
Article

Continuous(ly) missing outcome data in
network meta-analysis: A one-stage
pattern-mixture model approach

Loukia M Spineli1 , Chrysostomos Kalyvas2 and

Katerina Papadimitropoulou3,4

Abstract

Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic

reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous

outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data

and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate

their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach

under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain

knowledge about the missingness process in different trials and interventions. We extend the hierarchical network

meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the

departure from the missing at random assumption. We consider various effect size estimates for continuous data, and

two informative missingness parameters, the informative missingness difference of means and the informative missing-

ness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several

possibilities of prior structures to account for the fact that the missingness process may differ in the network. The

method is exemplified in two networks from published reviews comprising a different amount of missing continuous

outcome data.
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1 Introduction

Binary outcomes have drawn methodologically more attention for being the most prevalent in systematic

reviews1,2 and rather straightforward to handle.3 Although less widespread in systematic reviews for being

often more complex to interpret and more labour-intensive to measure compared to binary outcomes,1 continuous

outcomes play an important role in decision-making and clinical practice. Similar to binary outcomes, continuous

outcomes are also prone to missing outcome data (MOD). For instance, in a systematic review on respiratory

rehabilitation in chronic obstructive pulmonary disease, Ebrahim et al.4 observed a MOD rate ranging from 0%

to 38% across 31 included trials. In a collection of 190 Cochrane systematic reviews published between 2009 and

2012 in three mental health Cochrane Groups, 27 out of 140 selected meta-analyses considered a continuous
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primary outcome; of those, 14 meta-analyses reported the total number of MOD in each arm of every trial.5 In

another collection of systematic reviews with at least three interventions published between 2009 and 2017, 92 out

of 387 systematic reviews investigated a continuous primary outcome;6 of these, only five reported the total

number of MOD in each arm of every included trial. Figure 1 illustrates the distribution of the percentage of

MOD across the different health fields in both surveys.
Currently, there are a handful of methodological articles providing guidance on how to handle aggregate

missing continuous outcome data (MCOD). Ebrahim et al.4,7 developed a three-step imputation approach to

address MCOD in meta-analysis. The authors used information directly from the included trials to determine the

scenarios for the imputed means and standard deviations, and they applied the same scenarios to all included

trials. This approach is easy to implement; however, it fails to account for the uncertainty induced by MCOD in

each arm of every trial as it merely imputes the missing observations before analysis. Depending on the amount

and mechanisms of MCOD, this approach may seriously implicate the credibility of conclusions. In the case of

considerable MCOD (e.g. over 20%), imputation provides spuriously more precise treatment effects8 and

increases the risk of false-positive conclusions.
Mavridis et al.9 refined the two-stage pattern-mixture model, initially proposed by White et al.10 for binary

MOD, to operate for MCOD and applied it to a published systematic review on mental health. Their approach

incorporates an informative missingness parameter (IMP) that reflects researchers’ belief(s) about the missingness

mechanism for each arm of every trial with the premise to adjust the within-trial results for MCOD. We distin-

guish this sophisticated approach for being both conceptually and statistically more appropriate to handle

MCOD as it models rather than imputes the missing observations before analysis and therefore, it fully accounts

for the uncertainty induced by MOD.9 However, the proposed two-stage approach has a shortcoming: it sets the

within-trial treatment effects and standard errors fixed to the mean and variance of the missingness parameter’s

distribution. Therefore, this approach does not allow the observed data to contribute to the estimation of the

missingness parameter – while borrowing strength across the trials – to ‘learn’ about the missingness

Figure 1. The distribution of missing continuous outcome data (MCOD; expressed as a percentage) across the different health fields
in selected network meta-analyses (left plot with split violins) and the pairwise meta-analyses (right plot with split violins) from two
surveys on the reporting and handling of aggregate missing outcome data.5,6 The red violins illustrate the density of differences in the
percentage of MCOD between the compared arms across trials, and the grey violins indicate the distribution of the total percentage
of MCOD across trials. The red and grey points indicate the median value in each split violin. DANG, Cochrane Depression, Anxiety
and Neurosis Group; DPLPG, Cochrane Developmental, Psychosocial and Learning Problems Group; SG, Cochrane
Schizophrenia Group.
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mechanisms.11 In their article, the authors study a few modelling options concerning the structure of the IMP,

thus potentially overlooking alternatives that would allow the researcher to investigate in more detail the impli-

cations of different structures on the conclusions.
Occasioned by the limitations of the two-stage approach by Mavridis et al.,9 the present study aims to provide a

one-stage pattern-mixture model approach under the Bayesian framework for MCOD to gain knowledge with

respect to the missingness mechanisms across different interventions and trials in a network. A one-stage model

approach allows for an eloquent synthesis of the data in a single step, and it allows us to learn about the

missingness process via the estimation of the missingness parameter, thus offering an immediate advantage

over the two-stage pattern-mixture model approach.
The article has the following structure. In Section 2, we introduce two published systematic reviews with

network meta-analysis (NMA) with different amount of MCOD; an NMA of treatment options for

Parkinson’s disease with a considerable amount of MCOD in many trials (>20% MCOD) and an NMA of

physical activities for type-2 diabetes patients with a moderate amount of MCOD. In Section 3, we describe the

one-stage pattern-mixture model and the missingness parameters with different structures for their prior distri-

bution. In Section 4, we apply our method to the motivating examples. We conclude with a discussion in Section 5

and brief recommendations in Section 6.

2 Motivating examples

We consider two motivating examples: (a) the network of Stowe et al.12 investigating antiparkinsonian drugs by

measuring the change from baseline of patient off-time reduction (Table 1) and (b) the network of Schwingshackl

et al.13 assessing the effect of different training modalities on HbA1c for patients with type 2 diabetes (Table 2). In

both examples, negative values of mean difference (MD), and standardised mean difference (SMD) and positive

values of the ratio of means (RoM) in the logarithmic scale – the most commonly used effect sizes in the synthesis

of continuous outcomes – favour the first intervention in the comparison. The rationale of the choice of these

networks heavily depends on the amount of missingness, quantified as the percentage of MCOD (%MCOD) from

our broader collection of five networks (Figure 2; Table S1). The network of Stowe et al.12 has a considerable %

MCOD (>20%) in many trials, whereas the network of Schwingshackl et al.13 suffers from a moderate amount of

MCOD.
In more detail, in the network of Stowe et al.,12 10 trials (34%) have a considerable %MCOD (range: 28–56),

while only six trials (21%) are MCOD-free (Table 1). Of the four treatments, placebo plus levodopa

(placeboþLD) has the lowest %MCOD across trials, whereas catechol-O-methyl transferase inhibitors plus levo-

dopa (COMTIþLD) has the largest %MCOD (%MCOD median: 35, interquartile range (IQR): 0–51). The

network of Schwingshackl et al.13 has a moderate amount of MCOD compared to Stowe et al.12 as half of the

trials are MCOD-free and the remaining half has moderate to considerable %MCOD (range: 8–31; Table 2).

Among the three competing interventions, resistance is the most ‘problematic’ (%MCOD median: 2, IQR: 0–15)

followed by aerobic (%MCOD median: 2, IQR: 0–7). Moreover, the imbalance of %MCOD within the trials is

less profound in Schwingshackl et al.13 as the majority of trials has a lack of or low imbalance in %MCOD (< 5

in absolute value).

3 Methods

3.1 Notation

Consider a series of N trials comparing different sets of T interventions for the same patient population and health

condition. In the absence of MCOD, we have information on the mean yik and the variance vik of a continuous

outcome (for instance, change in pain intensity scores) as measured in the nik randomised participants in arm k

(k ¼ 1; 2; . . . ; ai with ai being the number of arms in trial i) of trial i, where

yik �N hik; vikð Þ

By convention, we assume vik to be known.
In the presence of MCOD, we do not have information on yik and vik. Instead, we know the mean yoik

(superscript to abbreviate observed) and the variance voik of the continuous outcome as measured in
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the noik participants who completed (from now on called completers) arm k of trial i out of the total randomised
(nik), where

yoik �N hoik; v
o
ik

� �
and

mik �Bin qik; nikð Þ

with mik ¼ nik � noik the missing participants in arm k of trial i, and qik the probability of being missing. We assign
a uniform prior distribution on qik with support in 0;1½ �. Exclusion of MCOD corresponds to analysing the noik
completers in arm k of trial i. By reducing the randomised sample to the completers, exclusion of MCOD results in
loss of power and may increase the risk of biased results if the reasons for premature discontinuation are
informative.10,11

Table 1. Trials on four different antiparkinsonian interventions (Stowe et al.12)a

Trial

Comparisons Placebo arm Active arm
Total

%MCODb
Imbalance in

%MCODbt1 t2 yo1
ffiffiffiffi
vo1

p
m1 no1 yo2

ffiffiffiffi
vo2

p
m2 no2

1 A B �0.30 0.50 7 76 �1.20 0.48 3 81 6% 5%

2 A B �2.47 1.13 8 12 �3.33 0.93 9 14 40% 1%

3 A B �0.70 0.56 2 16 �2.00 0.55 1 18 8% 6%

4 A B �0.77 0.49 19 46 �2.08 0.34 34 89 28% 2%

5 A B �0.20 0.35 0 187 �1.80 0.35 0 189 0% 0%

6 A B �0.90 0.50 1 100 �2.80 0.20 1 200 1% 0%

7 A B �0.60 0.56 4 29 �1.20 0.54 7 29 16% �7%

8 A B �0.12 0.23 3 180 �1.94 0.20 6 174 2% �2%

9 A B �0.30 0.50 7 76 �2.60 0.51 8 71 9% �2%

10 A B �0.70 0.28 7 172 �2.40 0.26 7 174 4% 0%

11 A B �0.30 0.32 1 190 �2.10 0.32 1 201 1% 0%

12 A B �2.22 0.63 0 23 �1.74 0.49 0 23 0% 0%

13 A B �0.75 0.60 0 22 �1.33 0.36 4 42 6% �9%

14 A B �1.22 0.51 1 53 �1.53 0.45 5 90 4% �3%

15 A B �0.90 0.50 1 100 �2.50 0.25 3 201 1% 0%

16 A B �0.90 0.31 1 119 �2.70 0.36 118 113 34% �50%

17 A C �0.90 0.40 30 74 �1.60 0.22 68 129 33% �6%

18 A C �0.90 0.20 0 96 �1.00 0.14 0 174 0% 0%

19 A C �0.54 0.39 0 63 �0.86 0.29 0 99 0% 0%

20 A C �0.40 0.15 11 218 �1.20 0.15 9 218 4% 1%

21 A C �0.10 0.26 0 86 �1.30 0.24 0 85 0% 0%

22 A C �1.00 0.23 0 99 �1.50 0.26 0 98 0% 0%

23 A C �0.30 0.38 40 57 �1.10 0.24 88 115 43% �2%

24 A C �0.67 0.37 0 58 �2.03 0.34 59 60 33% �50%

25 A C �0.04 0.27 0 42 �1.61 0.28 79 40 49% �66%

26 A C �0.30 0.30 0 72 �2.00 0.30 74 69 34% �52%

27 A C �0.11 0.43 5 37 �1.78 0.50 81 31 56% �60%

28 A D �0.40 0.15 11 218 �1.18 0.15 9 222 4% 1%

29 A D �0.91 0.20 0 159 �1.85 0.20 164 149 35% �52%

A: Placebo plus levodopa; B: dopamine agonist plus levodopa; C: catechol-O-methyl transferase inhibitors plus levodopa; D: monoamine oxidase type B

inhibitors plus levodopa; MCOD: missing continuous outcome data. yok : observed mean change from baseline in arm k;
ffiffiffiffi
vok

p
: observed standard error in

arm k; mk: number of missing patients in arm k; nok: the number of completers in arm k.
aOf the total 33 two-arm trials, we excluded three trials for reporting opposite signs in the mean change from baseline in the compared arms (log RoM

cannot be calculated for these trials), and one trial due to inaccuracies in the available information regarding MCOD (Figure 1 in Stowe et al.12).
bGreen indicates a low risk of attrition bias (�5%), red indicates a substantial risk of attrition bias (>20%), and orange indicates a moderate risk of

attrition bias.
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Figure 2. Networks on a primary continuous outcome with extractable missing continuous outcome data (MCOD) from five
published systematic reviews. The size of the node is proportional to the number of observed treatment comparisons that include
that node. The thickness of the edge is proportional to the number of trials that investigated that comparison. A low, moderate and
large amount of percentage of total MCOD (%MCOD) is represented in each node and edge with green (%MCOD � 5), orange and
red colour (%MCOD > 20). In each node, the %MCOD is the ratio of the total number of MCOD to the total number randomised
across the trials that investigate the intervention. In each edge, the %MCOD is the ratio of the total number of MCOD to the total
number randomised across the trials with that comparison. COMTIþLD: catechol-O-methyl transferase inhibitors plus levodopa;
DAþLD: dopamine agonist plus levodopa; MAOBIþLD: monoamine oxidase type B inhibitors plus levodopa; PBOþLD: placebo plus
levodopa.

Table 2. Trials on three different training modalities (Schwingshackl et al.13)

Triala

Comparisons Placebo arm Active arm 1 Active arm 2
Total

%MCODb
Imbalance

in %MCOD†t1 t2 t3 yo1
ffiffiffiffi
vo1

p
m1 no1 yo2

ffiffiffiffi
vo2

p
m2 no2 yo3

ffiffiffiffi
vo3

p
m3 no3

1 A B NA �0.4 0.10 1 19 �0.35 0.11 1 19 NA NA NA NA 5% 0%

2 A B C �0.12 0.10 0 72 �0.04 0.09 0 73 �0.23 0.09 0 0 0% 0%

3 A B C 7.42 0.43 0 12 8.24 0.61 0 12 7.53 0.30 0 0 0% 0%

4 A B C �0.60 0.10 0 21 �0.20 0.05 0 23 �0.90 0.09 0 0 0% 0%

5 A B NA �0.60 0.31 0 15 �0.30 0.25 0 13 NA NA NA NA 0% 0%

6 A B NA �0.53 0.13 1 12 �0.35 0.12 2 11 NA NA NA NA 11% �8%

7 A B NA �0.30 0.16 0 30 �0.40 0.11 0 30 NA NA NA NA 0% 0%

8 A B C �0.43 0.12 11 49 �0.30 0.12 8 56 �0.90 0.12 6 58 13% 9%c

9 A B NA �0.10 0.17 4 9 -0.10 0.31 4 9 NA NA NA NA 31% 0%

10 A B C �1.33 0.24 5 15 �0.55 0.11 5 15 �1.74 0.22 5 15 25% 0%

11 A C NA 6.34 0.21 0 20 6.65 0.23 0 22 NA NA NA NA 0% 0%

12 A C NA �0.10 0.11 0 9 �0.10 0.22 0 10 NA NA NA NA 0% 0%

13 A C NA 6.90 0.20 1 21 7.20 0.20 0 24 NA NA NA NA 2% 4%

14 A C NA 7.00 0.37 1 18 6.90 0.28 2 17 NA NA NA NA 8% �5%

A: aerobic; B: resistance; C: combined training; MCOD: missing continuous outcome data. yok : observed mean change from baseline in arm k;
ffiffiffiffi
vok

p
:

observed standard error in arm k; mk: number of missing patients in arm k; nok: the number of completers in arm k.
aThe number of randomised participants was obtained from the corresponding published reports, and then we calculated the missing outcome data in

each trial.
bGreen implies a low risk of attrition bias (�5%), red indicates a substantial risk of attrition bias (>20%), and orange implies a moderate risk of

attrition bias.
cCalculated as the difference between the arms with the maximum and minimum percentage of missing outcome data.
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3.2 One-stage pattern-mixture model

In each trial, we are interested in estimating the unknown parameter hik while accounting for the missing

participants properly. For that purpose, we consider a pattern-mixture model to study the missing participants

and completers jointly

E yikð Þ ¼ hik ¼ hoik 1� qikð Þ þ hmikqik (1)

where hmik is the missingness parameter that indicates the underlying mean of the continuous outcome among the

missing participants in arm k of trial i. By using equation (1), the randomised sample is retained in each trial of the

network to allow for inferences on the whole target population irrespective of trial completion or premature

discontinuation. The available data provide no information on hmik, and therefore, we have to make clinically

plausible assumptions.

3.2.1 Informative missingness parameters

In order to quantify the missingness process, appropriate missingness parameters have been proposed. Following

Mavridis et al.,9 we consider the following IMPs for MCOD:

Informative missingness difference of means (IMDoM). The IMDoM is defined as the difference between the mean

outcome among missing participants and the mean outcome among the completers

uik ¼ hmik � hoik

By replacing

hmik ¼ uik þ hoik

in equation (1) and rearranging, we obtain hoik ¼ hik � uikqik

The uiks are not known and cannot be retrieved from the data, and hence we need to propose plausible values

for them. Under the Bayesian framework, it naturally translates to assigning a prior distribution for uik. A natural

choice for uik is a normal prior distribution with mean Dik and variance r2ik that reflect our prior belief and

uncertainty about the missingness process on average, respectively, in arm k of trial i. Then, Dik > 0 implies that a

larger outcome on average is more likely to occur among missing participants rather than completers in arm k of

trial i, Dik < 0 implies the opposite, and Dik ¼ 0 indicates the missing at random (MAR) assumption on average.

According to Mavridis et al.,9 the precision of the summary effect decreases for r2ik � 32; afterwards, the between-

trial variance becomes zero, and the increase in within-trial standard error increases further the standard error of

the summary effect (Figure 5).9 We consider r2ik � 32 to be conservative, whereas r2ik < 1 to be liberal regarding

our prior belief for the missingness mechanism on average. For model identifiability, we use informative priors on

uik following the prior distributions considered in Mavridis et al.9 Specifically, we use r2ik ¼ 1 in all models as the

primary analysis, and r2ik ¼ 32 as the sensitivity analysis. With the sensitivity analysis, we aim to investigate

whether and how increasing the prior variance of uik may impact on the investigated NMA parameters (see

Section 3.4).

Informative missingness ratio of means (IMRoM). The IMRoM is defined as the ratio of the mean outcome

among the missing participants to the mean outcome among the completers

exp xikð Þ ¼ hmik
hoik

Spineli et al. 963



By replacing hmik in equation (1) and rearranging, we obtain

hoik ¼
hik

1� qik 1� exikð Þ

Then, we can assign a normal prior distribution on xik with mean Dik and variance r2ik. In line with IMDoM,

we consider r2ik � 0:42 to be conservative, whereas r2ik < 0:22 to be liberal regarding our prior belief for the

missingness mechanism on average (Figure 5, there 9). We use r2ik ¼ 0:22 in all models as the primary analysis,

and r2ik ¼ 0:42 as the sensitivity analysis to investigate the impact of increasing the prior variance of xik on the

investigated NMA parameters.

3.2.2 Structural assumptions for the missingness parameters

There are various options of increasing flexibility with respect to how the IMPs across trials and arms can be

structured.11,14 We focus on the following:

• common-within-network; the IMPs are assumed to be the same in the whole network, and only one parameter

is estimated per network;
• trial-specific; the IMPs are different across trials but assumed to be the same in the compared arms resulting in

down-weighting trials with unbalanced MCOD;10

• intervention-specific; allowing the IMP to be different across interventions but shared across trials, thus

resulting in down-weighting trials with higher total MCOD.10

The IMPs can be further assumed to be identical, hierarchical or independent, which corresponds to hypothe-

sising that these parameters are constant, exchangeable or different, respectively. In this work, the latter is

assumed to be either uncorrelated or correlated across the arms of every trial with correlation cor uij;uilð Þ ¼
cor xij;xilð Þ ¼ 0:5 for j; l 2 1; 2; . . . ; aif g, and j 6¼ l following Mavridis et al.9 The researchers should consider

an expert opinion to define the correlation parameter,9 though it is not an easy task. White et al.15 offer a

framework to elicit the correlation parameter of several arms in a trial. Furthermore, applying both correlated

and uncorrelated IMPs can aid in understanding whether results are robust to the joint distribution of IMPs.

Table 3 summarises all structural assumptions mentioned above for uik and xik under the MAR assumption

on average in the primary and sensitivity analyses. Note that in the hierarchical structure, we have assigned a

uniform prior distribution on the hyper-standard deviation; other proper prior distributions may be considered

as well.16

3.3 Effect measures for a continuous outcome

3.3.1 Mean difference

We use an identity function to link hik with ui and di;k1 in trial i as follows

hik ¼ ui þ di;k1I k 6¼ 1f g

where ui ¼ hi1 is the underlying mean in the baseline arm and di;k1 is the random-effect that indicates the MD

between arm k and baseline arm in trial i.

3.3.2 Standardised mean difference

We use the following link function

hik ¼ ui þ Sidi;k1I k 6¼ 1f g

where di;k1 is the SMD between arm k and baseline arm in trial i, and Si is the pooled standard deviation

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPai

k¼1 vik nik � 1ð ÞPai
k¼1 nik � 1ð Þ

s
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However, in the presence of MCOD, we have no information on vik. Under MAR, we may assume that the

pooled standard deviation among the missing participants is equal to the pooled standard deviation among the

completers. Then, we can use the pooled standard deviation among the completers as the pooled standard devi-

ation for the randomised sample. However, by doing so, we do not acknowledge our uncertainty about the MAR

assumption in the estimation of the pooled standard deviation. Instead, we may assign a gamma prior distribution

on the pooled variance for the randomised sample with shape and scale parameters that are defined as follows

S2
i �C

Pai
k¼1 nik � 1ð Þ

2
;

Pai
k¼1 nik � 1ð Þ

2r2i

 !

where ri is the pooled standard deviation among the completers in trial i.17

Ratio of (arithmetic) means

For the RoM, the link function is the following

hik ¼ uie
di;k1I k 6¼1f g

where di;k1 is the RoM (arm k versus baseline arm) in the logarithmic scale in trial i. This effect measure is less

prevalent in systematic reviews as compared to MD and SMD;2 however, we have considered it for completeness.

3.4 Bayesian random-effects network meta-analysis model

For all the aforementioned effect measures, we assume di;k1 to follow a normal distribution with mean ltik;ti1 and
variance s2 common for all observed pairwise comparisons to facilitate estimation of the parameter when there are

comparisons with few trials. With tik, we indicate the intervention in arm k of trial i. By considering a common s2,
the correlation between pairs of random-effects in multi-arm trials is equal to 0.5.18 We apply the consistency

equation, which is a linear combination of comparisons with the reference intervention of the network (here,

intervention A) to obtain the treatment effects for the remaining comparisons19

ltik;ti1 ¼ ltik;A � lti1;A

where tik, ti1 2 B; C; . . . ;Tf g.
We use the surface under the cumulative ranking curve (SUCRA) to order the interventions from the best to

the worst.20 For the proposed one-stage pattern-mixture models, we use the normal likelihood with known

variance for each arm of every trial (example 5 in the Appendix of Dias et al.21). For the location parameters

ui and lti;ti1 , we consider a normal prior distribution with mean 0 and variance 10,000. We assign a half-normal

prior distribution on s with mean 0 and variance 1.16 Since empirical priors for s2 have been proposed only for the

SMD, we use this half-normal prior distribution on s for all three effect measures. Due to many investigated

models and their parameters, we consider a pragmatic approach to assess for the convergence of all model

parameters. We use the Gelman–Rubin convergence diagnostic, R̂, and we consider parameters with R̂ > 1:1

to not have achieved convergence; then, the corresponding posterior distributions cannot be trusted.22 For

parameters with a lack of convergence, we planned to look at their trace plots and autocorrelation plots to

understand the cause of non-convergence. All models were implemented in JAGS via the R-package R2jags

(statistical software R, version 3.6.1).23,24 The R-package ggplot2 was used to draw the figures in Section 4.25

The functions related to this manuscript are publicly available at https://github.com/LoukiaSpin/One-stage-PM-

NMA-model-Continuous-Outcomes.git.

4 Application of the models

We apply the proposed models to the networks of Stowe et al.12 and Schwingshackl et al.13 We focus on MD and

SMD for being the most prevalent effect measures for synthesising a continuous outcome. We present the results

on log RoM for the primary and sensitivity analyses in the Supporting Information (Figure S1 –S5; Tables S2, and

S4). Figure 3 depicts the posterior mean and 95% credible intervals (CrI) of all models for the comparisons with
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the reference intervention (i.e. placeboþLD in Stowe et al.,12 and aerobic in Schwingshackl et al.,13 respectively),
and the posterior median and 95% CrI of s2. In each plot, the vertical dashed lines refer to the point estimate and
95% CrI after exclusion of MCOD, which translates to the available case analysis (ACA).26 According to the
Gelman–Rubin convergence diagnostic, convergence was achieved for all model parameters under all three effects
measures and all different structural assumptions for the uik and xik, because R̂ < 1:1 (range: 1.001 – 1.040 for
ltik;A, s

2, and SUCRA values; range: 1.001 – 1.002 for uik and xik under all different structural assumptions in
primary and sensitivity analyses).

4.1 Network meta-analysis results

4.1.1 Network with considerable MCOD (antiparkinsonian drugs)

The results obtained for MD and SMD analyses are very similar, following the same pattern, while on a different
scale (Figure 3(A)). The posterior means for the identical and hierarchical structures are almost identical (after
rounding to the second decimal) for the common-within-network, trial-specific and intervention-specific assump-
tions. The same conclusion can be drawn for the correlated and uncorrelated assumptions, whose estimates are
found to be very similar to each other.

The intervention-specific assumption results in a slightly larger patient off-time reduction for dopamine agonist
plus levodopa (DAþLD) versus placeboþLD as compared with the competing assumptions whose point esti-
mates are identical or very similar to ACA (posterior mean of MD: �1.49 vs. �1.44). In this comparison, the
results are almost interchangeable across the different assumptions because most of the included trials have low or
moderate %MCOD (<10%) that is quite balanced in the compared arms as opposed to the other two
comparisons.

The results for COMTIþLD versus placeboþLD are more variable across the assumptions, as expected
because 6 out of 11 trials that were included suffer from considerable %MCOD that are unbalanced in the

Figure 3. Interval plots of the posterior distribution of MD and SMD for comparisons with the reference intervention of Stowe
et al.12 (panel A)) and Schwingshackl et al.13 (panel B)), and the posterior distribution of s2. The one-stage pattern-mixture model
under the hierarchical, identical, and independent structure of IMDoM for the assumption of common-within-network, trial-specific,
intervention-specific, within-trial correlated and uncorrelated IMDoM. The vertical dashed lines refer to the posterior mean (middle
line) and 95% CrI (both sides lines) under the available case analysis. COMTIþLD: catechol-O-methyl transferase inhibitors plus
levodopa; CrI: credible interval; MAOBIþLD: monoamine oxidase type B inhibitors plus levodopa.
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compared arms. All assumptions consistently lead to lower patient off-time reduction when compared with ACA,

similarly in MD and SMD: the posterior mean is 14–30% lower than ACA across the assumptions. Among the

different assumptions, the intervention-specific assumption leads to the lowest patient off-time reduction, whereas

both assumptions under the independent structure yield the largest patient off-time reduction.
For the comparison of monoamine oxidase type B inhibitors plus levodopa (MAOBIþLD) versus

placeboþLD, the competing assumptions yield almost interchangeable posterior means (MD ranging from

�0.83 to �0.81, SMD from �0.37 to �0.36) that are close to ACA (MD: �0.83, SMD: �0.36), except for the

common-within-network assumption that leads to a lower patient off-time reduction on average. Contrary to the

other comparisons, the 95% CrIs are wider since two trials only inform this comparison, one of which has 35%

MCOD (Table 1).
All assumptions yield a lower posterior median of s2 (MD: 0.03 to 0.06, SMD: 0.004 to 0.006) with narrower

95% CrI compared with ACA (MD: 0.1, SMD: 0.01) which indicates that all assumptions have explained a

substantial part of the between-trial variance (MD: 40% to 70%, SMD: 40% to 60% compared to ACA). The

intervention-specific assumption provides the lowest posterior median and narrowest 95% CrI of s2, followed by

the common-within-network assumption. The posterior median of s2 is similar in the trial-specific assumption and

the independent structure. According to SUCRA values, placeboþLD and DAþLD are consistently the worst

and the best interventions, respectively (Figure 4(a)). The hierarchy is uncertain for COMTIþLD and

MAOBIþLD due to overlapping 95% CrI across all models, which is attributed to considerable %MCOD in

the corresponding trials.
By increasing the variance of the prior distribution for IMDoM at 32, and therefore our uncertainty on

our belief about the MAR assumption, the results follow the same pattern with the primary analysis

(only results on MD are shown), but the 95% CrIs are now wider overall (Figure S4A in the Supporting

Information).

Figure 4. Barplots of the SUCRA values under MD, and SMD for the network of Stowe et al.12 (panel A)) and the network of
Schwingshackl et al.13 (panel B)). The one-stage pattern-mixture model under the hierarchical, identical, and independent structure of
IMDoM under the common-within-network, trial-specific, intervention-specific, within-trial correlated and uncorrelated assumptions.
Results under ACA are also presented. ACA: available case analysis; COMTIþLD: catechol-O-methyl transferase inhibitors plus
levodopa; MAOBIþLD: monoamine oxidase type B inhibitors plus levodopa; SUCRA: surface under the cumulative ranking.
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4.1.2 Network with moderate MCOD (different training modalities)

In line with the previous example, MD and SMD provide very similar results in terms of pattern, but on a

different scale (Figure 3(B)). The point estimates are almost identical under the hierarchical and identical struc-

tures for the common-within-network, trial-specific and intervention-specific assumptions, and similar for the

correlated and uncorrelated assumptions under the independent structure. The intervention-specific assumption

leads to a slightly large reduction in HbA1c in favour of resistance, but the evidence is weak (the 95% Crl includes

zero). All other assumptions give similar results with each other and with ACA strongly favouring resistance.

Furthermore, under the intervention-specific assumption, the comparison of combined training versus aerobic

results in lowering the reduction in HbA1c by approximately 37% compared with the competing assumptions. In

contrast, all other assumptions result in similar findings with each other and with ACA but slightly more precise

than ACA. Except for two trials with considerable %MCOD, the low to moderate %MCOD across and within

the trials may explain the low variability of the results across the assumptions for each comparison with aerobic.
All assumptions lead to a lower posterior median and wider 95% CrI of s2 (MD: 0.03–0.05, SMD: 0.05–0.16)

as compared to ACA (MD: 0.06, SMD: 0.18). Identical structure yields a larger posterior median and wider 95%

CrI of s2 for each assumption as compared to the hierarchical structure. In both MD and SMD, the intervention-

specific assumption under the hierarchical structure yields the lowest posterior median and most precise 95%

CrI of s2.
According to SUCRA values, combined training and resistance are consistently the best and the worst inter-

ventions across all assumptions, respectively, except for the intervention-specific assumption that leads to over-

lapping 95% CrIs (Figure 4(b)). The intervention-specific assumption yields wider CrI for comparisons with

aerobic, which can explain the wide 95% CrI for SUCRA as well.
In line with the previous network, increasing the prior variance of the prior distribution of IMDoM at 32 leads

to results of the same pattern with the primary analysis (only results on MD are shown), but with less precise

estimates overall (Figure S4A in the Supporting Information).

4.2 Learning about the missingness mechanism

The posterior distribution of IMDoM under the common-within-network and intervention-specific assumptions

is given in Table 4 for both network examples. A posterior mean away from zero is an indication that the MAR

assumption may not be plausible; that is, the missingness process may be informative. Similarly, a 95% CrI

excluding zero and protruding from the interval of the prior distribution of IMDoM is a strong indication of

informative missingness; otherwise, the data provide little information to conclude for or against the MAR

assumption. For the remaining structural assumptions of IMDoM, the posterior distribution for the most ‘prob-

lematic’ studies (i.e. studies with a considerable amount of MCOD) is shown in Figure 5 for the network of Stowe

Table 4. Posterior mean and 95% CrI of IMDoM under different structural assumptions.a

Network Interventions

Assumptions about the structure of IMDoM (uik)

Common-within-network Intervention-specific

Hierarchical

uik �N D;r2
� �

,

D �N 0; 12
� �

,

r �Uð0;1Þ

Identical

uik ¼ u,
u�N 0; 12

� �
Hierarchical

uik �N Dtik ; r
2
tik

� �
,

Dtik �N 0; 12
� �

,

rtik �Uð0;1Þ

Identical

uik ¼ utik
,

utik
�N 0; 12

� �
Antiparkinsonian

drugs12
COMTIþLD 0.99 (0.11, 1.82) 1.02 (0.23, 1.80) 1.25 (0.22, 2.22) 1.29 (0.34, 2.20)

DAþLD 0.02 (�1.49, 1.49) 0.05 (�1.38, 1.48)

MAOBI þLD 0.12 (�1.36, 1.58) 0.15 (�1.23, 1.51)

PBOþLD 0.56 (�0.91, 1.97) 0.61 (�0.79, 1.99)

Training

modalities13
Aerobic �0.13 (�1.94, 1.72) �0.11 (�2.04, 1.80) �0.18 (�1.62, 1.29) �0.24 (�1.67, 1.25)

Combined training 0.74 (�0.97, 2.42) 0.84 (�0.88, 2.48)

Resistance �0.61 (�2.17, 0.97) �0.71 (�2.28, 0.91)

COMTIþLD: catechol-O-methyl transferase inhibitors plus levodopa; CrI: credible interval; DAþLD: dopamine agonist plus levodopa; IMDoM:

informative missingness difference of means; MAOBIþLD: monoamine oxidase type B inhibitors plus levodopa; PBOþLD: placebo plus levodopa.
aMean difference with informative missingness difference of means.
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et al.12 The vertical lines in each plot refer to the prior mean (middle grey line) and 95% prior interval (both sides

dashed lines) under the MAR assumption on average.

4.2.1 Network with considerable MCOD (antiparkinsonian drugs)

The results under the common-within-network assumption suggest likely informative missingness as point esti-

mates are positive (hierarchical: 0.99, identical: 1.02) and their corresponding CrIs do not include zero. However,

the 95% CrIs do not protrude the upper bound of the prior interval (Table 4). The same conclusions are drawn

when we assume a larger prior variance of IMDoM; though the posterior mean is larger (hierarchical: 1.17,

identical: 1.20) and the 95% CrI are wider when compared to the primary analysis, as expected (Table S3).

However, the common-within-network assumption does not reveal the source(s) of such informative missingness.

On the contrary, the intervention-specific assumption indicates that for all interventions, except COMTIþLD, the

data provide little information to conclude in favour of or against the MAR assumption as the 95% CrIs of the

corresponding posterior distributions include zero (Table 4). Only the posterior mean and 95% CrI for

COMTIþLD are far from zero suggesting informative missingness. The conclusions do not change when we

assume a larger prior variance of IMDoM (Table S3). This is not surprising because COMTIþLD has attracted

the highest %MCOD in the network (Table 1). COMTIþLD may also be responsible for pulling the posterior

distribution of IMDoM away from zero under the common-within-network assumption. Conclusions are the

same in both structures, though the identical structure provides more precise results than the hierarchical

structure.
The trial-specific assumption further indicates that in trials with total %MCOD above 20% and severe imbal-

ance in the compared arms (i.e. the trials that compare COMTIþLD with placeboþLD; Table 1), missing

participants may have a smaller patient off-time reduction on average than completers, though the indication

is weak (Figure 5). For these trials, the assumption of within-trial correlated IMDoMs provides further insights

on the missingness process as it reveals that this behaviour is more profound in the active arm (i.e. COMTIþLD)

than in the placebo arm (Figure 5). However, the assumption of within-trial uncorrelated IMDoMs indicates that

only missing participants receiving COMTIþLD in these trials appear to have a smaller patient off-time reduction

Figure 5. Interval plots of the posterior distribution of IMDoM using MD in the network of Stowe et al.12 The one-stage pattern-
mixture model under the hierarchical and identical structure assuming trial-specific IMDoMs and under the independent structure
assuming within-trial correlated and uncorrelated IMDoMs. The vertical lines indicate the prior distribution for IMDoM. Only the
trials with considerable participant losses are presented. COMTIþLD: catechol-O-methyl transferase inhibitors plus levodopa; CrI:
credible interval; DAþLD: dopamine agonist plus levodopa; IMDoM; informative missingness difference of means; MAOBIþLD:
monoamine oxidase type B inhibitors plus levodopa; PBOþLD: placebo plus levodopa.
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on average than completers (Figure 5). It is evident that by using different assumptions about the missingness

parameter, we gain a different level of knowledge regarding the missingness mechanisms in the network.

4.2.2 Network with moderate MCOD (different training modalities)

The data provide little information to conclude for or against the MAR assumption using the common-within-

network assumption given the wide CrIs of both hierarchical and identical structures that include zero (Table 4).

This finding is shared in the results under the intervention-specific and trial-specific assumptions where for all

treatments and trials, the intervals of the posterior distribution of IMDoM are considerably wide and include zero

(last three lines of Table 4; Figure 6). The conclusions are similar for both assumptions under the independent

structure (Figure 6). Contrary to the network of antiparkinsonian drugs, the trials of this network suffer mildly

from MCOD, which are balanced in the compared arms. Therefore, there is not enough information to conclude

for or against the MAR assumption using different assumptions for the missingness parameter.

5 Discussion

We have proposed a one-stage pattern-mixture model approach under the Bayesian framework that accounts for

MCOD from all trials in a single step while allowing the observed data to contribute to the estimation of the

missingness parameters to learn about the missingness mechanism. The hierarchical structure of the proposed

models facilitates the incorporation of various prior structures and assumptions about the missingness parameter

to investigate the implications of MCOD on the conclusions. These features make the proposed model approach

particularly attractive to handle aggregate MCOD properly. On the contrary, the two-stage approach does not

offer enough flexibility in the analysis of MCOD as it requires strong assumptions about the estimated within-trial

variance (considered known) and the missingness parameter (considered independent of the amount of MOD).9

Due to variation in the amount of MCOD within and across the trials, especially, in the network of Stowe

et al.12 (Table 1), we consider the independent structure for the missingness parameters to be the most plausible,

and the common-within-network assumption to be the least plausible in our motivating examples. The

intervention-specific assumption is particularly relevant if one is interested to learn about the missingness

Figure 6. Interval plots of the posterior distribution of IMDoM using MD in the network of Schwingshackl et al.13 The one-stage
pattern-mixture model under the hierarchical and identical structure assuming trial-specific IMDoMs and under the independent
structure assuming within-trial correlated and uncorrelated IMDoMs. The vertical lines indicate the prior distribution for IMDoM. CrI:
credible interval; IMDoM: informative missingness difference of means.
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mechanism in each or specific intervention(s). Common-within-network is a strong and perhaps the least realistic
assumption. In a typical network with different trial-designs (e.g. placebo-controlled and active-controlled) and
different interventions (e.g. placebo, active and old interventions), the amount of and reasons for MOD may vary
across all arms and trials making the common-within-network assumption implausible. The trial-specific assump-
tion is plausible when trials with different characteristics (in terms of design and conduct) are associated with
different mechanisms of MOD.27–29 For further discussion on the situations to consider the different prior
structures and assumptions for the missingness parameter (Table 3), the interested readers can refer to the
literature.11,14,29

There is already a simulation study on the comparison of different one-stage pattern-mixture models for
aggregate binary MOD.29 This study considered the identical and hierarchical structures for the common-
within-network, intervention-specific and trial-specific assumptions for the missingness parameter. In the present
study on continuous outcomes, we observed the same behaviour of the proposed methods with the one from the
simulation study. For instance, the intervention-specific prior structure led to larger posterior standard deviation
of the treatment effects (similarly for the hierarchical and identical assumption) as compared to the other struc-
tures, especially, for a large amount of MCOD in the network (Figure 3). We expect the one-stage pattern-mixture
model for continuous MOD to behave similarly to the one-stage pattern-mixture model for binary MOD for the
different structural assumptions of the missingness parameter.

Furthermore, modelling MCOD appeared to have explained part of the between-trial variance in both net-
works, and particularly, under the intervention-specific assumption which yielded the smallest s2. The benefits of
modelling rather than excluding (or imputing) MOD in the estimation of s2 have been already mentioned.9,14,30

Modelling MOD offers a trade-off between inflation in the within-trial variance and reduction in s2 which can be
considerable when the amount of MOD is substantial. The opposite holds when MODs are excluded or imputed.

We illustrated the proposed one-stage pattern-mixture model approach using three different effect measures for
the continuous outcome. In line with Mavridis et al.,9 we apply MD and SMD in conjunction with the IMDoM,
and log RoM together with the log IMRoM, because they are intuitively related. To select among these three
effect measures for a specific outcome, the researcher should consider the trade-off among the ease of interpre-
tation, statistical properties (e.g. low variability of the treatment effect across the trials31) and the goodness of fit.
According to the posterior mean of residual deviance, we found that using the log RoM, none of the models fit the
data adequately for the network of Stowe et al.12 (Table S5 in the Supporting Information). In the network of
Cipriani et al.,32 none of the models fit the data adequately for MD and SMD (Table S5 in the Supporting
Information). For a discussion on the statistical properties and performance of these effect measures in the
synthesis of trials, the readers should refer to the relevant literature.33–35

The proposed one-stage pattern-mixture model approach can be particularly useful in living systematic
reviews,36 where learning about the missingness process via the estimated missingness parameters can inform
the design of a future randomised trial. For instance, assuming that Stowe et al.12 was a living systematic review,
we have learned that trials comparing COMTIþLD with placeboþLD have the most participant losses (Table 1)
and missing participants randomised in COMTIþLD tend to have smaller patient off-time reduction as compared
to completers in that arm (according to the intervention-specific assumption and the independent structure).
Moreover, scrutiny of the COMTIþLD versus placeboþLD trials in the network using the Cochrane Risk of
Bias tool will further shed light on why participant losses are almost negligible in some trials (<4%) but con-
siderable in others (<30%). All this information will allow the trialists of a future COMTIþLD versus
placeboþLD trial to undertake proactive plans to increase retention of the participants in the COMTIþLD
arm.37

We were able to extract MOD in each arm of every trial in five networks only (out of the 92 networks with a
continuous primary outcome). Therefore, an empirical study using this dataset would not offer sufficient evidence
to compare the one-stage with the two-stage pattern-mixture model empirically. It is particularly challenging to
collect a sufficient number of networks (or meta-analyses) to conduct an empirical study concerning MOD as the
ability to extract MOD, and the quality of the extraction strongly depends on the reporting quality of the
systematic reviews under investigation.38 However, a recent simulation study investigated the performance of
modelling the exact distribution (one-stage approach) versus the approximately normal distribution (two-stage
approach) of aggregate binary data in the presence of MOD in a triangle of two-arm trials (submitted). Both
approaches showed substantial bias overall in the relative treatment effects, especially, for comparisons with the
non-reference interventions of the network, when the amount of MOD was considerable. However, the one-stage
approach is both conceptually and statistically more appropriate than the two-stage approach when the approx-
imate normality assumption cannot be defended; for instance, the outcome is skewed and/or trials have small
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size.39 Since the proposed one-stage pattern-mixture model approach is based on the normal distribution (as the

exact likelihood), we would expect some bias in the treatment effects when the synthesis dataset is dominated by

small trials with a skewed outcome. In these situations, we recommend that until a more competent one-stage

model is developed, the researchers apply our proposed one-stage PM approach to handle MCOD, and they fully

acknowledge the limitations of this approach when they discuss the results.

6 Conclusions

Similar to binary MOD, a proper analysis of MCOD should be discussed thoroughly already in the protocol

phase of the systematic review. The analysis plan should comprise the description of the one-stage model with

respect to the proper assumptions and prior structure of the missingness parameter. For this purpose, prior

knowledge (or expectations) of the missingness process that aligns with the interventions and the design of the

trials on the condition of interest is necessary. For instance, inpatients randomised to placebo are more likely to

leave the trial early for not experiencing immediate improvement in their schizophrenia symptoms as compared to

participants randomised to antipsychotics.27 In the absence of such knowledge, we recommend that the research-

ers consider the intervention-specific assumption alongside the hierarchical structure under the MAR assumption

(with liberal uncertainty about that belief) in the primary analysis and investigate the robustness of the results

under the independent structure while increasing the variance of the prior distribution of the missingness param-

eter, as a sensitivity analysis. In a network with few comparisons, which are informed by a handful of trials, the

identical structure may be advantageous to the independent structure for estimating comparatively fewer miss-

ingness parameters. Then, the hierarchical structure alongside the intervention-specific assumption may be con-

sidered as a sensitivity analysis. The proposed models can also be applied in a pairwise meta-analysis

straightforward to benefit from the variety of structural assumptions about the missingness parameter.
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