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We develop an algorithm for model selection which
allows for the consideration of a combinatorially large
number of candidate models governing a dynamical
system. The innovation circumvents a disadvantage
of standard model selection which typically limits
the number of candidate models considered due to
the intractability of computing information criteria.
Using a recently developed sparse identification of
nonlinear dynamics algorithm, the sub-selection of
candidate models near the Pareto frontier allows
feasible computation of Akaike information criteria
(AIC) or Bayes information criteria scores for the
remaining candidate models. The information criteria
hierarchically ranks the most informative models,
enabling the automatic and principled selection of
the model with the strongest support in relation
to the time-series data. Specifically, we show that
AIC scores place each candidate model in the
strong support, weak support or no support category.
The method correctly recovers several canonical
dynamical systems, including a susceptible-exposed-
infectious-recovered disease model, Burgers’ equation
and the Lorenz equations, identifying the correct
dynamical system as the only candidate model with
strong support.
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1. Introduction
Nonlinear dynamical systems theory has provided a fundamental characterization and
understanding of phenomenon across the physical, engineering and biological sciences.
Traditionally, simplified models are posited by domain experts, and simulations and analysis
are used to explore the underlying dynamical behaviour which may include chaotic dynamics
(e.g. Lorenz equations), nonlinear oscillations (e.g. van der Pol, Duffing) and/or bifurcations.
The emergence of data-driven modelling methods provides an alternative framework for the
discovery and/or inference of governing nonlinear dynamical equations. From this perspective,
governing models are posited from time-series measurement data alone. The recent sparse
identification of nonlinear dynamics (SINDy) method [1] uses sparse regression and a Pareto
analysis to correctly discover parsimonious governing equations from a combinatorially large
set of potential dynamical models. This methodology can be generalized to spatio-temporal
systems [2,3] and dynamical systems characterized with rational function nonlinearities which
often occur in biological networks [4]. Although previously suggested [4], no explicit connection
between the SINDy process and information theoretic criteria has been established. Information
criteria are the standard statistical method established for the model selection process. In this
manuscript, we demonstrate that the Akaike information criteria (AIC) can be connected with the
SINDy architecture to hierarchically rank models on the Pareto front for automatic selection of
the most informative model. As outlined in figure 1, the AIC scores can be used to correctly infer
dynamical systems for a given time-series dataset from a combinatorially large set of models. To
our knowledge, this is the first explicit demonstration of how information theory can be exploited
for the identification of dynamical systems.

Successful model identification inherently requires a rigorous method for validation and
comparison. Model selection procedures found in the literature (i.e. [1,5,6]) typically rely on a
Pareto analysis, which balances accuracy and model complexity. Figure 2 illustrates this trade-off.
As the solid-green line (left axis) indicates, the error for a dynamical system model with zero terms
(dx/dt= 0) is high. Increasing the complexity of the model, by adding terms, provides a better fit
to the data. As the number of terms in the model approaches the number of free parameters,
one can guarantee the error will approach zero. However, overfitting to data, especially in the
presence of noise, produces models that poorly predict the behaviour of validation experiments
(out-of-sample data). The overtraining and over-completeness of models are critical concerns in
machine-learning-methods. One generally seeks to identify parsimonious models (grey box in
figure 2) where the error is significantly reduced using the minimal number of terms. Parsimony
not only avoids overfitting to training data, but also reflects an Occam’s razor approach, which is
generally preferred in physical and biological modelling. Unfortunately, interpreting the Pareto
analysis is often ambiguous. The Pareto front may not have a sharp elbow but may instead have
a cluster of models near the elbow.

Information theory provides a rigorous statistical framework for selecting a model from a
set of candidate models given validation data. As early as the 1950s, a measure of information
loss between empirically collected data and model-generated data was proposed to be computed
using the Kullback–Leibler (KL) divergence [7,8]. Akaike built upon this notion to establish a
relative estimate of information loss across models that balances model complexity, and goodness-
of-fit [9,10]. This allowed for a principled model selection criteria through the AIC. The AIC
was later modified by G. Schwarz to define the more commonly used Bayes information criteria
(BIC) [11]. Both AIC and BIC compute the maximum log likelihood of the model and impose a
penalty: AIC adds the number of free parameters k of the posited model, while BIC adds half of
k multiplied by the log of the number of data points m. This penalty increases the information
criteria score for larger, overfit models, creating a minimum in the AIC curve and allowing for
more intuitive model selection, as illustrated in figure 2. Much of the popularity of BIC stems
from the fact that it can be rigorously proved to be a consistent score [11]. Thus, if a number of
models q are proposed, with one of them being the true model, then, as m→∞, the true model
has the lowest score with probability approaching unity. Regardless of the selection criterion, AIC
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Figure 1. Schematic of model selection process, with (a) data generation, (b) generation of a set of potential models and
(c) comparison of the models as a function of the number of terms in the model and relative Akaike information criteria (AICc).
Section (d) shows how models are down-selected from a combinatorially large model space using SINDy and then further
sub-selected and ranked using information criteria. (Online version in colour.)

or BIC, they both provide a relative estimate of information loss across a selection of q models,
quantitatively balancing model complexity and goodness-of-fit [12].

Although successful and statistically rigorous, model selection in its standard implementation
is typically performed on q predetermined candidate models, where q is often 10 or less [12–17].
For modern applications to dynamical systems where rich, high-fidelity time-series data can
be acquired, the restriction on the number of models limits the potential impact of AIC/BIC
scores for discovering the correct nonlinear dynamics. Instead, it is desired to consider a
combinatorially large set of potential dynamical models as candidates, thus enforcing that q� 1.
This is computationally intractable with standard model selection, as each of the models from the
combinatorially large set would have to be simulated and then evaluated for a AIC/BIC score.

As an alternative, sparse regression techniques, embodied by the lasso (least absolute shrinkage
and selection operator) method of Tibshirani [18], have enabled variable selection algorithms
capable of optimally choosing among a combinatorially large set of potential predictors.
Specifically, a lasso regression analysis, or one of its many generalizations and variants, performs
both variable selection and regularization in order to enhance the prediction accuracy and
interpretability of the statistical model it produces. Such mathematical tools provide a critically
enabling framework for model selection, in particular, for identifying dynamical systems.
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Figure 2. Schematic of Pareto front for evaluating the number of terms (x-axis) versus the error (left axis, solid green), and the
number of terms versus the AIC score (right axis, dashed magenta). Left grey dot indicates a high-error model with zero terms
(dx/dt= 0). Grey box shows the region of parsimonious models balancing error and complexity. Right grey dot indicates an
overfit model, which can produce zero error. Note that the standard AIC score has an asymptotic penalty of 2k for the number of
terms, resulting in a slope of at least 2 for large k. (Online version in colour.)

In this work, we demonstrate a new mathematical framework that leverages information
criteria for model selection with sparse regression for evaluating a combinatorially large set
of candidate models. Specifically, we circumvent a direct computation of information criteria
for the combinatorially large set of models by first sub-selecting the candidate functional
forms that are most consistent with the time-series data. Thus, we integrate two maturing
fields of statistical analysis: (i) sparse regression for nonlinear systems identification via SINDy
and (ii) model selection via information criteria. Our algorithm is demonstrated to produce
a robust procedure for discovering parsimonious, nonlinear dynamical systems from time-
series measurement data alone. We demonstrate the methodology on a number of important
examples, including the susceptible-exposed-infectious-recovered (SEIR) disease model, the
Burgers’ partial differential equation (PDE) and the Lorenz equations, and demonstrate its
efficacy as a function of noise, length of time series and other key regression factors. Our sparse
selection of dynamical models from information theory criteria ranks the candidate models and
further shows that the correct model is strongly supported by the AIC/BIC scores. Ultimately, the
method provides a cross-validated and ranked set of candidate nonlinear dynamical models for
a given time series of measurement data, thus enabling data-driven discovery of the underlying
governing equations.

2. Background

(a) Model selection via information criteria
The process of model selection fundamentally enables the connection of observations or data to a
mathematical model. Further, a well-selected model, which describes a governing law or physical
principle underlying the system process, can be used for prediction outside of the sampled
data and parameter configuration [12]. The substantial challenge facing the selection process is
discovering the best predictive model from a combinatorially large space of available models. To
emphasize the enormity of this task, consider the number of possible polynomial models up to
degree 4 with five state variables. Approximately 1038 models would need to be constructed, fit
to the data and compared according to goodness-of-fit [4]. Thus, model selection quickly becomes
computationally intractable for a modest number of variables and polynomial degree.
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Typically, a sub-selection of models occurs based on prior scientific knowledge of the process
to produce a subset, O(10), of heuristically defined candidate models [12–17]. Recent research has
focused on automatically expanding the number of candidate models [6,19,20]. Once a subset
of models is chosen, the model selection procedure balances the goodness-of-fit with model
complexity, i.e. the number of free parameters. A wide variety of rigorous statistical criteria have
been developed to balance model parsimony and predictive power including popular methods
such as the Akaike information criterion (AIC) [9,10], Bayesian information criterion (BIC) [11],
cross validation (CV) [21], deviance information criterion (DIC) [22] and minimum description
length [23]. Methods such as AIC explicitly balance parsimony and relative information loss
across models, penalizing the number of parameters in the model to avoid overfitting.

In this manuscript, we use the ubiquitous and well-known AIC as the statistical criterion for
comparing candidate models. The AIC value for each candidate model j is

AICj = 2k− 2 ln(L(x, μ̂)), (2.1)

where L(x, μ)= P(x|μ) is the likelihood function (conditional probability) of the observations x
given the parameters μ of a candidate model, k is the number of free parameters to be estimated
and μ̂ is the best-fit parameter values for the data [9,10]. Note that the penalty, 2k, enforces a
lower bound on the relative AIC scores; figure 2 illustrates the general shape of AIC scores as the
number of free parameters (terms) increases. In practice, the AIC requires a correction for finite
sample sizes given by

AICc =AIC+ 2(k+ 1)(k+ 2)
(m− k− 2)

, (2.2)

where m is the number of observations. A common likelihood function uses the residual sum of
squares (RSS), given by RSS=∑m

i=1(yi − g(xi; μ))2, where yi are the observed outcomes, xi are the
observed independent variables and g is the candidate model. The RSS is a well-known objective
function for least-squares fitting. In this case, AIC can be expressed as AIC=m ln(RSS/m)+ 2k
[12]. Note that (2.1) penalizes, by increasing the AIC score, the models that have a large number
of free parameters and which are unable to capture the characteristics of the observed data.

(b) Sparse identification of nonlinear dynamics and sparse model selection
Identifying dynamical systems models from data is increasingly possible with access to high-
fidelity data from simulations and experiments. With traditional methods, only a small handful of
model structures may be posited and fit to data via regression. Indeed, simultaneous identification
of both the structure and the parameters of a model generally requires an intractable search
through combinatorially many candidate models. Genetic programming has been recently used
to determine the structure and parameters of dynamical systems [6,24,25] and control laws [26],
enabling the efficient search of complex function spaces. Sparsity-promoting techniques have also
been employed to simultaneously identify the structure and parameters of a dynamical system
model. More broadly, there is a considerable body of work in the control literature on nonlinear
system identification with explicit connections to AIC and BIC [27–29]. Nonlinear autoregressive
moving average models with exogenous inputs (NARMAX models) have also been used for
systems identification in conjunction with information criteria [30,31]. Compressed sensing was
first used to determine the active terms in the dynamics [32], although it does not work well with
overdetermined systems that arise when measurements are abundant. By contrast, the SINDy
algorithm [1] uses sparsity-promoting regression, such as the lasso [18] or sequential thresholded
least-squares algorithm [1], to identify nonlinear dynamical systems from data in overdetermined
situations.

Here, we review the SINDy architecture for identifying nonlinear dynamics from data. The
general observation underlying SINDy is that most dynamical systems of a state x ∈R

n,

d
dt

x(t)= f(x(t)), (2.3)
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have only a few active terms in the dynamics, making them sparse in a suitable function space. To
identify the structure and parameters of the model, a set of candidate symbolic functions are first
concatenated into a library Θ(x)= [θ1(x) · · · θp(x)]. With time-series data X ∈R

m×n, where each
row is a measurement of the state xT(tk) in time, it is possible to evaluate the candidate function
library Θ(X) ∈R

m×p at the m time points. Finally, with derivative data Ẋ ∈R
m×n, either measured

or obtained by numeric differentiation, it is possible to pose an optimization problem satisfying
the dynamic relationship:

Ẋ=Θ(X)Ξ . (2.4)

The few active terms in the dynamics, given by the non-zero entries in the columns of Ξ ,
may be identified using sparse regression. In particular, the sparsest matrix of coefficients Ξ is
determined that also provides a good model fit, so that ‖Ẋ−Θ(X)Ξ‖2 is small. Sparse regression
has the added benefit of avoiding overfitting, promoting stability and robustness to noise.
Since the original SINDy method, there have been numerous innovations and extensions to
handle rational function nonlinearities [4], PDEs [2] and highly corrupted data [33], and to build
Galerkin regression models in fluids [34]. The method is also connected to the dynamic mode
decomposition [35] if only linear functions are used in Θ .

In most sparse regression algorithms, there is a parameter that determines how aggressively
sparsity is promoted. The successful identification of the model in equation (2.3) hinges on finding
a suitable value of this sparsity-promoting parameter. Generally, the parameter value is swept
through, and a Pareto front is used to select the most parsimonious model. However, the Pareto
frontier may not have a sharp elbow or may instead have a cluster of models near the elbow, thus
compromising the automatic nature of the model selection using SINDy alone.

3. Material and methods
Our algorithm integrates sparse regression for nonlinear system identification with model
selection via information criteria. This approach enables the automatic identification of a single
best-fit model from a combinatorially large model space. In the first step of the algorithm, the
SINDy method provides an initial sub-selection of models from a combinatorially large number
of candidates. The sub-selection of candidate models near the Pareto frontier is critically enabling
as it is computationally intractable to simulate and compare against the time-series data for all
possible models. Importantly, the sub-selection can take the number of candidate modes from 109

(for our two-dimensional cubic example) to a manageable 102. This then allows for a tractable
computation of AIC or BIC scores for the remaining candidate modes. The information criterion
hierarchically ranks the most informative models, enabling the automatic selection of the model
with the strongest support. This is in contrast with a standard Pareto front analysis which looks
for a parsimonious model at the elbow of the error versus complexity curve. Algorithm 1, using
the AIC as our information criteria, is executed for model selection. Figure 1 illustrates the
algorithm.

When evaluating dynamical systems models, there is some ambiguity about what constitutes
an ‘observation’. We take time-series data for a given set of initial conditions to be an observation,
rather than taking each measurement at each time point. To obtain a representative error for the
ith time-series observation, we calculate the average absolute error over the entire time series:
Eavg =

∑
τ |yτ

i − g(xτ
i ; μ)|. We then substitute this representative error in for (yi − g(xi; μ)) in the

RSS calculation, and take the sum of the squares so that AIC=m ln((
∑m

i=1 Eavg(xi, yi))/m)+ 2k.
We use this value for AIC in (2.2).

Algorithm 1 requires two sets of time-series data: a relatively small training set X ∈R
m×n,

used to build the library Θ , and a larger validation set Y ∈R
l×n. For each numerical example

in §4, both the training and validation sets contain additive Gaussian noise applied at each time-
series point, with mean zero and standard deviation ε = 10−4 unless otherwise noted. For the
models used in our examples, we can exactly calculate Ẋ. In practice, the time derivative would
need to be calculated numerically from the noisy time-series data. SINDy has successfully been
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Figure 3. Selection of model for single variable, x, polynomial system. (a) Three computationally generated time series with
additive noise ε = 0.001. (b) Combinatorial model possibilities with those selected by SINDy in boxes. (c) Relative AICc criteria
for all possible models (black dots), and those found by SINDy (blue circles). Magnification in lower plot shows strongly and
weakly supported AICc ranges, containing only the correct model (lowest/magenta circle). (Online version in colour.)

Algorithm 1. SINDy–AIC.

Input: Data matrix and time derivative: X, Ẋ ∈R
m×n, validation data Y ∈R

l×n

1: procedure SINDY–AIC(X, Ẋ, Y)
2: Θ ∈R

m×p← library(X) � Generate library that contains p candidate terms.
3: for λ(j) ∈ {λ0, λ1, · · · , λq} do � Search over sparsification parameter λ.
4: Model(j)← SINDy(Ẋ, Θ , λ(j)) � Identify sparse terms in Θ for model.
5: X′ ← simulate (Model(j)) � Numerically integrate dynamical system (expensive).
6: IC(j)← AIC( Y, X′) � Compute Akaike information criteria.
7: end for
8: [inds,vals]← sort(IC) � Rank models by AIC score.
9: return Model(inds(1)) � Return model with lowest AIC score.

10: end procedure

used in combination with total variation regularized differentiation [1], a method for computing
derivatives in the presence of noise.

The training sets used for each example are shown in figures 3–6. The time-series instances
in each validation set are the same length and have the same sampling frequency as the
respective training set, but are initialized at 100 new values. Thus, l= 100× (sampling rate)×
(duration per instance). The training set X is used in step 2 of Algorithm 1 to build the library for
sparse inference. The validation set Y is used in step 6 of Algorithm 1 to compute the AIC score.

The candidate models with the lowest scores are ranked as the most probable. To be more
precise, the AIC scores for each candidate model can have a wide range of values which require
a rescaling by the minimum AIC value (AICmin) [12,36]. The rescaled AIC values �j =AICi −
AICmin can be directly interpreted as a strength-of-evidence comparison across models. Models
with �j ≤ 2 have strong support, 4≤�j ≤ 7 have weak support and �j ≥ 10 have no support [36]. In
principle, the relative-AICc score can be related to the p-value for the statistical support of each
model for a particular dataset and number of validation time series, but Burnham & Anderson
[12,36] suggest the value we use here as a rule of thumb. These rankings allow for a principled
procedure for retaining or rejecting models within the candidate pool of models. For time-series
data with enough data samples, high signal to noise and/or sufficiently large set of candidate
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models, only one model is typically strongly supported by AIC scores. In the examples used
to demonstrate the method, the only strongly supported candidate model is, in fact, the correct
model.
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4. Results: model selection

(a) One-dimensional polynomial model
We demonstrate the relationship between SINDy model selection and AIC ranking procedure, as
illustrated in figure 1d, with a simple single state variable model with three polynomial terms,

ẋ= x− 0.2x3 − 0.1x4. (4.1)

We compute three time series for this model, as shown in figure 3a.
Assuming a feature library with up to fifth order polynomials, or d= 6, there are

∑6
i=1

(6
i
)= 63

possible models. A representation of the combinatorial set of models is shown in figure 3b, and
we perform least-squares fitting for the coefficients of each model. All models are cross-validated
using 100 initial conditions, and relative AICc scores are calculated. This combinatorially complete
set of models (black dots) populate the AICc Pareto front in figure 3c. The relative AICc score
successfully characterizes the true, 3-term model as the only model with ‘strong support.’ All
other models within the full combinatorial space fall within the ‘no support’ range.

SINDy enables us to sub-select a set of models from the feature library and, for this simple
system, we can compare against the combinatorial set. The models selected by SINDy are boxed
in figure 3c,d. SINDy finds the correct 3-term model, as well as models with 1, 2, 4, 5 and 6
terms. These models and coefficients exactly match a subset of those found by combinatorial
least squares, which is expected given that this implementation of SINDy uses least-squares to fit
the coefficients. Notably, the 1- and 2-term models selected by SINDy are the most meaningful
reductions of the true underlying system (with smaller coefficients set to zero), rather than the 1-
and 2-term models with the lowest error in the full feature space.

(b) Two-dimensional cubic model
For larger systems, enumerating all possible models represented in a given feature library would
be computationally infeasible, but by using the SINDy procedure the most relevant models
are generated and selected. For example, consider the relatively simple example of a two state
variable system (n= 2) with a fifth order polynomial library (d= 6). In this case, there are Nm =(n+d

d
)= 28 possible monomials, and Np =

∑Nm
i=1

(Nm
i

)= 268, 435, 455 potential models. Figure 4
demonstrates the results of performing SINDy and AIC evaluation on a cubic model.

With only a single time series for each state variable (x and y) as input (Figure 4a), the
SINDy-selected models with varying number of terms (blue circles) include the correct model
(lowest/magenta circle). Using 100 randomly selected initial conditions for validation, relative
AICc ranks the correct model as strongly supported, and all other models as having no support.

(c) Three-dimensional disease transmission model
Next, we apply our method to the SEIR disease transmission model. Models of this type are
often used to determine disease transmission rates, detect outbreaks and develop intervention
strategies. However, generating the appropriate model for interactions between different
populations is currently done heuristically and then evaluated using information criteria [17].
Using SINDy with AIC evaluation would provide data-driven model generation and selection
from a wider library of possible interaction terms. As a first step, we apply SINDy with AIC to a
discrete, deterministic SEIR model as shown in figure 5.

We input a single time series representing an outbreak for the S, E and I state variables (n= 3),
and provide a library of polynomial terms up to second order (d= 3). For this example, the
total number of models represented in the library is Np =

∑Nm
i=1

(Nm
i

)= 1023 with Nm =
(n+d

d
)= 10

possible monomials. A complication of the SEIR system is that R is a redundant state variable; S,
E and I have no dependence on R, and R depends only on a term already represented in the Ik+1
equation Rk+1 =Rk + 0.04Ik. A result of this redundancy, SINDy cannot find the correct equations
with R included in the library. Without R, SINDy selects a set of models from 1023 possible in the
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Table 1. PDE-FIND discovered models for Burger’s equation with relative AICc score.

PDE found no. terms �AICc
ut =+(0.027)u− (0.109)u2 + (0.131)u3

−(0.010)ux − (1.010)uux + (0.535)u2ux
−(0.656)u3ux + (0.067)uxx + (0.248)uuxx
−(0.485)u2uxx + (0.343)u3uxx
−(0.005)uxxx + (0.029)uuxxx
−(0.020)u2uxxx − (0.027)u3uxxx

15 333

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =+(0.025)u− (0.103)u2 + (0.125)u3

−(0.012)ux − (1.059)uux + (0.391)u2ux
−(0.521)u3ux + (0.068)uxx + (0.238)uuxx
−(0.451)u2uxx + (0.311)u3uxx − (0.005)uxxx
+(0.035)uuxxx − (0.047)u2uxxx

14 342

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =+(0.022)u− (0.084)u2 + (0.100)u3

−(1.160)uux + (0.630)u2ux − (0.677)u3ux
+(0.070)uxx + (0.237)uuxx − (0.462)u2uxx
+(0.317)u3uxx − (0.005)uxxx + (0.037)uuxxx
−(0.048)u2uxxx

13 355

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =−(1.074)uux + (0.386)u2ux − (0.446)u3ux
+(0.085)uxx + (0.125)uuxx − (0.262)u2uxx
+(0.186)u3uxx + (0.026)uuxxx − (0.043)u2uxxx

9 360

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =−(1.022)uux + (0.087)uxx + (0.096)uuxx
−(0.097)u2uxx

4 351
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =−(1.064)uux + (0.571)uuxx − (0.593)u2uxx 3 683
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ut =−(1.010)uux + (0.103)uxx 2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ground truth: ut =−uux + (0.1)uxx 2 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

library (blue circles), and with 100 validation measurements the relative-AICc evaluation ranks
only the correct 6-term model as having any support (magenta circle) in figure 5b.

(d) Partial differential equation: Burgers’ equation
To demonstrate the applicability of the model selection and ranking with the AIC framework, we
apply our methodology to Burgers’ equation. In this case, PDE-FIND, demonstrated by Rudy et al.
in [2], sparsely selects a set of seven PDEs as given in table 1. We use the same simulated, spatially
resolved time series training set and code as in [2]. We alter the sparsity search by decreasing
the tolerance to dtol = 0.1 and increasing the number of iterations to 50 in the TrainSTRidge
algorithm. We evaluate all models found by this more finely resolved sparsity search. Given
the increased numerical difficulty of simulating PDEs compared with ODEs, sparse selection of
potential models to reduce validation simulations is even more essential.

For validation, we run simulations with the same spatial and temporal sampling as the training
data, starting at 100 new initial conditions defined by varying amplitude and location of the initial
gaussian distribution, u0. The relative AICc is calculated by taking the average absolute error (see
Material and methods) over all points in time and space for each instance, and using the number
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(b) AICc evaluation of models found by SINDy(a) time series from Lorenz model
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Figure 6. Evaluation of SINDy-selected models for the three state variable Lorenz model. (a) Computationally generated time
series with additive noise ε = 0.001. (b) Relative AICc criteria formodels found by SINDy. Magnification in the lower plot shows
strongly and weakly supported AICc ranges. The correct model (lowest/magenta circle) lies in the strong support range and a
model with an additional small term in the weak support range. (Online version in colour.)

of terms or free parameters as indicated in table 1. Only the correct model receives a relative
AICc < 2 in the strong support regime. The rest have no support.

(e) Lorenz model
As a final example, we demonstrate SINDy with AIC on the chaotic Lorenz system [37]. Using a
library of polynomials up to second order (d=3) for the three state variable system (n= 3), there
are once again Np = 1023 models represented in the function library. Providing one time series
for each state variable, as shown in figure 6a, SINDy recovers a subset of these models (circles in
figure 6b). Using 100 validation measurements on each model, the relative AICc criteria ranks the
correct 7-term model as having strong support (magenta circle). Unlike in previous examples, one
other model is ranked as having ‘weak support’ (blue circle). This model has an additional small
constant term in the equation for x: ẋ= 8.5× 10−6 + 10(y− x).

A possible explanation for the level of support for this model is the chaotic nature of the Lorenz
system. Even when the recovered model is correct, small variations in the recovered coefficients
(≈ 10−6 for this case) will cause the calculated time series for the recovered model to diverge
from the ‘true’ model after some length of time (greater than 1 unit time for these parameters).
For the example in figure 6b, the validation uses time series of length t= 5 (arb. units). In a true
model-selection situation, we would not know this characteristic length scale ahead of time, and a
sensitivity analysis would need to be performed. We discuss this and other challenges to practical
implementation in the next section.

5. Practical implementation: noise and number of measurements
SINDy with AIC ranking can successfully select the correct model for a variety of known
systems, given low enough measurement noise and a large amount of data for validation. Under
practical conditions, the signal-to-noise ratio may be lower than desired and the amount of
data available for validation may be restricted. In figure 7, we show the effects of increasing
noise and number of validation experiments on the selection of the correct model for the
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Figure 7. Evaluation of SINDy selected models for three state variable Lorenz model under varying (a) noise conditions and
using (b) increasing number of validation experiments to calculate AICc. Strong and weakly supported relative AICc range is
shown. (Online version in colour.)

Lorenz system. Reading from the top of figure 7a, for low noise, ε = 0.1, only the correct model
(magenta) falls within the supported (strong or weak) range. Increasing the noise to ε = 0.2
and 0.5 causes other models to descend into the weak support regime and eventually into
the strong support range. Around this level of noise, the relative AICc scores for the incorrect
models are very sensitive to the random additive noise. Repeating the computation for different
instances of randomly generated measurement noise results in fluctuation of the AICc scores
for these models (data not shown), although the true model maintains the lowest score (over
10 instances). This suggests that data sub-sampling could be used to test for models with
noise-fitted terms.

Above a certain level of noise (ε = 1), the method is unable to robustly select the correct model,
and for even higher levels of noise (ε = 5) a larger number of incorrect models appear to have
support. For the particular case of the Lorenz system used here, SINDy is unable to select the
correct model, and therefore the true model is not evaluated by AICc at these noise levels. As
we are using a relative AICc score, the score of the lowest model will always be zero, even when
the actual error between that model and the data is very high. These examples highlight the
importance of examining the error between the model-generated time series against and the data
in addition to the relative AICc score.

The number of time series used for validation also has an impact on the relative AICc score
between the true model and other models given strong support as shown in figure 7b. For ε = 0.5
and only two time series used for validation and AICc calculation, the correct model is selected
by SINDy, but a simpler (and incorrect) 1-term model is assigned a lower score. Given only two
more time series for validation, (Ncross = 4), the correct model has the lowest score. Increasing the
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number of validation measurements used for evaluation to Ncross = 60, 80 and 100 increases the
relative score of the incorrect 8-term model to the true 7-term model.

The success of the method also relies on the duration and sampling of the time series, especially
in the case of chaotic systems like the Lorenz model. Here, the validation experiments run from
t= 0 to tend = 1 (arb. units), as opposed to those in figure 6, which ran to tend = 5. Even with higher
noise (ε = 0.1 compared to ε = 0.001), only the true model is supported. Again, sensitivity to sub-
sampling of data can help differentiate between noise-fitting and mechanistically essential terms.

6. Discussion and conclusion
The integration of mathematical techniques advocated here, (i) sparse regression for nonlinear
systems identification via SINDy and (ii) model selection via information criteria, provides a
new paradigm for model selection of dynamical systems. Algorithmically, the critical methods
combine as follows. In the first step of the algorithm, the SINDy method, which is based upon
sparse regression, provides an initial sub-selection of models from a combinatorially large number
of candidate models. The selection of candidate models is critically enabling as it reduces the
number of potential models to a manageable number, which can each be evaluated through
simulation and comparison to the time-series data. Indeed, the remaining candidate models,
which are now on the order of 10 models, are each evaluated using information criteria such
as AIC or BIC.

The candidate models with the lowest scores are ranked as the most likely. Specifically, in what
follows, we work with the AIC score and show that these scores place each candidate model in the
strong support, weak support or no support category. For time-series data with enough data samples,
a large enough signal to noise and/or a sufficiently large set of candidate models, only one model
is typically strongly supported by the AIC score. In the examples used to demonstrate the method,
the only strongly supported candidate model is, in fact, the correct model.

Model selection through SINDy and IC ranking can be nuanced. As formulated in this text
and [1], SINDy can be used on any problem for which the dynamics can be written as a
sparse linear combination of numerically evaluated functions of the state variables. Trigonometric
functions and other non-polynomial terms may be included. We also showed that PDEs can be
inferred and evaluated using PDE-FIND [2]. In addition, we have shown that implicitly posed
equations (i.e. Θ(X, Ẋ)ξ = 0) can be inferred using a non-convex optimization in a framework we
call implicit-SINDy [4]. This formulation was motivated by the rational functions that naturally
result from separation of time scales and pseudo steady-state arguments in mass-action kinetic
systems. In any of these frameworks, the number of terms in the model can still be calculated
as the number of non-zero terms in the sparse coefficient vector. There are a large range of
physical and biological systems where the possible mechanisms, and therefore functional forms
are known, but combinatorial model selection is still difficult. SINDy and IC ranking provides a
systematic and rigorous method to infer and evaluate suitable models in these cases.

When domain knowledge is insufficient to inform a suitable function library, generating
appropriate models can be difficult. In some cases, SINDy can still find a representation of a
system when the ‘true’ model is excluded from the library. For example, SINDy with a polynomial
library can recover the Taylor-series expansion of a trigonometric function [1]. Alternative model
generation/selection methods such as genetic algorithms can expand the form of library functions
[6,38]. Regardless, the resulting models can still be compared using an information score because
AIC does not require that the ‘true’ model be among those evaluated ([12], pp. 352–374).
Therefore, AIC is the appropriate tool to compare models generated using different inference
methods and to find a parsimonious model for the system without assuming any ‘true’ model
exists. We believe this approach is well founded in the history of mechanistic modelling, whereby
asymptotic analysis and other reduced-order modelling methods have sought to describe the
dominant behaviour of a system rather than generate a complete or ‘true’ model.

In this work, we assume that all relevant state variables in the dynamics are measured.
However, methods such as time-delay coordinates can be used to identify the dynamical structure
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of the system without measurements from all the ‘natural’ state variables [39]. Time-delay
coordinates have been successfully combined with SINDy to recover low-order representations
of the system [1,40]. Alternative approaches for identifying the presence of unmeasured, latent
variables have been discussed in §2.2 of [5]. Further research into methods for identifying the
relevant measurement variables to use during model selection is of broad interest.

Similar to other model selection or system identification methods, SINDy with AIC ranking
will fail without sufficient data and when a low signal-to-noise ratio masks the sampling of
the dynamics. If none of the library terms can sufficiently describe the data, or if inappropriate
non-informative state variables are measured, SINDy will not generate a good (predictive and
parsimonious) model. The future development of diagnostics for differentiating between these
failure mechanisms is essential for application to real data. In conjunction with AIC, a suite of
model validation tools will be required, including the evaluation of absolute error and other
goodness-of-fit metrics. Domain-specific knowledge and modelling expertise are integral to these
diagnostics, enabling implementation of SINDy and AIC on a variety of complex datasets.

The method presented provides an important contribution to standard model selection as well
as to the SINDy paradigm. In particular, each of these methods has a significant shortcoming.
In model selection, the shortcoming is centred around the inability of the standard AIC/BIC
criteria to assess a combinatorially large set of candidate models. For SINDy, the sparse selection
process for identifying the underlying dynamical systems lacks a principled method for selecting
the correct dynamical model. The algorithm here circumvents both of these shortcomings.
Specifically, the sparse regression of SINDy allows for the consideration of a combinatorially large
number of candidate models. The sub-selected set of models can then each be evaluated using
information criteria to select the correct dynamical system. The connection between information
criteria and automatic model selection can also be integrated with genetic algorithms for selecting
the structure and parameters of dynamical systems [6,24–26]. The process can be semi-automated
for data-driven discovery of physical principles and laws of motion, which is now often referred
to as the 4th paradigm of science [41].
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