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Computational experiments have been very important to numerically simulate real

phenomena in several areas. Many studies in computational biology discuss the

necessity to obtain numerical replicability to accomplish new investigations. However,

even following well-established rules in the literature, numerical replicability is

unsuccessful when it takes the computer’s limitations for representing real numbers

into consideration. In this study, we used a previous published recurrent network

model composed by Hodgkin-Huxley-type neurons to simulate the neural activity

during development. The original source code in C/C++ was carefully refactored to

mitigate the lack of replicability; moreover, it was re-implemented to other programming

languages/software (XPP/XPPAUT, Python and Matlab) and executed under two

operating systems (Windows and Linux). The commutation and association of the input

current values during the summation of the pre-synaptic activity were also analyzed. A

total of 72 simulations which must obtain the same result were executed to cover these

scenarios. The results were replicated when the high floating-point precision (supplied

by third-party libraries) was used. However, using the default floating-point precision

type, none of the results were replicated when compared with previous results. Several

new procedures were proposed during the source code refactorization; they allowed

replicating only a few scenarios, regardless of the language and operating system. Thus,

the generated computational “errors” were the same. Even using a simple computational

model, the numerical replicability was very difficult to be achieved, requiring people

with computational expertise to be performed. After all, the research community must

be aware that conducting analyses with numerical simulations that use real number

operations can lead to different conclusions.

Keywords: neural network, Hodgkin-Huxley-type neurons, numerical replicability, floating-point precision, code
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INTRODUCTION

A fundamental point to the evolution of science is the possibility
of analyzing previous studies, and from that to propose
improvements, reflections or new conclusions. A scientific
experiment or analysis should ideally be described in sufficient
detail so that other scientists with sufficient skills and means
can follow the steps described in published work and obtain
the same results within the margins of experimental error
(Plesser, 2018).

However, such attention to experimental error must be
increased when scientists use digital computers to perform
experimental simulations and data analyses. It is possible to
perceive researchers assuming that results obtained by computers
could be trusted in many investigations, provided that the
principal algorithms and methods employed were suitable to
the problem at hand. Little or no attention is paid to the
correctness of implementation, the potential sources for error,
or the influences introduced by system software and hardware;
in addition, how difficult it can be to replicate a computational
experiment after some years or even weeks (Plesser, 2018;
National Academies of Sciences Medicine, 2019).

These aspects fall into the two terminologies of reproducibility
and replicability, which are recurrent topics in science,
specifically in a computational context in which results/data
are produced by computational simulation programs, usually
developed using source code in a specific computer language.
This recurrence mainly starts from the difficulty of reusing
codes, modules and functions developed in previous studies. In
the context of the computational programs, the Association for
ComputingMachinery (ACM) proposes the following definitions
(https://www.acm.org/publications/policies/artifact-review-
and-badging-current), which are adopted in this manuscript:

Replicability (Different team, same experimental setup):
The measurement can be obtained with stated precision by a

different team using the same measurement procedure, the same

measuring system, under the same operating conditions, in the
same or a different location on multiple trials. For computational

experiments, this means that an independent group can obtain

the same result using the author’s own artifacts.
Reproducibility (Different team, different experimental

setup): The measurement can be obtained with stated
precision by a different team, a different measuring system,
in a different location on multiple trials. For computational
experiments, this means that an independent group can
obtain the same result using artifacts which they develop
completely independently.

It is important to mention that there are different definitions
for these terms (Plesser, 2018), including inverse definitions
in relation to those adopted in this study, as proposed
by Claerbout and Karrenbach (1992) and Rougier et al.
(2017). These two aspects are considered fundamental for a
scientific software program to be presented as a scientific
contribution (Benureau and Rougier, 2018). In this sense,
several recommendations have already been suggested to achieve
computational reproducibility and/or replicability of numerical

results obtained by computational models (Sandve et al., 2013;
Benureau and Rougier, 2018; Elofsson et al., 2019).

Let us think hypothetically of a scenario where we have access
to the entire source code and a precise description of “all” the
documentation and steps to re-execute the code under a specific
computational environment (ex: 32/64 hardware architecture,
Compilers/Interpreters versions and libraries). Other scientists
should preferably be willing to follow the described steps and
obtain the same results (Plesser, 2018). However, the code
usually needs to be executed in different operating systems (OS)
and hardware platforms (HPs). A previous work showed that
numerical replicability was not achieved under these conditions
(Blanco et al., 2020), questioning whether the efforts of well-
established international standards (IEEE, 2019) are followed
among programming languages and their implementations,
libraries are being used (with their respective compiler and
compilation options) and HPs.

The representation of real numbers by computers is an
intrinsic source of error for numerical simulations. As it is
known, data is stored on computers in binary format. Hence,
each different type of data requires a different representation
form. In the case of real numbers, there are a variety of
forms of different representations, with the IEEE 754 standard
being the most widely used in modern computers. Regardless
of the standard used, all representation of real numbers
in binary is a discretization of an infinite space; therefore,
representation errors are generated (Franco et al., 2017).
Since there is no exact representation for all floating-point
(FP) numbers after mathematical operations, including the
initializing ones (first time a value is assigned to a variable),
rounding-off and truncation operations are necessary to find
the closest representation to the desired value. Summatory
operations are a classic example in which numbers are rounded
at each step, therefore they are non-commutative and non-
associative. For example:

Commutative:

{

– 0.3+ 0.1+ 0.1+ 0.1 = 0.0000000000000000277556
0.1+ 0.1+ 0.1– 0.3 = 0.0000000000000000555112

Associative:

{

0.1+ 0.1+ 0.1− 0.3 = 0.0000000000000000555112
0.1+ 0.1+ (0.1 – 0.3) = 0.0000000000000000277556

Almost all the results remained imprecise even using well-known
available methods which were developed to reduce the errors
in operations using floating-point numbers. For example, when
the Kahan summation (Kahan, 1965) method was used, only
two of the previous examples were correctly solved. On the
other hand, the ReproBLAS (Demmel et al., 2016) and ExBLAS
(Iakymchuk et al., 2015) showed to be unsusceptible, as they
generated the same errors; however, they still failed to produce
the correct result.
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Kahan Commutative:

{

– 0.3+ 0.1+ 0.1+ 0.1 = 0.0000000000000000277556
0.1+ 0.1+ 0.1– 0.3 = 0

Kahan Associative:

{

0.1+ 0.1+ 0.1− 0.3 = 0
0.1+ 0.1+ (0.1 – 0.3) = 0.0000000000000000277556

ExBLAS/ReproBLAS Commutative:

{

– 0.3+ 0.1+ 0.1+ 0.1 = 0.0000000000000000277556
0.1+ 0.1+ 0.1– 0.3 = 0.0000000000000000277556

ExBLAS/ReproBLAS Associative:

{

0.1+ 0.1+ 0.1− 0.3 = 0.0000000000000000277556
0.1+ 0.1+ (0.1 – 0.3) = 0.0000000000000000277556

As shown, this lack of precision already directly impacts simple
operations; therefore, they will not be applied in our network
case, which is a more complex implementation.

This study address how summation operations performed
under real numbers evolve to non-replicability in numerical
computations. To achieve this goal, we used a computational
simulation that represents the activity of a neural network
composed by the Hodgkin-Huxley (HH) neuron model.
Using the default floating-point precision (DFPP—double type
for C program language), our previous work proved that
different associations of pre-synaptic current values during
the summation of the pre-synaptic activity affected numerical
replicability (Blanco et al., 2020). This study is going one
step further in attempting to mitigate previously reported non-
replicability issues, but now also including the commutation
of the pre-synaptic currents. Moreover, the original model
implemented in C/C++ was refactored and ported to another
3 programming languages/software widely used in scientific
computing: XPP/XPPAUT, Python, and Matlab. Simulations
were also executed under Windows and Ubuntu Linux OSs. The
question to be answered is: Will the replicability be maintained
across computer languages and OSs? Thus, over 72 simulations
were executed to cover these aspects.

MATERIALS AND METHODS

Neural Network Model
Early studies already modeled the spontaneous neural network
activity during early development, which is characterized by a
cyclic profile where episodes of strong neural activity are followed
by episodes of quiescence (Tabak et al., 2010; Blanco et al., 2017).
This pattern had been seen in regions such as: the spinal cord
(Tabak et al., 2001), retina (Grzywacz and Sernagor, 2000) and
cortical networks (Opitz et al., 2002).

All simulations model 8 s of a small all-to-all connected
neural network composed by 100 Hodgkin-Huxley neurons.
Each j neuron is modeled by two ordinary differential equations

(ODE), the membrane potential (Equation 1) and the fraction of
activated delayed rectifier K+ channels (Equation 2).

C
dVj

dt
= −

[

INaj + IKj + Ilj + Isyn,ej + Isyn,ij − Iapp

]

(1)

dnj

dt
= αn

(

Vj

) (

1− nj
)

− βn(Vj)nj (2)

an (V) =
0.01(10.0− V)

(e0.1(10.0−V)
− 1.0)

(3)

βn (V) = 0.125e−V/80 (4)

The membrane potential equation integrates several currents.
The Na+ (INaj ) current assumes instantaneous activation (Rinzel,
1985) (Equation 5). The K (IKj

) and the leakage (Ilj ) currents
are represented in Equations (6) and (7), respectively. The
synaptic currents, coming from aNe sub-population of excitatory
neurons and Ni remaining inhibitory neurons, are presented in
Equations (8) and (9), respectively. Their corresponding synaptic
conductance are shown in Equations (10) and (11).

INa = gNam
3
∞
(Vj)(0.8− nj)(Vj − VNa) (5)

IKj = gKn
4
j

(

Vj − VK

)

(6)

Ilj = gl(Vj − Vl) (7)

Isyn,ej = gsyn,ej (Vj − Vexc) (8)

Isyn,ij = gsyn,ij (Vj − Vinh) (9)

gsyn,ek =
gsyn

N

Ne
∑

j=1

ajsj − aksk (10)

gsyn,ik =
gsyn

N

N
∑

j=Ne+1

ajsj − aksk (11)

The input current Iapp in Equation (1) guaranties the diversity
of activity in the population, since different current input values
were assigned for each neuron. The vector of Iapp values was
randomly generated from a uniform distribution over the range
−10 to 5 µA

cm2 and maintains its values for all simulations.
Two variables are the main outputs for each neuron, namely

the spontaneous activity, and the synaptic efficacy, represented
by aj and sj, respectively. These two variables present a cyclic
profile; aj has a fast profile variable with elevated activity episodes
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TABLE 1 | Parameters of the network model using Hodgkin-Huxley-type neurons.

Parameter Description Value

gl Leak conductance 0.1 S/cm2

Vl Leak reversal potential −10.6 mV

gNa Sodium conductance 36 mS/cm2

VNa Sodium reversal potential 115 mV

gk Potassium conductance 12 mS/cm2

Vk Potassium reversal potential −12 mV

gsyn Max. synaptic conductance 3.6 mS/cm2

Vexc Excitatory reversal potential 70 mV

Vinh Inhibitory reversal potential 70 mV

Iapp Input or applied current −10 to 5 µA/cm2

αa Synaptic activation rate 1 ms−1

βa Synaptic decay rate 0.1 ms−1

αs Synaptic recovery rate 0.0015 ms−1

βs Synaptic depression rate 0.12 ms−1

Vth Threshold for activation/depression 40 mV

divided by quiescent periods (inter-episode intervals), while sj is a
slow profile during quiescent periods of aj, but has fast depression
during the high activity episodes (Tabak et al., 2010; Blanco et al.,
2017). Their equations have the form:

daj

dt
= 5

(

Vj

)

αa

(

1− aj
)

− βaaj (12)

dsj

dt
= αs

(

1− sj
)

− 5(Vj)βssj (13)

In which: 5(Vj) = 1/(1 + e(vth−Vj)/kvj ) reflects synaptic
release when the presynaptic voltage Vj depolarizes above Vth

during an action potential. The average network activity and
synaptic efficacy are <A> =

1
N

∑N
j=1 aj and <S> =

1
N

∑N
j−1 sj,

respectively. The network model parameters are shown in
Table 1.

Excitatory and inhibitory neurons were modeled using the
same equations, however changing their reversal potential value
(Vexcand Vinh in Equations 8, 9 and values from Table 1).
Although Vexc = Vinh = 70 mV for all simulations, this
configuration set the inhibitory neurons to behave like excitatory
ones. In other words, they are just labeled as inhibitory in
simulations where inhibitory set of neurons are defined.

A special attention should be given to three parameters: input
current Iapp, amount of excitatory neuronsNe, and the amount of
inhibitory neurons Ni. Their manipulation defines the numerical
simulations scenarios presented in this study (see next sections
and Figure 1).

Simulation Scenarios
The simulation scenarios proposed in this study are presented in
Table 2. The simulations were executed on the same hardware
platform: Intel i5-9600k 3.70GHz 8GB DDR4. However, it
was Dual Boot configured with Windows and Ubuntu Linux

operating systems (OSs) (Table 2, first row). The same versions
of the C/C++ (https://isocpp.org/), XPP/XPPAUT (Ermentrout
and Simulating, 2002), Python (https://www.python.org/), and
Matlab (https://www.mathworks.com/) languages/software
programs were installed in both OSs (Table 2, second row).
The model implemented in C/C++ (Blanco et al., 2020) was
carefully refactored to a new version, allowing the model
(network structure, initial conditions, parameters values and
ODEs) to be easily transcripted into the proposed programing
languages/software programs. Simulations were executed using
two floating-point precision types: the default double floating-
point precision defined by IEEE 64 (IEEE, 2019) (referred
to throughout the text as DFPP) and an implemented high
floating-point precision type (referred to throughout the text as
HFPP). The parameters presented so far do not alter the neural
network model.

Similar to the study by Blanco et al. (2020), there are two
main scenarios regarding the proportion of Ne and Ni: (1) A
network composed by only excitatory neurons (Table 2, fourth
row, value 100—no association); and (2) a network composed
by 80% excitatory and 20% fake inhibitory neurons (reversal
potential Vexc = Vinh = 70 mV, hence, they are still playing
an excitatory role) (Table 2, fourth row, value 80/20). In the
first case, the integration of presynaptic activity conductance is
not split (Figure 1, first column, 100% Exc and IappInhi = 0).
However, the integration of presynaptic activity is split in the
second case (Figure 1, second column, 80/20% Exc/Inh).

Furthermore, we also tested whether the order (commutating
the values) of the Iapp vector could affect the simulation results.
To do so, three new scenarios were tested: (1) Random, in which
the values were randomly generated once (Table 2, fifth row,
value RND; and Figure 1, RND row); (2)Ascendant, in which the
same values generated in (1), were sorted upwardly (Table 2, fifth
row, value ASD; and Figure 1, ASD row); and (3) Descendant, in
which the same values generated in (1) were sorted downwardly
(Table 2, fifth row, value DESC; and Figure 1, DESC row).

Thus, a total of 92 scenarios were proposed from Table 2.
However, we could not execute the HFPP under XPP/XPPAUT
and Matlab, ending with a total of 72 computational simulations.
It is important to mention that all of the 72 proposed simulations
should obtain identical values of <A> and <S> over time;
in other words, replicability should be achieved even when the
model parameters are changed (proportion of Ne and Ni, and the
commutation of Iapp vector values) (Figure 1). In cases in which
<A> and <S> keep the cyclic profile, but not necessarily the
same values, it is considered that reproducibility was achieved.

The simulations using HFPP were our gold standard result,
and were used to compare the rest of the simulations. The
temporal discrepancies between the average spontaneous activity
<A> of two simulations i and j will be calculated using the
absolute error equation ǫ (t)= |Ai (t)− Aj (t)|.

Implementation in Other
Languages/Software Programs
The source code originally implemented in C/C++ and
published in Blanco et al. (2020), went through a refactoring
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FIGURE 1 | The integration of pre-synaptic activity must obtain the same value. A simple neural network schema composed by 10 neurons shows the six simulation

scenarios (3x2, rows and columns) that modify the computational model (Table 2, fourth and fifth rows). The columns represent two scenarios involving the proportion

of Ne and Ni: 100% excitatory neurons (first column) and 80/20% of excitatory/inhibitory neurons (second column). These scenarios change the associativity in the

conductance summation of presynaptic activity values (Equations 10 and 11). For simplification, the formulas and graphs represent the integration of presynaptic

activity of one neuron k (k=2,gsyn2 ), and the Iapp values were integers (also similar to indices). When 100% of neurons are excitatory, only one summation was

calculated (gsyn,ek ), since there are no inhibitory neurons in the network (gsyn,ik = 0); while in the 80/20% case, the total gsynk is calculated with two summations, the

gsyn,ek and gsyn,ik . Rows from the second to the end represent three ways of how the Iapp vector is ordered: Random (RND), Ascendant (ASD) and Descendent

(DESC). These scenarios change the commutation in the conductance summation of presynaptic activity values. The total summation formulas for all scenarios are

shown at the bottom of each cell.
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TABLE 2 | Simulation parameters.

Simulation parameters Values Description

Operating system OS
WIN

LIN

Windows 10 Pro

Ubuntu Linux 20.04 LTS

Programing

Languages/Software

PL

XPP/XPPAUT

C/C++

Python

Matlab

XPP/XPPAUT version 6.9.0.31

GCC/G++ version 9.3.0

Python version 3.8.0

Matlab version 9.5.0

Floating-point

Precision
FPP

DFPP

HFPP

Default Floating-point precision

High Floating-point precision

Ne and Ni proportions SPLT
100

80/20

100% excitatory neurons (no association)

80% excitatory and 20% inhibitory neurons

Iapp commutation SORT
RND

ASD

DESC

Random organization

Ascendent organization

Descendant organization

process to further facilitate manual conversion from C/C++

code to the target languages/software programs: Python, and
Matlab. Specific syntax elements of the target’s languages were
carefully incorporated during this transcription to maintain the
similarity among the source codes as much as possible, while also
taking advantage of the particularities that each language offers.

We also implemented the original code into the
XPP/XPPAUT tool. Its script language is not considered a
native computer language, but it is widely used in the field of
scientific computation, and known for facilitating high-level
implementation, and consequently speeding up the production
of results.

Following the suggestions by Sandve et al. (2013) and Elofsson
et al. (2019), the codes were implemented and maintained
the same organization in terms of initialization, nomenclature,
manipulation of variables, functions, files, and directories.
Hence, the variables, functions and comments were positioned
in the same line of each source code. Moreover, Python
and Matlab source code files contain several blank lines to
match the larger specification syntax usually required by the
C/C++ implementations.

Programing languages have different nomenclatures/names
for the same data types. This is the case when a variable of 64 bits
of floating-point precision is used. For example, they are declared
as “double” in C/C++ and Matlab; however, they are “float”
in Python (Table 3, first row). Only the C/C++ and Python
source code were adapted to run simulations using HFPP types,
which are implemented from third-party libraries (Table 3,
second row). Hence, the files have additional lines for initializing
variables. Boost multiprecision library with cpp_dec_float_100
backend was used in C/C++. It guaranties 100 accurate digits
(https://www.boost.org/doc/libs/1_78_0/libs/multiprecision/
doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html).
Decimal class was used in python, it stores how many digits
are assigned to the object during its creation. The precision was
defined in context [getcontext().prec =100] and it is only used
during arithmetic operations (https://docs.python.org/3/library/
decimal.html). Although Matlab offers a way to implement

TABLE 3 | Floating-point precision (FPP) digits and types used in each language.

Languages/software DFPP type/digits HFPP type/digits

XPP/XPPAUT Double/8 -

C/C++ Double/15 Boost/100

Python Float/15 Decimal/100

Matlab Double/15 -

HFPP through Variable-precision arithmetic (VPA) type from
Symbolic Math Toolbox, the results were not presented in this
study because its execution is extremely time-consuming (to the
order of months).

ODEs were solved by Runge-Kutta fourth order (RK4)
method. Implementations for C/C++, Python and Matlab
were taken from https://people.sc.fsu.edu/~jburkardt/cpp_src/
rk4/rk4.html. The all-source code of this study is available as
freeware in the Github repository at the hyperlink https://github.
com/wblancof/neural-numerical-replicability2.git.

The main abbreviations utilized in this work are available in
Table 4.

RESULTS

This section shows the numerical results from the computational
simulations proposed in Table 2. The simulations model the
activity of a population of neurons during early development. It
is necessary to note that all the simulations must theoretically
obtain identical values for the spontaneous network activity
<A> (Equation 12) and the network synaptic efficacy <S>
(Equation 13) over time.

The execution simulation times are presented in Table 5. The
simulations that used HFPP were the most time-consuming as
expected, with the Python language on Windows being the most
time-consuming in taking approximately 49 h. On the other
hand, the simulations that used DFPP were the least time-
consuming, with C++ language on Ubuntu Linux only taking
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about 34 s. Next, we decided to divide the simulation results
into two main categories to better organize the Results Section:
High floating-point precision (HFPP) and Default floating-
point precision (DFPP). This will help to compare the results
more fairly and logically. We considered that XPP/XPPAUT
simulations were under DFPP category; however, due to the lack
of numerical precision of results and difficulty to control its
high-level script language, it has its own sub-section.

XPP/XPPAUT
Implementing the original code into XPP/XPPAUT script
languages allowed us to easily test all proposed scenarios

TABLE 4 | Abbreviation table.

Abbreviations Definitions

ACM Association for Computing Machinery

ASD Ascendant sorted

DESC Descendant sorted

DFPP Default floating-point precision

FP Floating-point

HFPP High floating-point precision

HH Hodgkin-Huxley

HP Hardware platforms

IEEE Institute of Electrical and Electronics Engineers

ODE Ordinary differential equations

OS Operating systems

RK4 Runge-Kutta fourth order

RND Random sorted

VPA Variable-precision arithmetic

(Figure 1), with special attention to the Iapp vector order cases
(Random, Ascendent, and Descendant) (Figure 1, rows), and
constituting an aspect that was not explored in Blanco et al.
(2020).We used the same parameters as in Tabak et al. (2010) and
Blanco et al. (2020). The results confirmed the lack of numerical
replicability between different OSs as shown in Blanco et al.
(2020) (Figures 2A,B). Furthermore, we also confirmed that the
order of Iapp vector is an issue which also affects the numerical
replicability (Figure 2, rows).

The spontaneous network activity <A> and the network
synaptic efficacy <S> display the cyclic patterns, however
they are only visually similar until the second activity episode
(Figure 2, time 0–3 s, highlighted with gray background).
However, the numeric difference (>10−4) among the <A>

profile from the simulations began in 2–3 s (Figure 2C). After the
initial 3 s, remarkable differences are observed for all profiles of
<A> and <S>. Nevertheless, there are three simulations which
show similar results lasting for four seconds, including: Ubuntu
Linux, 80/20, Ascendant sorted (Figure 2A-a.4); Ubuntu Linux
100 Descendant sorted (Figure 2A-a.5); and Windows 80/20
Ascendant (Figure 2B-b.4).

We found limitations with the XPP/XPPAUT tool. First, the
maximum FPP allowed by the tool in the outputs is fixed up to
eight decimal digits. This limitation did not allow us to compare
the results with the other languages/software programs. Second,
XPP/XPPAUT uses a high-level script language which is not
capable to precisely initialize and manipulate variables, nor to
control the source code flow. Third, we also noticed the necessity
to access the source code of the solver method (RK4) to check
functions eventually used in it, as well as possible truncation and
rounding-off operations applied to floating-point numbers.

Due to these software limitations and the fact that we
were unable to improve them (changing the XPP/XPPAUT

TABLE 5 | Time (in seconds) consumed for each computational simulation.

Operating Systems → Windows Ubuntu Linux

Precisions → DFPP HFPP SORT DFPP HFPP

Neurons proportions →

Languages/Software ↓

100 80/20 100 80/20 ↓ 100 80/20 100 80/20

XPP/XPPAUT (Version 6.9.0.31) 477 464 - - RND 222 235 - -

471 471 - - ASD 222 236 - -

474 474 - - DESC 224 235 - -

C/C++ (Version 9.3.0) 40 39 46,536 47,017 RND 34 34 35,663 34,947

39 39 46,413 46,602 ASD 34 34 33,696 35,499

39 39 46,550 47,425 DESC 35 34 35,250 35,784

Python (Version 3.8.0) 1,677 1,671 177,136 177,296 RND 1,014 1,033 103,349 103,730

1,668 1,677 175,769 175,943 ASD 1,066 1,077 103,055 104,023

1,665 1,668 177,611 177,859 DESC 1,073 1,080 103,431 103,476

Matlab (Version 9.5.0 2017b) 19,646 21,005 - - RND 13,447 13,450 - -

20,796 20,805 - - ASD 13,658 12,554 - -

20,417 20,457 - - DESC 13,164 12,982 - -
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FIGURE 2 | Associations and commutations of the Iapp vector produced different results on XPP/XPPAUT. The spontaneous network activity <A> (black curve) and

the network synaptic efficacy <S> (red curve) are shown for a total of twelve (12) scenarios, which are the six (SPLT × SORT−2 × 3) scenarios shown in Figure 1 for

Ubuntu Linux (A) and for Windows (B). Panel (C) displays a square matrix with an all-to-all comparison of these 12 scenarios based on the absolute error between

simulations. Each cell represents the first moment in time (seconds) when the absolute error reached a value >10−4.
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source code and recompiling it are considered out of the
scope of this study), these reasons guided us to not use other
platforms or tools such as: Neuron (Hines and Carnevale,
1997), Brian (Stimberg et al., 2019), or NEST (Gewaltig
and Diesmann, 2007). In this context, we decided to work
on native programing languages which enable addressing
these limitations.

Code Refactoring to Mitigate the Lack of
Replicability
The original C/C++ source code was refactored (source
code taken from https://github.com/wblancof/neural-
numerical-replicability). We must keep in mind that errors
in representation, rounding-off and truncation operations are
impossible to remove. Thus, we must learn to always generate
the same “errors” regardless of the language, architecture and/or
operating system used in order to improve the replicability of
a code. To do this, we need to focus on two points: (1) use the
same real number representation in all phases of a code; and
(2) always perform operations in the same order. This section is
dedicated to discussing a brief summary about these two points
at different stages of a code.

Compilation/Interpretation
Modern compilers can make code optimizations to generate
code that runs faster, and these optimizations can change
the execution order of the instructions, generating different
results according to the optimization used. In addition,
compilers and interpreters perform conversions for intermediate
representations which may result in different values (Boldo
et al., 2015). One compiler can convert a literal real number
to the single-precision (32-bit) floating-point representation
in the IEEE 754 standard, while another can convert to the
double-precision (64-bit) representation. Since not every number
has an exact floating-point representation, this can generate
different initialization values of the variables/parameters. For
example, if a compiler converts literal real numbers from a
code to single-precision representation, the value 0.1 is actually
represented as 0.10000000149011611938. If the representation
chosen is double precision, the value is now represented
as 0.10000000000000000555.

We should use the same compiler version whether the code
will be executed in different operating systems. However, the set
of options used by the compiler may be different for different
target architectures. Therefore, we must make sure that the
floating-point representations used by the compiler/interpreter
will be the same in different target architectures and/or operating
systems. This task may be more difficult or impossible to
be performed in the case of interpreted languages, since the
interpreter can only be available in an executable form, meaning
that it has already been compiled for different operating systems
(Boldo et al., 2015).

Initialization
As we have already commented, rounding-off and truncation
operations are performed after each floating-point arithmetic

operation. Therefore, we must be careful when initializing
real variables and constants, especially when porting
code to another programming language. When the code
was updated for the new version in C/C++ for this
article and ported to XPP/XPPAUT, Python, and Matlab
languages/software programs, we were careful to consider
the different languages/software data types. Additionally,
the code has to operate equally for DFPP and HFPP, and
therefore mathematical operations in the initialization of
variables were avoided. For example, the original initialization
of the variable gsyn was gsyn = 3.6/nNeurons, where
nNeurons is a variable with the number of neurons (for
the experiment, it was 100 neurons). In other words, for
a floating-point number divided by a variable, we already
know that there can be differences in the conversion of
a floating-point number, as previously mentioned in the
“Compilation/Interpretation” section. The initialization
of gsyn in the first python version was gsyn = 0.036,

just a literal value. Thus, the python compiler in DFPP
converts to a float value as 0.035999999999999997280, while
C/C++ needs a previous mathematical operation, therefore
gsyn = 3.6/nNeurons, and in DFPP the compiler converts to

gsyn = 3.600000000000000088818/100.00000000000 and finally
to gsyn = 0.036000000000000004219.

The final value is different among languages because the
intermediate representations are different, and the operands
must be converted so that they have the same exponent to
perform division (or other mathematical operations in the
floating-point unit), which can already cause different values.
Then, rounding and normalization are done so that the
number found is in the standard and size of the floating-point
representation being used (IEEE 754). Therefore, we decided
to directly initialize the variables with the literal value (3.6 in
this case, check variable p_gsyn line 56 in SimulationParameters

file); after this, the actual gsyn value is calculated in line 62 of

SimulationInitialization.h file.
High floating-point precision (HFPP) variables deserved

special attention. These variables must not be initialized with
literal real numbers, as the compiler/interpreter converts
the literal to the internal low precision representation
(single or double precision) before assignment. For
example, if we assign the literal 0.1 to an HFFP variable,
the compiler/interpreter will transform that value into
the closest possible value in the representation used
(0.1000000000000000055511151231257827021182, in
double precision) before the assignment. High-precision
types, such as python’s decimal or boost C/C++’s
cpp_dec_float, normally allow variables to be initialized
by string, preventing the compiler/interpreter from doing
the conversion described above and allowing to initialize
high-precision variables with exact values. To avoid this
undue truncation, it was opted to directly initialize the
variables with character type (String for Python and Char
for C/C++), which enabled truncating the initial values
and created a code hybrid structure that works with DFPP
and HFPP.
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Following the same logic, attributing floating-point variables
and operations that return values in this format to high precision
variables should be avoided because this would be inserting
the same representation and rounding errors as floating-point
variables in the high precision variable. The ideal situation is
to use only highly accurate variables and compatible operations
throughout the source code. Technically, the combination of an
integer variable with a high precision variable does not cause
a problem because the representation and conversion of an
integer variable is accurate. Still, it was decided to initialize these
variables as a character type.

Differently, Matlab does not allow this type of variable
initialization as character with the standard floating-point
type, which means that all operations in MATLAB were
performed in double-precision arithmetic conforming to the
IEEE standard 754.

Execution Order of the Instructions
As previously discussed, floating-point operations are not
associative; hence, the order in which consecutive operations
are performed changes the result. It must be ensured that all
versions of the source code in the different languages/software
programs used carry out the operations in the same order as the
data. For example, the first versions of this code utilized different
implementations of RK4 solver for each language/software, and
thus the mathematical operations were performed in different
orders. Therefore, an RK4 solver equal for all languages/software
programs was chosen.

Using Libraries and/or Third-Party Source Code
Using libraries can generate errors in several different ways and
represent a difficult problem to be solved, as we usually do
not have access to their source. A library could implement the
same function differently on different operating systems; hence,
replicability is not achieved even using the same version of a
library. For example, Blanco et al. (2020) utilized the native
RK4 solver from Boost library. Herein, we opted for another
approach as previously mentioned; therefore, the result for HFPP
in Blanco et al. (2020) is different from the outcomes from
this present study as shown in the next section. There is no
guarantee that the operations follow the same execution order on
different operating systems and ensure that the type conversions
within a library’s functions are the same across different operating
systems/architecture. This situation was observed even when
using the core standard libraries of the same programing and
same version. The simulations presented in this study use

two functions implemented by libraries: power and exponential.

Although these functions are approved by the IEEE 754 and
have large use in programming languages, we are aware of
the undue precision error. As the experiments of this article
were performed on the same machine using the same libraries
in the same versions and only changing the operating system
(Ubuntu Linux and Windows), we are led to believe that the
error was due to some interference from the operating system.
However, outside simple tests were performed with our own
implementation of power function and in which we observed
that the error does not appear in the different OS. Therefore,

the error must be caused by implementation differences in the
math library on different OSs, even though the libraries belong
to the same versions. The floating-point library’s source code
is extensive and the order in which the internal functions are
called is difficult to debug; thus, it was not possible to find
the exact reason for this error in the library. The difference
in results between Ubuntu Linux and Windows are regarding
with machine epsilon (last bit 52nd) and it only happens in
some cases. Finally, it was decided to utilize the language native
functions due to two main facts: (1) no open-source code was
found to replace these functions for the languages/software; and
(2) reimplementing both functions were considered out of the
scope of this study.

Porting the Code to Others Programing

Languages/Software Programs
All the problems mentioned above can happen easier when
using different languages. Two libraries/functions from different
languages/software programs that are developed to execute
the same tasks can have completely different implementations.
In our case, we were using different libraries for C/C++

and Python languages which generated different results [For
example exp() and pow() functions], withoutmentioningMatlab’s
own functions.

It is only possible to get around this problem by implementing
our own functions or having access to the function’s source
code to ensure that the same functions, operations’ order and
data type will be regarded for the code execution. When
implementing the function, we must be aware of the problems
mentioned above, as well as the specific features of the
languages/software program. For example, we can try to take
advantage of simplified python operations on lists to implement
a function quickly and simply. However, these operations
can generate a different result from the implementation in
another language such as C/C++ or Matlab software. Hence,
sometimes it is a good strategy to give up the advantages
offered by programing languages/software and write the code
in a more verbose way to obtain the same results across
languages/software programs.

Output
The data resulted from simulations went through a
standardization process in order to facilitate the data
organization andmanipulation. Functions among all programing
languages/software programs were created to properly store
the outcomes in a pattern format (Check lines 134 and 185
from HH_BBT2020_allP file). The simulation outcomes
have the information in their nomenclature to replicate the
experiment as follows: the time step (dt), proportions of
excitatory (Ne) and inhibitory (Ni) neurons, the reversal
potential (vl), the biological simulation time in milliseconds (t),
the precision utilized and the Iapp commutation. XPP/XPPAUT
do not allow this configuration, thus the outcomes were
stored manually through the software interface at the end of
each simulation.
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Simulations Using High Floating-Point
Precision (HFPP)
Carefully following the requirements just mentioned, the C/C++

refactored code was converted into Python andMatlab languages.
Although there are differences among these language syntaxes,
a careful translation was carried out to match them line-by-
line, allowing more control over the manipulation, initialization
of variables, functions, solver and code flow. Since the Matlab’s
implementation using HFPP was not executed (see Method
section), the first set of simulations were those using HFPP in
C/C++ and Python; resulting in a total of 24 scenarios (similar
as shown in Figure 2, but for C/C++ and Python).

The spontaneous network activity <A> and the network
synaptic efficacy <S> have precisely the same values as expected
(Figure 3). The simulations demanded large computational
time and power as already presented in Table 5. Nevertheless,
replicability was achieved during 8 s of biological simulation.
These results will be compared with the rest of simulations using
the absolute error equation (see Simulation Scenarios Section).

Although it is not fair to compare these results with
XPP/XPPAUT due to its low precision, it was visually noticed
that the first activity episode<A> in all the 12 simulations under
XPP/XPPAUT started right before 2 s and ended right after the 2 s
(Figure 2). Then with simulations using HFPP, the first episode
started and ended before the 2 s (Figure 3).

Simulations Using Default Float-Point
Precision (DFPP)
DFPP was performed under C/C++, Python and Matlab
languages with their respective standard precision type (Table 3).
The executed scenarios followed the same aspects as shown in
Figure 1 (SPLT X SORT = 2 × 3 = 6), however now including
the 3 languages/software programs, totaling 18 simulations for
each OS (Figures 4, 5).

Python language is native in Ubuntu Linux OS, and the
interpreter was compiled with the same version of GCC/G++

that was used to run the C/C++ simulations. On the other
hand, Python and C/C++ languages had to be downloaded on
Windows OS, and carefully installed with the same interpreter
(GCC/G++) to perform the simulations. This process is not
usual for Python language; therefore, the simulation with this
configuration will be referred to throughout the text as “Python
GCC/G++”. In addition, we understand that the most common
way to use Python language on Windows OS is to download
it directly from the official webpage or from the Microsoft
Store. Therefore, we also performed the simulations with this
conventional Python (Supplementary Figure 1) using the same
version as Python GCC/G++ (v.3.8.0). The Matlab software
program does not have this type of configuration in any OS, so
the installation and performance of simulations was traditional.

Even with refactorization work done on the original code in
C/C++ and converted to other programing languages/software,
simulations using DFPP on Windows OS did not replicate the
results (Figure 4) when compared with the simulation using
HFPP (Figure 3). The dashed vertical line appeared before the 2 s
of all simulations, signaling that the absolute error reached values
> 10−6. However, we were expecting that error propagations
were the same and simulations could be replicated among them.
Only 6 cases between C/C++ and Python GCC/G++ replicated
the results when the simulated model was equal, i.e., maintaining
the same network configuration (SPLT and SORT). The network
activity <A> and network synaptic efficacy <S> are identical
in these scenarios [Figure 4D, cells (a.1 vs. b.1), (a.2 vs. b.2),
. . . , (a.6 vs. b.6)]. The absolute error of network activity <A>

for all the other simulations reached values >10−6 before the 3 s
(Figure 4D, cells with blue hue).

The same source code across the languages was executed
under Ubuntu Linux OS (Figure 5). Again, no replicability was
achieved in any simulation when compared with the simulation
using HFPP or compared with DFPP across the OSs. However,
replicability did occur on the same six cases previously just
shown (between C/C++ and Python) [Figure 5D cells (a.1

FIGURE 3 | Using HFPP guaranteed the numerical replicability among simulations for different OSs and Languages.
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FIGURE 4 | Neural activity results simulated using DFPP on Windows, which did not replicate the HFPP results. Each panel (A–C) has six (6–SPLT × SORT−2 × 3)

scenarios explained in Figure 1 for C/C++, Python GCC/G++ and Matlab, respectively. The spontaneous network activity <A> and the network synaptic efficacy

<S> are represented by the black and red curve profiles, respectively. The black vertical dashed line in each graph shows the time when the absolute error is >10−6

in comparison with the simulation that used HFPP (Figure 3). The last panel (D) displays a square matrix with an all-to-all comparison of these 18 scenarios based on

the absolute error among simulations. Each cell represents the first moment in time (seconds) when the absolute error reached a value >10−6. Only the corresponding

graphs of C/C++ (A.n panel) and Python GCC/G++ (B.n panel) replicated the results of <A> and <S> values. Simulations implemented with Matlab did not

replicate the values as C/C++ and Python.

vs. b.1), (a.2 vs. b.2), . . . , (a.6 vs. b.6)]. Unfortunately, none
of the simulations implemented on Matlab replicated across
other languages.

The results of 36 simulations shown in Figures 4, 5 revealed
that all of the scenarios using DFPP were unable to achieve
replicability when compared with the simulations using HFPP.
The vertical dashed lines in Figures 4A–C, 5A–C represent when

the absolute error of <A> was >10−6; and the lines for all of
them appeared around the end of the first activity episode, before
the first 2 s. When the results were compared among simulations
only using DFPP (Figures 4D, 5D), the lowest time when the
absolute error reached >10−6 was 1.57948s (Figures 4D, 5D,
cells in darker blue) and followed by values up to 2.2151s
(Figure 4D, cells in cyan). After this value, only the maximum
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FIGURE 5 | Neural activity results simulated using DFPP on Ubuntu Linux which did not replicate the HFPP results. Like in Figure 4, Panels (A–C) show the

spontaneous network activity <A> (black curve) and the network synaptic efficacy <S> (red curve) for languages/software programs. The black vertical dashed line in

each graph shows the time when the absolute error is >10−6 in comparison with the simulation that used HFPP (Figure 3). When the comparison was done among

these 18 scenarios, replicability between C/C++ (A) and Python GCC/G++ (B) were observed as shown by dark red cells in (D).

possible value of 8s was found (Figures 4D, 5D, cells in dark
red); as previously mentioned, this means that identical values
were achieved; hence, no absolute error was found in the 8s of
simulation. There was no replicability among languages across
OSs (Supplementary Figure 2).

Analyzing the Sensitivity of Our Numerical
Algorithm
Although it is not our main goal to cover the sensitivity analysis
of our system, it is a point that has always been taken into account
to separate whether unreliable results/behavior of the system
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are caused by the sensitivity to small perturbations or for the
floating-point arithmetic. Therefore, Fuzzy tool (https://github.
com/verificarlo/fuzzy), an adaptation of Verificarlo (Denis et al.,
2015) to the Python language, was installed on Ubuntu Linux for
Python language to carry out this task.

In turn, 6 simulations were executed under the Fuzzy
environment for each of the 6 scenarios presented in panel B
of Figure 5, for a total of 36 simulations (6 x {b1, b2, b3, b4,
b5, b6}). Supplementary Figure 3 graphically shows only two
of them. Under RND order of Iapp the scenarios are: (1) the
network composed by 100% of excitatory neurons (b1), and
(2) the network composed by 80/20% of excitatory/inhibitory
neurons, respectively (b2). The six simulations reproduced
the cycle neural activity, with high activity episodes followed
by quiescence activity intervals. We did not observe any
tendency of the system in going to unexpected states.
As shown in all simulations executed in this study, after
around 2 s of simulation the activity episodes appeared in
different time moments affecting the mean and variance values
(Supplementary Figure 3B). In this context, we checked how the
perturbations could have affected the variance during the first
2 s of simulation, in which the mean and variance seen to not
be visually perturbed (Supplementary Figure 3C).We calculated
the “error” (subtraction with the original simulation presented
in panel B of Figure 5) introduced by the fussy perturbation at
every time step (6× 200,000 time points, dt= 0.01ms) for <A>

and <S>. The distribution shapes of these values are shown

in panel D in last graphs to the right. When the network was
composed by 100% of excitatory neurons, the average activity
<A> obtained a Mean=−2.7816e-10, Min=−3.4056e-05 and
Max 4.1825e-05; and the synaptic efficacy <S> obtained a Mean
= 1.5504e-09, Min=−1.5508e-06 andMax= 1.1021e-06.When
the network was composed by 80/20% of excitatory/inhibitory
neurons, respectively, the average activity <A> obtained a Mean
= 6.9614e-10, Min = −4.4780e-05 and Max 5.4846e-05; and the
synaptic efficacy <S> obtained a Mean = 2.0345e-10, Min =

−2.0387e-06 and Max = 1.4448e-06. The smalls perturbations
introduced by the Fuzzy tool did not cause unreliable results,
even during the first 2 s of the simulation, where the two high
activity episodes observed are happening at exactly the same time
for all the simulations.

DISCUSSION

This study presented the numerical results of the activity of
100 neurons all-to-all coupling during early development. The
results indicated that even using the same source code executed
under the same hardware platform is not sufficient to achieve
replicability (Table 6). The discrete and finite representation of
floating-point numbers by using DFPP altered the results of
mathematical operations. In turn, a summation of presynaptic
activity conductances (6 scenarios shown in Figure 1) was used
to prove that associativity and commutativity of these values
led to different results. All the results using DFPP (Figures 4,

TABLE 6 | Results summarizing table.

Operating Systems → Windows Ubuntu Linux

Precisions → DFPP HFPP SORT DFPP HFPP

Neurons proportions →

Languages/Software ↓

100 80/20 100 80/20 ↓ 100 80/20 100 80/20

XPP/XPPAUT (Version 6.9.0.31) - - RND - -

- - ASD - -

- - DESC - -

C/C++ (Version 9.3.0) WCa.1 WCa.2 RND UCa.1 UCa.2

WCa.3 WCa.4 ASD UCa.3 UCa.4

WCa.5 WCa.6 DESC UCa.5 UCa.6

Python (Version 3.8.0) WPb.1 WPb.2 RND UPb.1 UPb.2

WPb.3 WPb.4 ASD UPb.3 UPb.4

WPb.5 WPb.6 DESC UPb.5 UPb.6

Matlab (Version 9.5.0 2017b) - - RND - -

- - ASD - -

- - DESC - -

Labels: No replicability; - Not executed; Total replicability among simulations, only achieved by HFPP with C/C++ and Python languages in both OSs; WC simulations

performed on Windows OS with C/C++ language that achieved replicability when the network configuration was identical with simulations in (WP) Windows OS with Python language

[(WCa.1 vs. WPb.1), (WCa.2 vs. WPb.2 ), ... (WCa.6 vs. WPb.6 )]; UC simulations performed on Ubuntu Linux OS with C/C++ language that achieved replicability when the network

configuration was identical with simulations in (UP) Ubuntu Linux OS with Python language [(UCa.1 vs. UPb.1 ), (UCa.2 vs. UPb.2), ... (UCa.6 vs. UPb.6 )].
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5 and Supplementary Figure 1) showed similar activity profiles
(episodic bursts of intense activity separated by quiescent
periods), however none of them replicated the simulations using
HFPP (Figure 3 and Table 6, green check marks).

The model was initially implemented under XPP/XPPAUT,
a computational tool that offer benefits such as: a high-level
script language and several useful and embedded functionalities.
However, these benefits did not completely allow to control the
way mathematical operations and functions (i.e., ODE’s solver)
are executed, which is a crucial point for replicability. This tool
was not able to achieve replicability among simulations (Table 6,
red Xmarks) and was not capable of performing simulations with
HFPP (Table 6, black dash marks). In this context, the C/C++

source code was refactored and re-implemented under other
program languages/software programs (Python and Matlab) and
executed in Windows and Ubuntu Linux OSs.

In being aware that floating-point numbers are limitedly
represented using DFPP, it is expected that error propagation
would be the same across simulations; hence, the results
should be replicated. Nevertheless, none of the results showed
replicability across OSs (Supplementary Figure 2), suggesting
that compilers (even the same version) behaved differently across
OSs. Since all simulations were executed under the same HPs, the
non-replicability observed across the OSs were indirectly caused
by the programming language, source code, libraries being used
(with their respective compiler and compilation options).

Fortunately, only six scenarios that used the same model
parameters were replicated across languages (C/C++ and
Python) under the same OS (Figures 4D, 5D, dark red cells and
Table 6, WC (Windows—C/C++) andWP (Windows—Python)
and UC (Ubuntu Linux—C/C++) and UP (Ubuntu Linux—
Python). Two important aspects were crucial to achieve these
replications: (1) the careful refactorization process applied in
Blanco et al. (2020) of C/C++ source code and its translation
to Python, allowing full control over variable initialization, the
order of operations and the use of the same functions; and
(2) the fact that Python binary source codes were built under
the same C/C++ compiler. Unfortunately, we were not able to
rebuild Matlab binary code; actually, we do not even know if
this is possible, maybe due to commercial issues. In this case,
replicability was not achieved in this software (Table 6, red X
marks) and simulations with HFPP were not performed (Table 6,
black dash marks).

A simple neural network case helped to conclude that
numerical replicability could be achieved using HFPP; however,
it needed specific third-party libraries and required high
computational cost. Only 12 executed scenarios out of 36 (630
possible comparisons) using DFPP were replicated because a
meticulous refactorization process was performed to the source
code. The other scenarios did not replicate the results and errors

appeared early. This situation could be worse if larger and
more complex models are simulated, since more error sources

will be introduced. In this context, it could be presumed that
computational replicability is very difficult to achieve and needs
people with profound computational expertise, mainly in the
software development area. Finally, the research community,
and not only fields related to neuroscience, must be aware
that conducting analyses using numerical simulations which
implement floating-point numbers operations can lead to
different conclusions.
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