z-score zpd >2. The exception was a location of the
peptide in relation to membrane, for which optimization has
been made differently (see below).
Hydrophobicity. The AMP overall hydrophobicity, defined

as the sum of transfer (from water into the hydrophobic
environment) energy of the residue (hydrophobicity), can be
used as an AMP characteristic. In the literature, there is a large
number of papers27−32 that define transfer energies of the
amino acids (hydrophobicity scales). The values of the transfer
energies in these scales depend on the method of determination
and differ from scale to scale. Therefore, the hydrophobicity
scale can be used as an optimization parameter for assessing the
suitability of the hydrophobicity as AMP characteristics. The
following hydrophobicity scales were considered: KD,27 WW,28

UHC,29 Hes,30 EG31 and MF.32

For each peptide, hydrophobicity was calculated for all
fragments of a certain length and the peptide characteristic was
defined by the fragment of the highest hydrophobicity.
Therefore, peptide fragment length can be the other
optimization parameter. The optimal length and hydro-
phobicity scale were chosen by MOC. Fragment length was
varied within the range of 4−50 residues. Moreover, if the
peptide length was less than the length of the considered

fragment, hydrophobicity was computed for the full peptide. A
similar method for optimizing the fragment length was used for
the other descriptors.

Amphipathicity. One of the main features of antimicrobial
peptides is their amphipathicity.33 The separation of hydro-
phobic and hydrophilic regions in these peptides can be
realized in one of the two ways: due to the internal 3D
structure and by the linear separation that is due to the uneven
distribution of hydrophobic and hydrophilic residues along the
peptide chain. Accordingly, two characteristics were used for
the evaluation of amphipathicity: hydrophobic moment34 and
linear hydrophobic moment (see below).

Hydrophobic Moment. Hydrophobic moment was esti-
mated by Eisenberg:34

∑ ∑μ = · ϑ· + · ϑ·
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where μ is hydrophobic moment of the peptide, contained N
amino acids, hn is the numerical hydrophobicity of the nth
residue, and ϑ is turn of the residue along the helix axis.
According to the formula the existence of regular

conformation is assumed. As mentioned above LCAP in
membrane environment is likely to have regular secondary
structure. So, ϑ is used as a parameter that determines
hydrophobic moment. The last parameter was used as
optimization parameter and varied from 60 to 180°. Hydro-
phobicity scale and fragment length were also used as
optimization parameters. Optimization of the parameters was
carried out by MOC.

Linear Hydrophobic Moment. As mentioned above,
separation of the hydrophobic and hydrophilic parts may also
be carried out due to an uneven distribution of hydrophobic
and hydrophilic residues along the peptide chain. To estimate
the separation along the chain, we have introduced the
characteristic “linear hydrophobic moment”, which is defined
as follows:

∑ ∑= −
+ −

M D h h( )k k

where

∑ ∑ ∑ ∑= | · − · |
+ + − −

D h k h h k h/ /k k k k

Here D is the distance between the centers of hydrophobic and
hydrophilic parts of the considered fragment of length N; k = 1,
N, hk

+ and hk
− are the transfer energies of the k-th residue from

water to the hydrophobic environment under the conditions
that hk

+ > 0 corresponds to hydrophobic residue and hk
− < 0

corresponds to hydrophilic residue.
Hydrophobicity scale and fragment length were used as

optimization parameters. Optimization of the parameters was
carried out by MOC.

Charge Density. Cationic antimicrobial peptides at neutral
pH have a positive charge due to the large percentage of Lys
and Arg, which facilitates them to interact with the negatively
charged membrane. So, it is natural to assume that the charge
of the peptide can be considered as a characteristic of LCAP.
Because electrostatic interaction is long-term, we think that the
net charge of the whole peptides determines the results of
interaction with membrane. So the charge was calculated for
the entire peptide. Charge density determined as full charge
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divided by the peptide molecular weight was used as the AMP
descriptor.
Initially, for the charge descriptor, full net charge normalized

on the peptide length was used, but after suggestion from one
of the reviewers, we have found out that charge density
determined as full charge divided by the peptide molecular
weight gives better discrimination AMP from non-AMP and so
we have used charge density as the AMP descriptor.
Location of the Peptide in Relation to Membrane

(LPM). Mechanism of action of AMP largely depends on their
energetically most favorable location within the membrane
bilayer. Taking into account the fact that the majority of the
LCAP peptides has an α-helical conformation in the membrane
environment (see above and the Results section), LPM was
described by the penetration depth (d), i.e., distance of the
geometrical center of peptide helix from membrane surface and
angle (θ) between peptide helix axis and perpendicular to the
membrane surface. It would be interesting to explore the
possibility of using d and θ as discriminators to distinguish
antimicrobial from nonantimicrobial peptides. In contrast to
the previous LCAP characteristics, location of the LCAP within
the bilayer is an integrated feature that will largely depend on
the other previously considered characteristics (hydrophobicity,
amphipathicity, charge density). To calculate d and θ, the
hydrophobic potential designed by Senes et al.,35 which
represents the energy difference between the residue in water
and within the bilayer at a given depth, is used. All calculations
of LPM were performed for different fragment (window)
lengths and the peptide characteristic was defined by the
fragment with minimal energy.
Another (different from MOC) approach was used for the

optimization of d and θ. The approach is based on receiver
operating characteristic (ROC) curve analysis. ROC curve,
which represents the dependence of sensitivity (Sn) (y-axis)
versus 1 − specificity (Sp) (x-axis) was used for quantifying
differences of LCAP from membrane proteins and soluble
protein fragments. RFP500 and TMP were used as the negative
sets. For each LPM, the area under the ROC curve AUC was
calculated, defined as AUC_R, relative to the RFP500 negative
set and as AUC_T, relative to the TMP negative set. As
mentioned above, peptide fragment length varied and so it was
used as an optimization parameter. The maximization (AUC_R
+ AUC_T) value was used to optimize LPM (d and θ). During
optimization, d and θ vary from 0 to 30 Å and 0−180°,
respectively and were used as optimization parameters for
LPM. Other variables δ(dk) and δ(θk) (for each kth d and θ)
were used for plotting ROC curve also. For each of the values,
dk and θk, δ(dk) and δ(θk) varied and for ith their, values δ(dk)i
and δ(θk)i, intervals dk ± δ(dk)i, θk ± δ(θk)i, i.e., ith area on the
(d, θ) plane is determined. The number of peptides from the
positive data sets with energetically most favorable depth and
orientation lying within the interval dk ± δ(dk)i, θk ± δ(θk)i
determines sensitivity Sni and the number of peptides from the
negative data sets with energetically most favorable depth and
orientation lying within the same interval (dk ± δ(dk)i, θk ±
δ(θk)i) determines specificity Spi. Sni and Spi give ith point of the
ROC curve. For each length, dk and θk ROC curves and
consequently (AUC_R + AUC_T) values were calculated and
maxima among the calculated values correspond to optimums
of length, dk and θk.
Disordering. It is reasonable to consider such short cationic

peptides as LCAP disordered in water environments. Indeed,
there is experimentally proved data for many LCAP showing

disordered structure in water environments.36 It is interesting
to mention, whether the disordering connected with the short
length only, or other causes for structure destabilization exist
(for example, total positive charge). Uversky37 investigated
disordered protein and concluded that disordered protein can
be predicted on the basis of the estimation of hydrophobic/
charge (h/r) ratio. As the LCAPs are characterized by very
peculiar balance between hydrophobic and positively charged
residues, we think that it will be interesting to estimate if the h/
r ratio can be the cause of the disordered structure of LCAP in
water environment according to the Uversky’s rule. So, we
assume that it is interesting to estimate efficiency of the
Uversky’s relations as discriminator.
According to Uversky’s formula, the degree of disordering of

globular protein under physiological conditions is defined by
the relation

= − −S H R2.785 1.151

where ⟨H⟩ is the average hydrophobicity of the protein and ⟨R⟩
its charge.
Negative values of S correspond to the protein to be

disorded.
Aggregation Propensity. We have used two descriptors

for aggregation propensity; aggregation in solution (in vitro
aggregation) and aggregation in bacteria membrane (in vivo
aggregation). In vitro aggregation propensity evaluation was
made by employing the TANGO software.38 Tango counts the
partition function of the conformational phase space assuming
that every segment on the protein populates one state: random
coil, β-turn, α-helix, α-helix aggregation and β-sheet aggrega-
tion. Therefore, TANGO software can predict aggregation in
solution, considering only structural parameters defined by the
peptide sequence.
In vivo aggregation was propensity calculated using

AGGRESCAN, an algorithm based on an amino acid
aggregation-propensity scale derived from in vivo experiments
and on the assumption that short and specific sequence
stretches modulate protein aggregation. The algorithm can
actually predict the aggregation propensity of peptides in the
presence of cell material.39

Evaluation of the Efficiency of Characteristics. Receiver
operating characteristic (ROC) curves were used to evaluate
the effectiveness of various characteristics. Each point, i, of the
ROC curve corresponds to values of sensitivity and specificity
(Sni and Spi), which are calculated for the variable zi (where zi
changes from min(zpd) to max(z

p
d) with step 0.1). The number

of peptides from the positive data set (LCAP) with z-score zpd
> zi (for hydrophobic moment, charge density and linear
hydrophobic moment) and z-score zpd < zi for (hydrophobicity
and disordering) determines Sni and the number of peptides
from the negative data sets (RFP500 for ROC_R and TMP for
ROC_T) with z-score zpd > zi (for hydrophobic moment,
charge density and linear hydrophobic moment) and z-score
zpd < zi (for hydrophobicity and disordering) determines Spi.
Quantitative evaluations of the effectiveness of the character-
istics are made on the basis of area under the ROC curve.

Evaluation of the Prediction Quality. A threshold for
each characteristic was evaluated and the prediction of the
existence of antimicrobial activity of the peptide was done on
the basis of it. The threshold is determined by a point on the
ROC curve closest to the point (0,1). Sensitivity, specificity and
accuracy for the thresholds have been evaluated.
The following equations were used for the prediction quality:
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= +S TP/(TP FN)n

= +S TN/(TN FP)p

= +S SBAC ( )/2n p

= + + + +AC (TP TN)/(TP FN TN FP)

where Sn is the sensitivity, Sp the specificity, BAC the balanced
accuracy and AC the accuracy.
The calculation of balanced accuracy is used for the

evaluation of the prediction quality because the negative sets
contain more peptides than the positive ones and the balanced
accuracy reflects equal influence of positive and negative sets
irrespective of the number of contained peptides in them.

■ RESULTS AND DISCUSSION
Optimization of the Descriptors. The following

descriptors were considered: hydrophobic moment, charge
density, location of the peptide in relation to membrane
(LPM), linear hydrophobic moment, disordering and propen-
sities to in vitro and in vivo aggregation.
The optimization of the most descriptors (except LPM) has

been made by MOC criterion (see the Methods section). The
corresponding data are given in Table 1. For normal (random)
distribution, the probability that z-score > 2 is equal to 0.02. So,
on the basis of the obtained results, we can say that for all
optimized descriptors probabilities that z-score > 2 are higher
than expected from fully random processes. It means we can
assume some kind of selection pressure on sequence random
variation.
For hydrophobic moment, for example, the optimal value of

the turn (ϑ) of residue (ϑ varied from 60° to 180°) in regular
structure approximation is 96°, which shows that the optimal
secondary structure for discrimination LCAP from Non-AMP is
an α-helix. This result can be expected.
For LPM, another criterion of optimality (different from

MOC) was used that was based on d and θ distributions in the
considerable set (see the Methods section). Assuming the
peptide is α-helical (see above) for each peptide, we can
calculate the energetically most favorable location (d and θ) of
the peptide fragments of the particular length in the membrane.
Figure 1a shows a plot of relative density of the orientation and
the depth of energetically most favorable fragments of length 17
on the basis of the three considered sets (LCAP, RFP500 and
TMP).
From Figure 1a, it is clear that the orientation distribution of

peptides in different sets varies from each other. For most
LCAP, the more energetically favorable depth is within 8−15 Å,
which corresponds to the boundary between the interface site
and the hydrophobic core of the membrane (Figure 1a). It also
shows that most of the peptides are located at a relatively small
angle to the membrane surface (θ ∼ 90°). These results are
consistent with experimental data, according to which most of

the CAP penetrate into the membrane at a shallow depth
parallel to the membrane surface.40 Maximum density on the

Table 1. Optimal Parameters for Different Descriptorsa

hydrophobicity scale fragment length angle ϑ (deg) MOCb No. MOCb % d θ AUC_ R AUC_T

hydrophobic moment MF 24 96 679 62.70
hydrophobicity KD 21 258 22.30
linear hydrophobic moment EG 31 119 10.00
LPM 17 12.9 81.0 0.76 0.78

aFor charge density, disordering, propensity to aggregation in vitro and in vivo parameters optimization was not carried out. bA number (No.) and
percent (%) of the peptides from the LCAP set, which satisfy MOC criterion.

Figure 1. Plots of relative density of the orientation (θ) and the depth
(d) of energetically most favorable fragments of length 17 on the basis
of the (A) LCAP, (B) TMP and (C) RFP500 set. The values of the
density are given relative to the densities of uniform distribution.
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(d, θ) plot for the LCAP set is higher than for the other peptide
sets (RFP500 and TMP). From Figure 1b, it can be seen that it
is energetically more favorable for the membrane proteins to

penetrate more deeply into the membrane (d = 2−10 Å). At
the same time, peptides from the data set of random protein
fragments are located closer to the membrane surface (d = 12−

Figure 2. ROC curves for evaluation prediction quality of linear hydrophobic moment for training sets: ROC_R corresponds to positive LCAP and
negative RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.

Figure 3. ROC curves for evaluation prediction quality of propensity to aggregation in vitro for training sets: ROC_R corresponds to positive LCAP
and negative RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.

Figure 4. ROC curves for evaluation prediction quality of disordering for training sets: ROC_R corresponds to positive LCAP and negative RFP500
sets and ROC_T corresponds to positive LCAP and negative TMP sets.
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30 Å; see Figure 1c). Peptides from the later (last) set are
distributed on the (d, θ) plot less densely than from the other
peptide sets.
On the basis of these data, we have decided to use the

receiver operating characteristic (ROC) curve to quantify
differences of LCAP from membrane proteins and soluble
proteins fragments (see the Methods section). Calculations
have shown that the optimal values of the penetration depth
and angle (d and θ) are 12.9 Å and 81° at a fragment length of
17 amino acids. The optimal AUC_R and AUC_T values (see
the Methods section) for the two data sets (RFP500 and TMP)
at the same time are 0.76 and 0.78, respectively. Therefore, we
concluded that the location of the peptide in relation to
membrane can be used as a descriptor to distinguish linear
cationic antimicrobial peptides from other peptides.
Evaluation of the Efficiency of LCAP Prediction.

Receiver operating characteristic (ROC) curves were used to
evaluate the effectiveness of various characteristics for LCAP
prediction. ROC curves, plotted for each characteristic, are

shown in Figures 2−10. Quantitative evaluation of effectiveness
of the characteristics is made on the basis of the following
quantities: (a) area under the ROC curve (defined as AUC_R
relative to the RFP500 negative set and defined as AUC_T
relative to the TMP negative set) and (b) a threshold for each
characteristic by which prediction of peptide antimicrobiality
will be done. A threshold is determined by a point on the ROC
curve closest to the point (0,1). Sensitivity, specificity and
balanced accuracy for the thresholds have been evaluated.
Varying zi from min(zpd) to max(zpd) and based on the

assumption that the values of the descriptors must be higher for
LCAP than for non-AMP (as in the case of hydrophobic
moment, charge density, linear hydrophobic moment,
propensities to aggregation in vitro and in vivo), condition of
zpd > zi was used to calculate sensitivity and specificity (Sni and
Spi) that is ith point of the ROC curve. When we assumed that
the values of the descriptors must be less for LCAP than for
non-AMP (as in the case of hydrophobicity and disordering),
the condition zpd < zi was used to calculate sensitivity and
specificity (Sni and Spi) that is ith point of the ROC curve. If the
assumption is true that the value of AUC for each descriptor
will be higher than 0.5. It can be noted that the higher the value
of AUC, the better the descriptor discriminates AMP from non-
AMP. The value of AUC for good descriptors must be no less
than 0.7. But as we can see, our results show that the values of
AUC_R for linear moment and in vitro aggregation are close to
0.5 (see Table 2 and Figures 2 and 3) and for disordered even
less than 0.5 (see Table 2 and Figure 4). It means that the last
characteristics cannot distinguish antimicrobial from non-
antimicrobial peptides. The low value of AUC_R = 0.56 for
the linear moment suggests that for the most antimicrobial
peptides, there is no significant linear separation of hydro-
phobic and hydrophilic residues along the peptide chain. On
the other hand, the ROC curve plotted for linear moment of
TMP set relative to the negative set RFP500 (ROC_RM
(Figure 5)) gives the value 0.73 for the area under the ROC
curve (AUC_RM = 0.73). These differences between the values
of AUC_R and AUC_RM can be explained by the fact that in
contrast to antimicrobial peptides, in the transmembrane
peptides, linear separation of hydrophobic and hydrophilic
group of residues occurs. Such separation was revealed by other
authors41,42 also, who supposed that amphyphilic residues are

Figure 5. ROC curve for evaluation prediction quality of the
transemembrane helixes of linear hydrophobic moment (ROC_RM)
for TMP and RFP500 sets.

Figure 6. ROC curves for evaluation prediction quality of hydrophobic moment for training sets: ROC_R corresponds to positive LCAP and
negative RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.
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concentrated at the ends of the transmembrane helix while
hydrophobic residues are located in the middle.

AUC_R value for disordered is 0.47, which is less than 0.5,
and it can be said that according to the proposed by Uversky
criteria,37 antimicrobial peptides are more ordering than

Figure 7. ROC curves for the evaluation of prediction quality of charge density for training sets: ROC_R corresponds to positive LCAP and negative
RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.

Figure 8. ROC curves for evaluation prediction quality of location of the peptide along the membrane (LPM) for training sets: ROC_R corresponds
to positive LCAP and negative RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.

Figure 9. ROC curves for evaluation prediction quality of hydrophobicity for training sets: ROC_R corresponds to positive LCAP and negative
RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.
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fragments of random proteins. This may be due to the fact that
the Uversky criterion, which determines the degree of the
disorder of globular proteins, is not suitable for the evaluation
of the disorder of small peptides.
In the case of hydrophobicity, hydrophobic moment, LPM

and charge density and propensity to aggregation in vivo
AUC_R > 0.7 (see Table 2 and Figures 6−10), which indicate
that these characteristics can be used to distinguish

antimicrobial from soluble nonantimicrobial peptides. For the
hydrophobic moment and charge density, AUC_T > AUC_R.
On the basis of this, we can suggest that if the value of the last
characteristics can discriminate a peptide (potential LCAP)
from the nonmembrane peptides, it should rather discriminate
the peptide from the transmembrane peptides also. So, for
these characteristics, only a single threshold defined from
ROC_R can be used, because for this threshold, sensitivities are
the same for ROC_R and ROC_T, but specificity and thus
accuracy obtained from ROC_T is larger than from ROC_R.
Consequently, LCAP peptides can be discriminated from the
membrane peptides with accuracy obtained from the threshold
defined from ROC_R only.
LPM was already optimized in such a way that the greater

difference from the RFP500 and TMP sets was reached (see
above). AUC_R for this descriptor is 0.76, so it can be used as a
LCAP characteristic (see Table 2).
Though, for the hydrophobicity, AUC_R = 0.71, but

AUC_T = 0.11 < 0.5 (see Table 2), it means that the LCAP
has a lower average hydrophobicity than the transmembrane
helices, but greater than random fragments from the soluble
proteins. Therefore, we cannot use single threshold to
discriminate nonantimicrobial and antimicrobial peptides.
Analogous results were obtained for the propensity to in vivo

aggregation (AUC_R = 0.75, but AUC_T = 0.08 < 0.5). The
question of AMP aggregation is difficult and unclear. There is
speculation that AMP greatly differ in the predisposition to
aggregation.43 Our results confirm this speculation because
various AMP peptides from the considered benchmarks great

Figure 10. ROC curves for evaluation prediction quality of propensity to aggregation in vitro for training sets: ROC_R corresponds to positive
LCAP and negative RFP500 sets and ROC_T corresponds to positive LCAP and negative TMP sets.

Table 2. Comparison of the Different Descriptors for Training Set (LCAP and RFP500)

AUC_R*100 AUC_T *100 Rmin
a*100 Sn*100 Sp*100 BAC*100

hydrophobic moment 88.63 92.01 23.32 80.79 86.77 83.78
charge 90.29 97.61 22.99 86.24 81.58 83.91
LPM 76.12 78.32 37.38 76.36 68.12 72.24
hydrophobicity 71.18 11.09 47.96 64.27 69.15 66.14
linear hydrophobic moment 56.09 33.37 68.65 40.63 65.54 53.08
disordering 46.59 93.75 74.96 50.97 43.30 47.13
in vitro aggregationb 57.41 4.34 64.23 46.63 64.26 55.45
in vivo aggregationc 75.38 7.87 40.57 75.81 67.43 71.62

aDistance from the point (0,1) to the point on the ROC curve closest to the point (0,1). bTANGO AGG index. cAGGERSCAN Na4vSS index.

Table 3. Prediction Quality of Combined Use of Three
Descriptors for Training Set (LCAP and RFP500)

AUC_R*100 Sn*100 Sp*100 BAC*100

hydrophobic moment +
charge

91.23 84.21 91.69 87.95

hydrophobic moment +
charge + LPM

91.38 84.03 92.50 88.26

Table 4. Prediction Quality for Different Methods for Sets
LCAP and RFP10

Sn*100 Sp*100 BAC*100 AC*100

hydrophobic moment 80.79 89.54 85.17 88.74
charge 86.24 74.78 80.51 75.83
hydrophobic moment + charge 84.21 92.36 88.23 89.61
hydrophobic moment + charge +
LPM

84.03 93.00 88.52 90.20

SVM 93.44 87.57 90.51 88.11
RF 95.57 86.51 91.04 87.33
ANN 90.21 86.20 88.21 86.56
DA 92.89 86.72 89.81 87.28
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differ by aggregation index, especially for in vitro aggregation. A
wide range of proposed mechanisms of AMP action can be
explained by the fact that AMP behave differently in terms of
the stability of their aggregates both in the membrane and in
the aqueous environment. Our results (Table 1) show that
propensity to in vitro aggregation does not discriminate AMP
from non-AMP and propensity to in vivo aggregation
discriminates AMP from non membrane non-AMP but does
not do it from transemembrane non-AMP. So, we have not
used these descriptors as discriminated LCAP characteristics.
The highest values of AUC_R correspond to hydrophobic

moment and charge density. Thus, we can suggest that these
characteristics are the best separators between nonantimicrobial
and antimicrobial peptides.
So, three descriptors: hydrophobic moment, charge density

and LPM were selected as the most effective LCAP descriptors.
Given the above, it can be assumed that the combined use of
these three characteristics can improve the prediction of LCAP.
To combine these characteristics, we have taken into account
the fact that for the separation of LCAP and non-AMP, specific
set of threshold values that can be obtained from the analysis of
ROC curves were used. Accordingly, by changing synchro-
nously thresholds for different characteristics, we can simply
optimize these thresholds to obtain the greatest accuracy. The
corresponding balanced accuracy for the charge density alone,
hydrophobic moment alone, hydrophobic moment and charge
density together and for the three characteristics together in
case of the training set (LCAP and RFP500) are 83.91, 83.78,
87.95 and 88.26, respectively (Tables 2 and 3) .
We have also tried to evaluate our results with other

prediction methods. As we have mentioned above, several
computational methods4,5,11,18−23 have been proposed for the
predicting AMPs. However, some methods4,5,18 did not contain
available web services for testing our data sets. BACTI-
BASE19,20 and PhytAMP21 methods were specifically designed
for bacteriocin and plant, respectively. As for AntiBP22 and
AntiBP2 methods,23 they were designed to identify the AMPs
in a protein sequence, and hence could not be used to compare
with our method. So, to make the comparison meaningful, our
method was compared with CAMP method,11 which was
developed based on the random forests (RF), SVM, ANN and
discriminant analysis (DA). This method can be used for the
evaluation of the sensitivity, specificity and accuracy for the
considered training positive set. As a set of nonantimicrobial
peptides (negative set), we have used a set of 10 peptide
fragments (instead of 500) for each peptide in the AMP set
(RFP10). The corresponding balanced accuracy for three
considered characteristics together when using this set is 88.52.
For the same positive and negative sets, CAMP method gives

the following values for the balanced accuracy: random forests
(RF), 91.04; SVM, 90.51; discriminant analysis (DA), 89.81;
ANN, 88.21 (Table 4).
For testing purposes, two independent positive sets (TPS1

and TPS2) (see the Methods section) were used. The results of
comparison for test sets are shown in Table 5.
We cannot use any additional independent test sets for non-

AMP (negative set), so the RFP10 set, which was not employed
for training purposes, was used as a negative test set. As we can
see from Tables 4 and 5 the best prediction quality for the
training and both test sets was obtained when all three
descriptors were used together, although a pair of the
descriptors (hydrophobic moment and charge density) gives
very close results. We have also noted that for the test sets, the
prediction quality (balanced accuracy) based on the hydro-
phobic moment and charge density gives better results than the
one obtained from the all CAMP prediction algorithms.
We want to emphasize the fact that the CAMP method uses

a combination of numerous characteristics and more
complicated, refined and effective discriminative methods.11

High performance of our approach can be explained by the fact
that we have used only one class of AMP, cationic linier
peptides. Our results confirm the assumption that prediction of
AMP is preferable to make for the peculiar class separately,
using a particular approach in each case.
The AMP prediction tool based on the considered method is

included into the Database of Antimicrobial Activity and
Structure of Peptides (DBAASP) and available at http://www.
biomedicine.org.ge/dbaasp/.
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Table 5. Prediction Quality for Different Methods for Test Setsa

TPS1 set TPS2 set

Sn*100 BAC*100 AC*100 Sn*100 BAC AC*100

hydrophobic moment 80.61 85.08 88.82 86.78 88.18 89.49
charge 72.45 73.62 74.76 81.03 77.91 74.88
hydrophobic moment + charge 81.63 87.00 92.27 89.66 91.01 92.32
hydrophobic moment + charge + LPM 81.63 87.32 92.93 89.66 91.33 92.98
SVM 84.69 86.13 87.55 91.95 89.76 87.64
RF 81.63 84.07 86.47 93.68 90.10 86.62
ANN 83.67 84.93 86.17 89.66 87.93 86.25
DA 83.67 85.20 86.69 91.38 89.05 86.80

aSpecificities for test sets have been calculated for the RFP10 set (see Table 4).
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