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A B S T R A C T

Almost invariably, humans become ill during primary infections with malaria parasites which is a pathology
associated with oxidative stress and perturbations in metabolism. Importantly, repetitive exposure to Plasmodium
results in asymptomatic infections, which is a condition defined as clinical tolerance. Integration of tran-
scriptomics and metabolomics data provides a powerful way to investigate complex disease processes involving
oxidative stress, energy metabolism and immune cell activation. We used metabolomics and transcriptomics to
investigate the different clinical outcomes in a P. vivax controlled human malaria infection trial. At baseline, the
naïve and semi-immune subjects differed in the expression of interferon related genes, neutrophil and B cell
signatures that progressed with distinct kinetics after infection. Metabolomics data indicated differences in
amino acid pathways and lipid metabolism between the two groups. Top pathways during the course of infection
included methionine and cysteine metabolism, fatty acid metabolism and urea cycle. There is also evidence for
the activation of lipoxygenase, cyclooxygenase and non-specific lipid peroxidation products in the semi-immune
group. The integration of transcriptomics and metabolomics revealed concerted molecular events triggered by
the infection, notably involving platelet activation, innate immunity and T cell signaling. Additional experiment
confirmed that the metabolites associated with platelet activation genes were indeed enriched in the platelet
metabolome.

1. Introduction

Infections with Plasmodium vivax constitute a major public health
problem worldwide. P. vivax accounted for 41% of estimated malaria
cases reported in 2015 outside the African continent [1]. P. vivax ma-
laria is characterized by a febrile illness, which may develop into severe
symptoms and fatal complications [2]. However, depending on the
history of exposure to the parasite, some infections can also remain
asymptomatic [3,4]. The molecular mechanisms underlying host

responses to P. vivax are poorly understood. Controlled human malaria
infection (CHMI) trials have become a critically important research
tool, and have been used to evaluate the immunization efficacy for P.
vivax [5–7]. A recent CHMI trial confirmed that previous exposure to P.
vivax leads to reduced symptoms such as fever and headache [8]. An-
tibodies from semi-immune individuals reacted to a larger repertoire of
P. vivax antigens before infection [9], however this was insufficient to
control parasite growth after sporozoite challenge [8]. Moreover,
symptomatic semi-immune individuals exhibited similar antibody
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kinetics to that of naïve. Clinical tolerance was associated with anti-
body reactivity to a smaller subset of antigens [9].

In recent years, important technical developments have emerged
allowing the investigation of the human immune responses via high-
throughput data [10–16]. These include analyses of human samples
using transcriptomics, proteomics, metabolomics, lipidomics and
single-cell profiling. Because the human immune system has important
differences from animal models, and good animal models are not al-
ways available, these studies lead to a detailed understanding of human
immunity which is otherwise inaccessible. Metabolomics is global
profiling of small molecules in tissues, cells and biological fluids [13]. It
captures a “snapshot” of the activity of metabolic processes and mole-
cular phenotypes. Small molecules (metabolites and lipids) not only
serve the metabolic need of growth and survival, but also regulate
functions of immune cells and systemic signals in infection and in-
flammation [17–20]. It has been reported that P. falciparum malaria
results in altered abundance of plasma metabolites involved in lipid
[21], energy [22], and amino acid metabolism [23]. A metabolomics
investigation of P. vivax infected patients revealed that their parasite
load was associated with heme metabolism and lipid pathways [24].

In this study, we describe the plasma metabolomes from distinct
clinical outcomes of a P. vivax CHMI trial, and provide novel insights
into associated blood transcriptomes. These are facilitated by our recent
development in bioinformatics tools [16,25,26]. Furthermore, the in-
tegration of metabolomics and transcriptomics in P. vivax CHMI re-
vealed metabolic processes that were significantly associated with
oxidative stress and immunological modalities.

2. Methods

2.1. Ethics statement and clinical trial

The clinical study was conducted at the Malaria Vaccine and Drug
Development Center (CIV, Cali) [8]. It was approved by the Institu-
tional Review Boards (IRB) at the CIV and Centro Médico Imbanaco,
Cali (Trial Accession #NCT01585077) and the University of Alabama at
Birmingham Institutional Review Board (Protocol #X110718014).
Written informed consent was obtained at enrollment. Among one-
hundred individuals assessed for eligibility at CIV, sixty-nine did not
meet inclusion criteria, while fifteen declined to participate. Exclusion
criteria included pregnancy; glucose-6-phosphate dehydrogenase
(G6PDH) deficiency; positive reactivity for syphilis, HIV, Chagas dis-
ease, HTLV 1–2, hepatitis (B – C); or any condition that could increase
the risk of adverse outcomes [27,28]. The remaining individuals
(n=16) were allocated into two groups according to the status of
previous exposure to P. vivax. Naïve subjects (n= 7) were recruited in
Cali (Colombia), a city in which malaria is not endemic. Semi-immune
subjects (n=9) were recruited in Buenaventura, an endemic city for
malaria located on the Pacific Coast. The study was exploratory and the
sample size was not based on pre-defined effect size but limited by
enrollment. Subjects were healthy male and female adults, Duffy-posi-
tive (Fy+), 18–45 years of age. The degree of immunity to P. vivax was
assessed by clinical history and presence of antibodies against P. vivax
blood stages. Anopheles albimanus mosquitoes were reared and infected
at the MVDC insectary in Cali, and sporozoite challenge of all subjects
was conducted on the same day. Subjects were exposed to bites of 2–4

infected mosquitos from the same batch. The subjects were monitored
daily for clinical manifestations and patent parasitemia. One of the
subjects did not develop parasitemia and was excluded from the study.
P. vivax infection in challenged subjects was confirmed with thick blood
smears (TBS), and retrospectively by RT-qPCR. On the day of parasite
detection by TBS, subjects were treated orally with curative doses of
chloroquine (1500mg provided in three doses) and primaquine (30mg
administered once a day for 14 days) [8]. Plasma samples were col-
lected before infection (baseline), on the day of positive blood smear
(diagnosis), and three-weeks after treatment.

2.2. Metabolomics analysis and data processing

Liquid chromatography-mass spectrometry (LC-MS) analyses were
performed as described [16,29,30]. Briefly, acetonitrile (2:1, v/v) was
added to 65 µL of plasma and centrifuged at 14,000 g for 10min at 4 °C
to remove proteins. The supernatant was transferred to an auto sampler
vial for LC-MS, using a High Field Q Exactive mass spectrometer
(Thermo Fisher), coupled with HILIC liquid chromatography. Mass
spectral data was acquired with positive electrospray ionization and the
full scan of mass-to-charge ratio (m/z) ranged from 85 to 1275 at a
resolution of 120,000. Each sample was run in triplicate in batches of
20 samples. Peak detection, noise filtering, m/z, and retention time
alignment, and feature quantification were performed with apLCMS
[31] and xMSanalyzer [32]. Each metabolite feature is defined by m/z
and retention time, with intensity values associated with each replicate.
Data were averaged among replicates, log2 transformed and normal-
ized by the mean. Only features detected in more than 75% of all
samples (4236) were used in further analysis. The reporting of meta-
bolite annotation adheres to the five confirmation levels in metabo-
lomics literature [33,34]. Level 1 annotation applies to the metabolites
confirmed by matching both m/z (mass accuracy under 10 ppm) and
retention time to that of authenticated chemical standards, previously
characterized in our laboratory (Supplemental Table 1). Additional
putative annotation was performed by m/z matching to KEGG database
(mass accuracy under 10 ppm – annotation level 3) [35]. The mummi-
chog software (version 1.0.7) was used for metabolic pathway analysis
(mass accuracy under 10 ppm) [25]. The raw metabolomics data have
been made publicly available in the MetaboLights repository (https://
www.ebi.ac.uk/metabolights/, study ID MTBLS665). A list of all pub-
licly available MaHPIC datasets is at http://plasmodb.org/plasmo/
mahpic.jsp.

2.3. Platelet isolation

Collection of human platelets was approved by the University of
Alabama at Birmingham Institutional Review Board, and performed as
described [36]. Briefly, platelet-rich plasma, obtained from individual
donors from the blood bank at the University of Alabama at Bir-
mingham, was centrifuged at 1500 g for 10min, and washed with PBS
containing prostaglandin I2 (1 µg/ml). Platelets were diluted in DMEM
assay buffer (DMEM with 1mM pyruvate, 5.5mM D-glucose, 4 mM L-
glutamine, pH 7.4), and incubated for 3 h at 37 °C. After washing with
cold PBS, platelets were spiked with internal isotope standards, and
distributed to a final concentration of 300×106/150 µL of acetonitrile.
After incubation on ice for 15min, proteins were removed by

Fig. 1. Metabolomic signatures during the P. vivax CHMI trial. A, Manhattan plot for significant metabolite features (964 at p < 0.05; 0 at FDR<0.1; colored in
red) in time course analysis for all subjects. B, One-way hierarchical clustering based on significant metabolite features in time course analysis for all subjects. C,
Metabolic pathways enriched by significant metabolite features in time course analysis for all subjects. D, Boxplot for carnitine's abundance kinetics in time course
analysis for all subjects. E, Differential abundance of metabolite features compared to baseline. F-G, Two-way hierarchical clustering based on significant metabolite
features in time course analysis for naïve (1577 at p < 0.05; 454 at FDR<0.1) or semi-immune (688 at p < 0.05; 180 at FDR<0.1) subjects. H, Abundance
kinetics for plasma tryptophan, kynurenine, glutamate and N-acetyl-leucine. Significant metabolite features were identified by ANOVA with repeated measures.
Tukey's multiple comparisons test was used in additional statistics. Significance levels are shown as * , p < 0.05; **, p < 0.01; ***, p < 0.001. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article)
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centrifugation at 13,000 rpm for 10min at 4 °C. Supernatants were
stored at − 80 °C. LC-MS analysis was carried out as described above.
For comparisons with plasma metabolomics, platelet's metabolite fea-
tures were averaged across samples from individual donors (n= 5), and
the 200 most abundant features were used as platelet-enriched meta-
bolites. Hypergeometric test was performed with the phyper function in
R, to evaluate accurate plasma metabolite over-representation in pla-
telet-enriched metabolites.

2.4. Whole blood transcriptional analyses

Blood collection, RNA extraction and sequencing, and raw data pre-
processing pipeline were described previously [37]. Data are available
at the Gene Expression Omnibus repository, accession number
GSE67184. Gene set enrichment analysis (GSEA) [38] was performed
with 1000 permutations and weighted enrichment statistic. Blood
Transcription Modules (BTMs) were used as gene sets [26]. Significant
enrichment was determined by a false discovery rate (FDR)< 0.05.
BTMs were also used for dimension reduction, in reporting the tran-
scriptomic findings and in the integration with metabolomics. The
transcriptomics data were mapped to 281 BTMs based on the coverage
of sequencing, and module activity was taken as the mean expression
value of member genes.

2.5. Statistical and bioinformatics analyses

Both metabolomics and transcriptomics data were log2 transformed
so that they followed normal distribution. Repeated measures ANOVA
was used to evaluate differences between time points of CHMI trial.
Limma moderated t-statistic was used to evaluate differences in cate-
gorical comparisons (naïve vs semi-immune subjects). Euclidian dis-
tance and Ward linkage algorithm was used for the hierarchical clus-
tering. P-values less than 0.05 were considered significant. False
discovery rate (FDR) was calculated using the Benjamini–Hochberg
method. Categorical comparisons were performed with normalized in-
tensity values at baseline time point. At diagnosis and post-treatment
time points, comparisons were performed with baseline subtracted in-
tensity values to remove individual confounding factors, indicated as
diag./basel. or post-treat./basel. Variance in each group was similar
when individual genes/metabolites were plotted. In the box plots and
line plots, mean values are shown and error bars are based on standard
deviations.

Integration of metabolomics and transcriptomics data, at baseline
and diagnosis/baseline, was performed similarly as previously de-
scribed [16]. Briefly, the transcriptomics data were collapsed to BTMs,
and module activity scores were taken as the mean value of member
genes [26]. Next, unsupervised hierarchical clustering was applied to
BTMs’ activities to generate BTM clusters. Metabolite features were
clustered similarly, but with a modified metrics to enforce close re-
tention time within clusters. Associations between BTM clusters and
metabolite clusters were estimated by partial least square (PLS) re-
gression. The significance of associations was computed on 1 million
permutations, resampling both features and sample labels. The re-
sulting networks were visualized using Cytoscape 3.4.0 (http://
cytoscape.org).

3. Results

This CHMI study included two groups of participants: one group
naïve and the other semi-immune to P. vivax infection and which was
shown to be more tolerant to symptoms of P. vivax infection [8]. The
goal of this study is to delineate the molecular differences between the
naïve group and the semi-immune group. To this end, we first report the
metabolomic changes during the time course of infection (Fig. 1), then
compare the two groups by their plasma metabolomics (Fig. 2) and
blood transcriptomics (Fig. 3). The integration of metabolomics and
transcriptomics revealed significant associations induced by the infec-
tion (Fig. 4), and we further validate the platelet activation pathway
suggested by the integrative analysis (Fig. 5).

3.1. Plasma metabolomic signatures along the course of Plasmodium vivax
CHMI

This CHMI study using P. vivax was monitored as a time course:
baseline was taken as 2 days prior to infection; parasites were detected
in the subjects’ blood around 10 days after infection, and treatment was
started on this same day of diagnosis. The treatment included three
doses of chloroquine and 14 days of primaquine. Plasma samples from
three time-points, baseline, diagnosis and post-treatment, were ana-
lyzed by untargeted high-resolution metabolomics. This resulted in
detection of over 8000 metabolite features. After filtering for missing
values, 4236 were retained for statistical analysis. The abundance of
964 metabolite features was significantly altered across the three time-
points (p < 0.05; 0 at FDR<0.1; Fig. 1A-B), irrespective of the im-
mune status of subjects, while one-way hierarchical clustering revealed
high variability among the subjects (Fig. 1B). To evaluate the metabolic
pathways underlying these significant metabolite features, we used
mummichog, a software specifically designed for untargeted metabo-
lomics [25], which has gained increasing popularity [34,39,40]. The
results indicate that significant features are enriched for pathways in-
volved in amino acid metabolism, carbohydrate metabolism, energy
metabolism, lipid metabolism and nucleotide metabolism (Fig. 1C).
Examples of these significant metabolites include carnitine (Fig. 1D),
methionine and oxoproline (Supplementary Figure 1A).

The metabolites associated to time-points suggest that a greater
metabolic shift was seen post-treatment than at the time of diagnosis
(Fig. 1B). Indeed, when each time-point of diagnosis or post-treatment
was compared to baseline, the greatest effects in the plasma metabo-
lome of all subjects occurred post-treatment (Fig. 1E). This observation
remained true when the naïve group and semi-immune group were
analyzed separately (Fig. 1E, F-G). Specific metabolites, however, ap-
peared to be significant in each of the groups. For the naïve subjects,
these include tryptophan, kynurenine and glutamine (Fig. 1H,
Supplementary Table 1). For the semi-immune subjects, these include
glutamate, N-acetyl-leucine and pantothenate (Fig. 1H, Supplementary
Table 1). Overall, these data suggest that the treatment drugs had a
major effect on the host metabolome. In addition, the infection also
induced metabolic changes in peripheral blood by the time of diagnosis,
which was more pronounced in the semi-immune group (Fig. 1E, G).

Fig. 2. Differential metabolite abundance between naïve and semi-immune subjects. A, Significant metabolite features differing between naïve and semi-
immune subjects. Normalized intensity values were used to identify significant features at baseline. Baseline normalized intensity values were used to identify
significant features at diagnosis and post-treatment time points. Limma moderated t-statistic was used. B, Two-way hierarchical clustering based on differentially
abundant metabolite features between naïve and semi-immune subjects at baseline, diagnosis/baseline and post-treatment/baseline. C, Boxplots for uric acid
(baseline) or indole-3-acetaldehyde (post-treatment/baseline). Significance level is shown as *, p < 0.05. D, Summary of metabolic pathways enriched by significant
metabolite features. Mummichog software was used for pathway enrichment using the top 200 most significant metabolite features for each statistical comparison
between time points or immune status. Only pathways represented by at least four metabolite features and enriched at p < 0.05 are shown. E, Abundance kinetics
for plasma glutamine. Significant metabolite features were identified by ANOVA with repeated measures. Tukey's multiple comparisons test was used in additional
statistics. Significance levels are shown as *, p < 0.05. F, Correlation between plasma glutamine and blood cell glutaminase (GLS) expression assayed by RNA-seq.
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3.2. Naïve and semi-immune subjects exhibit distinct metabolic profiles in
plasma

To investigate the metabolomic difference between naïve and semi-
immune subjects, we compared the two groups at baseline, diagnosis
normalized to baseline and post-treatment normalized to baseline. At
diagnosis/baseline, 126 metabolite features differed significantly be-
tween the two groups (p < 0.05), while greater numbers were seen at
baseline and post-treatment (Fig. 2A, B). This does not necessarily in-
dicate that the baseline difference was greater, because it was removed
in the comparisons after infection by subtracting the baseline values.
The differential metabolites at three time-points are given in
Supplementary Table 1. A few examples include uric acid and indole 3-
acetaldehyde (Fig. 2C).

We compared the significant pathways over the time course in each
group (Fig. 2D, left), and between the two groups at each time point
(Fig. 2D, right). To be consistent in all six analyses, the 200 most sig-
nificant metabolite features were used for pathway test in each case. In
the time course analysis, it appears that most pathways were driven by
changes relative to the naïve group, most notably methionine and cy-
steine metabolism and glycine, serine, alanine and threonine metabo-
lism. The semi-immune group exhibited a significant change in urea
cycle/amino group metabolism, linoleate metabolism and arginine and
proline metabolism. When the two groups were compared to each
other, few pathways showed significant enrichment, mostly at post-
treatment. Linoleate metabolism, however, reached significance again
at the time of diagnosis (Fig. 2D, Supplementary Fig. S1B). Interest-
ingly, the 3 major metabolite features related to linoleate are derived
from lipid peroxidation reactions. Epoxynonanal is an oxidation pro-
duct that is likely to be derived from the decomposition of the lipid
hydroperoxide 9(s)-HPODE. The lipid peroxide can be formed either
enzymatically through the action of lipoxygenase or through non-spe-
cific lipid peroxidation and the 13-OxoODE is known to also be derived
from the enzymatic decomposition of lipid peroxides [41]. This to-
gether with significant changes in the lipid metabolites prostaglandin
and eicosapentaenoic acid (Supplementary Table 1) indicates a differ-
ence in inflammatory response at the time of diagnosis between two
groups. Interestingly, although many metabolite features differed at
baseline, they did not significantly match known metabolic pathways
(Fig. 2D).

The difference in urea cycle/amino group metabolism and arginine
and proline metabolism is exemplified by glutamine (Fig. 2E). Gluta-
mine is converted to glutamate by glutaminase (GLS), and is a major
precursor for the de novo synthesis of arginine in humans [42]. Both
arginine and glutamate are involved in urea cycle. Arginine is depleted
during P. vivax malaria, and this reduction is associated with en-
dothelial dysfunction [43]. The level of glutamine was examined in P.
falciparum malaria before with varying conclusions [44,45]. Our data
indicate that glutamine levels remained relatively stable in semi-im-
mune subjects, but decreased after infection in the naïve subjects
(Fig. 2E). Glutamine levels exhibited a clear and inverse correlation
with GLS expression level assayed by RNAseq (Fig. 2F).

3.3. Transcriptomic programs differentiate naïve and semi-immune subjects

The blood transcriptomics of this P. vivax CHMI study was obtained
by RNAseq using mRNA from whole blood at baseline and at diagnosis.
The initial analysis was described previously [37]. Consistent with the
earlier publication, significant changes in gene expression occurred
after infection, but no apparent difference was seen between naïve and
semi-immune subjects at gene-level analysis (Fig. 3A). The recently
developed new tool, Blood Transcription Modules (BTM), demonstrated
higher sensitivity of capturing immunological events from blood tran-
scriptomics [26]. Using BTM with the well-established GSEA software
indeed shows significantly differential gene modules between the two
groups. For example, a neutrophil gene module was significantly higher
in semi-immune compared to naïve subjects (Fig. 3B).

A summary of significantly enriched BTMs is shown in Fig. 3C. Both
naïve and semi-immune groups exhibited up-regulation of type I in-
terferon response and dendritic cell activation, and decrease of neu-
trophil signals after infection (Fig. 3C, left three columns, Fig. 3D).
Direct comparison of naïve and semi-immune subjects revealed detailed
difference in their immune responses (Fig. 3C, right two columns).
While the semi-immune subjects showed a higher level of B lympho-
cytes at baseline, at the time of diagnosis, they were highly enriched for
modules corresponding to an inflammatory response mediated by
myeloid cells. This is consistent with the inflammatory lipids on li-
noleate pathway at diagnosis from plasma metabolomics data (Fig. 2D,
Supplementary Figure 1B). The T cell modules showed a lower level of
signals in these subjects, but this can be attributed to homeostasis that
offsets the higher level of myeloid cells. Both volunteer groups had
decreased number of neutrophils after infection, but the neutrophils in
the semi-immune group still significantly outnumbered those in the
naïve group (Fig. 3C, D). The semi-immune group also displayed higher
activity in other processes, such as cell cycle and blood coagulation
(Fig. 3C, D). Taken together, these data indicate that the semi-immune
group launched a stronger innate activation at the time of diagnosis,
which then contributed to their improved control of symptoms after P.
vivax infection.

3.4. Infection with Plasmodium vivax induces concerted metabolic and
transcriptional responses

Although the transcriptomics was measured from circulating im-
mune cells and metabolites from plasma, the above data suggest that
they are not isolated from each other. Recent literature also indicates
that metabolites are integral signals in immune responses [16,17,46].
We therefore set out to investigate the associations between tran-
scriptomics and metabolomics data. We adopt here a method recently
published by our group [16]. This method combines meaningful di-
mension reduction with PLS regression. The transcriptomics data were
collapsed into BTM clusters, and metabolomics data were collapsed into
metabolite clusters. The PLS regression accounts for different variance
structures of different technologies. The statistical significance of those
associations was evaluated by permutation [16]. This has the added
benefit on statistical power because only consistent signals in both data
types will reach significance.

At baseline, only one significant association between

Fig. 3. Blood Transcription Modules (BTM) analysis of P. vivax CHMI trial. Blood transcriptomes of six naïve and six semi-immune subjects were described
previously. A, Gene-level analyses for all subjects between diagnosis and baseline levels; between naïve and semi-immune subjects at baseline, and at the time of P.
vivax malaria diagnosis. Genes selected at FDR< 0.1 are colored in red. B, Representative gene set ranking plot and, network plot for BTM annotated as Enriched in
Neutrophils (II) (M37.1). It shows the comparison between semi-immune and naïve subjects at the time of diagnosis. Blue to red scale in the network corresponds to
gene expression fold changes of semi-immune/naïve subjects. Genes that were not measured in this experiment are colored in gray. C, Summary of BTMs associated
with transcriptional profiles according to each statistical comparison. Comparison between semi-immune and naïve subjects at the time of diagnosis was based on
baseline normalized intensities. Gene set enrichment analysis was used to identify significant associations at FDR< 0.05. The blue to red scale indicates negative or
positive associations based on normalized enrichment scores (NES). D, Boxplots of highlighted BTMs comprising interferon genes (M127), neutrophil genes (M37.10,
and blood coagulation genes (M11.1). Significance levels are shown as *, p < 0.05; **, p < 0.01; ***, p < 0.001. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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transcriptomics and metabolomics was detected (Fig. 4A), not surpris-
ingly, because of the small cohort and the contribution of tran-
scriptomics and metabolomics coming from different compartments
(cells and plasma, respectively). However, in stark contrast, infection
with P. vivax induced many significant associations between the two
data types (Fig. 4B, 26 edges with p < 0.001, 88 edges with
p < 0.05). These associations center on three transcriptomic hubs
(BTM clusters): IFN signature and innate cell activation gene modules,
chemokines and T cell signaling, and platelet and complement activa-
tion (Fig. 4B). As type I IFN response is important in the transcriptomic
signature (Fig. 3C, D), it's expected to be concordant with several other
innate pathways (Supplementary Figure 2A). The hub on Chemokines
and T cell signaling (BTM cluster 23) is further listed in Fig. 4C, and
member genes in Fig. 4D. This overlaps with the inflammatory response
and myeloid cell signature in Fig. 3C (RA, WNT, CSF receptors and
network), which differed between the naïve and semi-immune groups.
Although other gene modules share a similar profile, not all modules
are significant in Fig. 3C, as different statistics is applied here to
identify the most association with metabolites. One of the metabolite
clusters associated with this hub is exemplified in Fig. 4E, and consisted
of 205 metabolite features of similar profiles. The members in this
cluster are related to amino acid metabolism (Fig. 4F), and the ex-
amples of tyrosine and serine are shown in Fig. 4G. The associations
between amino acids (tyrosine, serine and glutamate) and M38 mem-
bers CXCR4 and IL8 are further illustrated in Fig. 4H.

3.5. Metabolomic confirmation of platelet involvement in response to P.
vivax infection

The other significant transcriptomic hub relates to platelet and
complement activation (Fig. 4B). This cluster consists of genes mostly
related to platelet activation, blood coagulation and SRF (serum re-
sponse factor) signaling (Fig. 5A). Their expression level is higher in the
semi-immune group at the time of diagnosis (Fig. 5B), though both
naïve and semi-immune groups exhibited platelet depletion after P.
vivax infection (Fig. 5C), consistent with previous literature [47]. As-
sociated with this hub are many metabolite clusters encompassing 881
features (p < 0.05 Figs. 4B, 5D). Platelets are now increasingly re-
cognized as immune cells [48,49]. Platelets mediate the agglutination
of P. falciparum-infected erythrocytes [50], and play a protective role by
killing intraerythrocytic P. falciparum parasites [51]. However, P. vivax
infected cells do not seem to adhere to platelets [52], suggesting dis-
tinct platelet-mediated effector mechanisms [53]. The quantitative
difference in platelet signals appears to be a key part in the different
responses to P. vivax infection between the naïve and semi-immune
groups.

The significant association between platelet activation modules and
metabolomics data (Fig. 5D) raised the possibility that the plasma
metabolomics was strongly influenced by platelets. This is possible
because platelets remain in the plasma layer after whole blood is cen-
trifuged and processed. To test this hypothesis, we assessed platelets
from healthy donors and performed metabolomics analysis on the same
LC-MS platform. Among the 881 metabolite features associated to BTM
cluster 8 (p < 0.05; Fig. 5E), 309 were found in the platelet metabo-
lome (Fig. 5F). We then compared each of these metabolite clusters
against the 200 most abundant m/z peaks in platelets, and they were
clearly enriched in platelet metabolites (Fig. 5G). The enrichment p-

value for metabolites in cluster 3 was under 10−23 (hypergeometric
test). These data confirm that the plasma metabolomics captured a
strong signal from platelets, and our integration method was successful
in identifying this concerted event between blood transcriptomics and
plasma metabolomics. Taken together, these data indicate that the P.
vivax infection triggered a broad array of concerted molecular programs
in systemic metabolites and blood cells.

4. Discussion

Clinical tolerance to re-infections with Plasmodium has been well
documented in endemic regions for malaria [54]. This phenomenon is
likely driven by the coordinated activity of multiple biological pro-
cesses, which are not completely understood. Oxidative stress is re-
portedly part of the infection and pathogenesis of malaria [55]. This is
supported by the many amino acid and lipid pathways identified in this
study. Moreover, redox is a key part of immune response in both pa-
thogen suppression and host signaling [56,57]. Recent studies show
that combined metabolomics and transcriptomics analyses provide
sensitive approaches to link oxidative stress to biologic responses [58].
Here we demonstrate that, compared to naïve subjects, those with
previous history of P. vivax malaria exhibited distinct plasma metabolic
signatures during a CHMI trial. Notably, naïve subjects exhibited
greater perturbations on the plasma metabolome in a time course
analyses. However, metabolic signatures from semi-immune subjects
showed a higher discriminative power, suggesting a more coordinated
response after repeated exposure to P. vivax. The semi-immune subjects
in this study developed minor to no symptoms [8], and complete tol-
erance often requires several episodes of malaria [54]. Thus, a short-
lived immunological memory might account for differences between
clinical outcomes [54]. These subjects were recruited from different
regions in Colombia and may exhibit slightly differing life-styles and
while these could influence the metabolic phenotypes it is unlikely they
make a major contribution to the differences in the patient cohorts
reported here. Nevertheless, our data supports the hypothesis that
clinical tolerance to P. vivax results in a distinct metabolomic profile,
especially linoleate metabolism.

During the CHMI trial, several amino acids and related metabolites
displayed differential kinetics, including glutamine, kynurenine and
tryptophan. Kynurenine's abundance increased with concomitant de-
pletion of tryptophan in plasma of naïve subjects after P. vivax infection
but returned to baseline levels after treatment. Both tryptophan and
kynurenine's abundance remained unaltered in semi-immune subjects
(Fig. 1H). The conversion of tryptophan to kynurenine is catalyzed by
indoleamine 2,3 dioxygenase (IDO), and the inhibition of IDO was
shown to protect mice from lethal malaria parasite infection [59].
Therefore, tryptophan metabolism may play a role in the pathogenesis
of P. vivax malaria. Kynurenine contributes to arterial-vessel relaxation
during malarial inflammation in mice [60], and could also be involved
with endothelial dysfunction and hypotension in severely ill P. vivax
patients. Of note, a higher proportion of naïve subjects had severe
headaches [8]. While caused by P. falciparum, children with cerebral
malaria were shown to possess elevated levels of kynurenine-derived
metabolites in their cerebrospinal fluid [61]. Moreover, inhibition of
this pathway prolongs survival in a mouse model of cerebral malaria
[62]. We hypothesize that this pathway may be a target to reduce
symptoms of P. vivax malaria.

Fig. 4. Integrated metabolomic and transcriptomic response network of P. vivax infection. Each node represents a sub-network of metabolomics (Metabolite
cluster) or transcriptomics (BTM cluster) data. Links between nodes represent significant associations using partial least square regression and permutation test. A,
Significant association at baseline. B, Significant associations at the time of P. vivax malaria diagnosis (baseline normalized intensity values were used). C, Heat map
of BTMs’ activity for each P. vivax infected subject, included in BTM cluster 23. D, The BTM module 38 comprises chemokines and receptors genes. E, Heat map of
metabolites for each P. vivax infected subject, included in Metabolite cluster 3. F, Metabolic pathways enriched in Metabolite cluster 3.Mummichog software was used
to evaluate metabolic pathways. G, Boxplots for tyrosine and serine at diagnosis/baseline. Significance level is shown as *, p < 0.05. H, Correlation between plasma
tyrosine, serine and glutamate with M38 member gene CXCR4 and IL8 expression assayed by RNA-seq.
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The semi-immune group also differed from the naïve group in in-
flammatory lipids related to the linoleate pathway. These lipid media-
tors constitute a complex bioactive network with potent inflammatory
and regulatory properties and interestingly decomposition products
from lipoxygenase derived lipid peroxides [63]. In addition to the lipid
peroxidation products produced by the enzymatic action of lipox-
ygenases, cyclooxygenase products are also produced. For example,
prostaglandin E2 (PGE2) inhibits type I interferon response to Myco-
bacterium tuberculosis, which is crucial for protection [64]. P. vivax in-
fection induces the transcriptional activity of type I interferon pathway
[37], while PGE2 levels are reduced during severe P. vivax malaria
[65]. Our metabolite data corroborate the transcriptomic response: at
the time of malaria diagnosis, the transcriptional profiles of semi-im-
mune subjects mainly reflect a response mediated by myeloid cells
when compared to naïve subjects. Thus, the tolerance to clinical
symptoms might involve more than the memory developed by lym-
phocytes, and may also rely on trained innate immune cells. This
concept emerged from observations that innate immunity can be crucial
for re-infections [66]. Indeed, trained immunity involves epigenetic and
metabolic reprogramming of innate immune cells [66] and is induced
by P. falciparum infection [67]. Our data suggest that metabolic re-
programming of myeloid cells could have a substantial effect on the
development of clinical tolerance to re-infection with P. vivax, in which
platelets play a significant role. Recent work demonstrated that re-
peated exposures to P. vivax results in higher frequencies of classical
memory B cells, reduction of atypical memory B cells, and increased
levels of P. vivax-specific IgG [68]. Moreover, women exposed to P.
vivax exhibited a higher proportion of atypical memory B cells [69].
Thus, the extensive associations with BTMs related to B cells at baseline
for semi-immune, but not naïve subjects, indicate that clinical tolerance
to P. vivax malaria is accompanied by increased circulation of memory
B cells.

To our knowledge, this is the first study to integrate host metabo-
lomics and transcriptomics in the context of human malaria research.
The major limitation of this study is the small cohort size. However, this
will be a common challenge as we move towards precision medicine
approaches to big data. It would be useful to test the hypotheses in a
separate cohort, a larger population or appropriate animal models.
Without any of those, one way to address the challenge is the integra-
tion of orthogonal and intensive data points – the integration of me-
tabolomics and transcriptomics here enhanced the statistical power.
Because of the limitation of sample size, little significant association
was found between the orthogonal datasets at baseline. However,
stronger signals elicited by the infection pinpointed to a concerted
network, hinging on gene modules related to platelet activation, type I
interferon and innate immunity, and for chemokines and T cell sig-
naling. Among the associated metabolic pathways, linoleate and gly-
cerophospholipid metabolism were also associated with the transcrip-
tional activity of innate immunity, T and B cells in response to a live
attenuated viral vaccine in humans [16]. By measuring the platelet
metabolome separately, we were able to confirm that the plasma me-
tabolites associated with platelet activation genes in blood cells were
indeed highly enriched in platelets. Overall, these results indicate that
the immune response to P. vivax infection is tightly associated with host
metabolic responses. A better understanding of their interplay will be
useful for designing novel therapeutic interventions and vaccines.
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