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Abstract: Developing effective and versatile photocatalytic systems is of great potential in solar
energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic
self-assembly in aqueous solution: Combining positively charged porphyrins with negatively
charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions,
π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a
substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with
the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the
corresponding aggregates under neutral conditions. The catalytic activity can be increased by
increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation
of the supramolecular catalysts took place via atomic force microscopy and small angle neutron
scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled
photocatalysts is presented.

Keywords: self-assembly; porphyrins; supramolecular catalyst; supramolecular structures;
polyelectrolytes; photocatalysis

1. Introduction

Many functional structures in nature are based on non-covalent self-assembly principles. In the
last years, self-assembly has emerged as a powerful method to create supramolecular structures
of various sizes, shapes, architectures and functionalities [1–12]. Due to their size scale and
versatile chemistry, polymers are very suitable building blocks to form a variety of stable assemblies
in solution. In particular, polyelectrolytes have been successfully used for the formation of a
variety of polyelectrolyte complexes, polyelectrolyte-surfactant complexes and in layer-by-layer
deposition [13–24]. More recently, electrostatic self-assembly of multivalent organic counterions
with oppositely charged polyelectrolytes has allowed formation of a broad range of nanoscale
architectures in solution [25–33]. It is thus highly interesting to now exploit this concept of
polyelectrolyte-organic counterion assembly to promote electrostatic self-assembly for the formation
of functional nanoassemblies in solution.

Porphyrins and metalloporphyrins play a key role in several fundamental processes in
life [34–40]. Extensive efforts have been undertaken to mimic efficient photoinduced electron-transfer
processes which take place in photosynthesis and to create artificial systems. Among the variety of
examined electron donors, porphyrins are very promising as they are the skeleton of chlorophyll
and absorb intensively in the visible spectrum and exhibit high extinction coefficients [34,40–46].
Therefore, they have become very attractive for applications in various fields [47–53]. Water-soluble
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porphyrins are of particular interest due to their application in biological or medical fields [54].
The aggregation behavior of porphyrins has been studied extensively, and they have been combined
with many-faceted molecules in supramolecular chemistry [55–67]. Porphyrins are often used for
hydrogen production and for hydrogen storage which is an important challenge for the automotive
industry [68–76]. Moreover, porphyrins can form interesting structures which are advantageous for
several applications. Hasobe et al. reported the formation of hexagonal hollow nanotubes consisting
of zinc meso-tetra(4-pyridyl) porphyrin which show a high power conversion efficiency (PCE) when
filled with C60 or C70 [77].

Under acidic conditions the number of charges of free-base porphyrins can be tuned from four
to six, resulting in porphyrin diacids, which also show interesting photophysical properties: They
exhibit long-lived triplet states and their Q-bands appear in the near-IR-region. Therefore, a large
fraction of the solar spectrum can be collected and hence porphyrin diacids represent potentially
good photosensitizers [78–81]. In comparison to free-base and metalloporphyrins, however, much less
attention has been paid to porphyrin diacids.

We recently found that porphyrin-polyelectrolyte assemblies with a tetravalent porphyrin show a
substantially higher catalytic activity than pure porphyrin under neutral conditions [67].

Herein, for the first time, we investigate the catalytic activity of porphyrin-polymer assemblies
under strongly acidic conditions where the free-base porphyrins carry two additional charges in
the inner ring and in total are six-fold positively charged. We compare free-base porphyrin with
the Zn-TMPyP as a metalloporphyrin. The building blocks used in this study are illustrated in
Scheme 1. As macroion component, either an anionic cylindrical poly(styrene sulfonate) brush
molecule (PSS brush) with about 12 nm diameter and 100 nm length or the corresponding
anionic linear polystyrene sulfonate is used. These polyelectrolytes are combined with cationic
meso-tetrakis(4-N-methylpyridinium) porphyrin (TMPyP), meso-tetrakis(4-(trimethylammonium)
phenyl)-porphyrin (TAPP) or tetravalent meso-tetrakis-(N-methyl-4-pyridyl)-porphyrin-Zn(II)
tetrachloride. The chosen model reaction for the investigation of the catalytic activity is the
light-induced oxidation of iodide in aerobic conditions. The study shows that efficient supramolecular
catalysts for photooxidation can be formed by electrostatic self-assembly in aqueous solution, as
indicated in Scheme 2.
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Scheme 1. Building blocks used in this study: Cylindrical polystyrene sulfonate brushes or linear
polystyrene sulfonate are combined with cationic porphyrins to build nanoscale assemblies in acidic
aqueous solution.
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Scheme 2. Formation of a supramolecular polyelectrolyte-porphyrin photocatalyst by electrostatic
self-assembly.

2. Materials and Methods

2.1. Chemicals

TAPP, TMPyP and potassium iodide were purchased from Sigma-Aldrich, Selmsdorf, Germany.
Zn-TMPyP was purchased from TriPorTech, Selmsdorf, Germany. The cylindrical PSS brush was
synthesized through polymerization of polystyrene macromonomers and subsequent sulfonation as
described previously [82]. A polystyrene macromonomer was synthesized by anionic polymerization
of styrene and subsequent end-functionalization by p-vinylbenzyl chloride. The macromonomer
was characterized by MALDI-TOF giving Mw = 4450 g¨mol´1 with Mw/Mn = 1.06 from size
exclusion chromatography (SEC) analysis (defining the later side chain length of the polymer
brush being Pw,side chain = 43). Free radical homopolymerization of this macromonomer yielded
a polystyrene brush with Mw = 2.13 ˆ 106 g¨mol´1 and Mw/Mn = 3.02 (SEC). To obtain lower
polydispersities the polystyrene brush was fractionated by continuous polymer fractionation (CPF).
A high molecular mass fraction with Mw = 4.12 ˆ 106 g¨mol´1 and Mw/Mn = 1.51 (weight average
degree of polymerization of the total polymer Pw,total = 39,000 and of the main chain Pw,main chain = 900)
was chosen. The polystyrene brush was then sulfonated with sulfuric acid/acetic anhydride in
1,2-dichloroethane at 50 ˝C. This results in a NaPSS brush with 100% sulfonation according to elemental
analysis. Light-scattering analysis confirmed the polymeranalogous reaction to take place without
degradation. Linear polystyrene was purchased from PSS standards with a molecular mass fraction
with Mw = 666,000 g¨mol´1 and a PDI < 1.2.

2.2. Sample Preparation

Samples were prepared by mixing aqueous solutions of the components and keeping them in
darkness prior to further investigations. The irradiation was performed with a 300 W halogen lamp
with a visible spectrum similar to daylight.

2.3. UV/Vis Spectroscopy

UV/Vis spectra were recorded using a SHIMADZU UV Spectrophotometer (UV-1800), Kyoto,
Japan, with a slit width of 1 nm using quart cuvettes from Hellma with 1 and 10 cm path length.
The spectral range covered 200 nm ď λ ď 800 nm.

2.4. Atomic Force Microscopy

Measurements were performed with a SolverPro AFM (NT-MDT Co., Moscow, Russia) equipped
with a 50 µm scanner, an optical zoom and a damping activated table. The tip in tapping mode was a
HA-NC noncontact mode cantilever with a resonance frequency of 130–180 kHz and a spring constant
of 4.5 nm´1 (˘20%) (also NT-MDT). For sample preparation, a droplet of 20 µL of the sample was
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added onto a freshly prepared mica surface and incubated for 5 min and dried in air. The TAPP-PSS
brush sample l = 0.4 was spincoated at 3000 rpm.

2.5. Small Angle Neutron Scattering (SANS)

Measurements were performed at beamline KWS2 at the Jülich Centre for Neutron Science at the
Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and at the beamline D11 at Institut Laue
Langevin (ILL), Grenoble, France. Data shown result from MLZ. Three configurations with neutron
wavelengths λ = 4.55 Å and a sample-detector distance of d = 2 m, d = 8 m and d = 20 m were used.
Data were corrected for empty cell scattering, electronic background, detector uniformity and analyzed
after subtracting solvent scattering and incoherent background. Error bars lie within 1%–5% at low q
and increase up to 15% at 0.9 nm´1 ď q.

3. Results

An important parameter for the investigation of the assemblies is the loading ratio, which is the
molar ratio of porphyrin charges to polyelectrolyte charges:

lcharge “
cp –NR`

3 , Porphyrinq
cp –SO´

3 , Polyelectrolyteq
(1)

The structural investigation of the catalytically active aggregates takes place via atomic force
microscopy (AFM) and small angle neutron scattering (SANS).

Under strong acidic conditions (pH < 2) the two inner nitrogen bases of a metal-free porphyrin
ring become protonated leading to a hexavalent species in the case of cationic tetraphenylporphyrins
accompanied by a strong colour change from red to green [83]. The valency increase from four to
six is accompanied by an increase in symmetry from D2H to D4H. Therefore, the planarity of the
macrocycle of TMPyP and TAPP disappears and the metal-free porphyrins have the same symmetry
as for example Zn-TMPyP. In the case of TMPyP, both, a pentavalent and a hexavalent porphyrin, can
be received depending on pH. For the TMPyP monoacid pH 1.7 is sufficient whereas the diaicd is
generated by dissolving the porphyrin directly in 1 M hydrochloric acid, i.e., at pH = 0. Going from the
tetravalent free-base porphyrin to the pentavalent TMPyP monoacid leads to a decrease of symmetry
from D2H to C2V. This one additional charge has a tremendous effect on the catalytic activity as will be
discussed in the following.

3.1. Atomic Force Microscopy (AFM)

In the AFM images shown in Figure 1, a loading ratio l = 0.4 was chosen for comparison,
as this turned out to be the ratio with the highest catalytic activity under neutral conditions [31].
Structural differences are evident for the aggregates formed by the different porphyrin species with
PSS brush. Figure 1a,b displays network-like structures formed by TAPP diacid and PSS brush, which
were already found under neutral conditions [26,30]. Under acidic conditions these networks exhibit
smaller dimensions in length (up to 645 nm) and even smaller dimensions in height (4 to 5.5 nm) as
compared to former studies under neutral conditions that showed TAPP-PSS brush assemblies several
µm in length and up to 15 nm in height [26].

To investigate the influence of each additional charge in the case of TMPyP systematically, the
structure of TMPyP-PSS brush samples under neutral conditions was investigated (Figure 1g,h).
Under neutral conditions, TMPyP-PSS brush forms well-defined, network-like structures which are
21 nm in height and exhibit also slightly larger meshes. In contrast, TMPyP monoacid (Figure 1e,f)
forms rather undefined networks with several µm size which are up to 64 nm high. Hence, one
additional charge causes a transition from well-defined network-like structures to rather undefined
networks. Increasing the number of charges further so that the TMPyP diacid (Figure 1c,d) is present,
again well-defined network-like structures result. They exhibit a height of 32 nm. Considering the
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PSS brush structures in the obtained aggregates more closely, one can see that the diameter of the PSS
brush is up to twice as large in TMPyP diacid-PSS brush aggregates (Figure 1d) than under neutral
conditions (Figure 1h). For the TAPP-PSS brush, one can see that there is nearly no difference in
PSS brush width in the two considered pH regions. Furthermore, Figure 1i,j displays network-like
structures for Zn-TMPyP and PSS brush under neutral conditions which are 17 nm in height and
several hundreds of nm in size and which are therefore very similar to structures formed with TAPP
and TMPyP under equivalent conditions (Figure 1g,h).
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Figure 1. Atomic force microscopy (AFM) of porphyrin/PSS brush samples deposited onto a mica
surface: (a,b) TAPP diacid-PSS brush sample with l = 0.4; (c,d) TMPyP diacid-PSS brush sample with
l = 0.4; (e,f) TMPyP monoacid-PSS brush sample with l = 0.4; (g,h) TMPyP-PSS brush l = 0.5 in neutral
solution; (i,j) Zn-TMPyP-PSS brush l = 0.4 in neutral solution.

Several reasons could be responsible for the formation of well-defined or rather undefined
structures with the different TMPyP species. The even or odd number of charges may be one reason for
this because the PSS brush molecules can distribute less regularly with only one charge in the porphyrin
ring. Increasing the number of charges from five to six, networks with TMPyP diacid (Figure 1d) (32 nm)
are half as high as those with TMPyP monoacid (64 nm) and much more defined. Structural differences
between TMPyP monoacid and TMPyP diacid can derive from their different symmetry (C2V D4H).
In addition, differences of the porphyrins TMPyP and TAPP can originate from the different ionic
strengths. pKa values for TAPP diacid and for TMPyP diacid are 3.6 and 1.4, respectively, indicating
that TMPyP is the most acidic and the ionic strength is much larger in the TMPyP diacid sample than
in the TAPP diacid sample. Usually, high ionic strength leads to a decrease in porphyrin-porphyrin
charge repulsion due to screening and therefore the π-systems of two porphyrin macrocycles are more
prone to interact intermolecularly. One might expect that the networks of TMPyP diacid-PSS brush
exhibit tighter meshes due to the higher ionic charge, but it is in fact the opposite. The reason for
this is not directly evident. High ionic strength was also investigated for TAPP diacid-PSS brush
by dissolving both also directly in 1 M hydrochloric acid. The sample precipitates immediately and
investigation with AFM was not possible. At higher ionic strength, screening of the electrostatic forces
takes place leading to a stronger aggregation tendency. The structural investigation by AFM showed
that TAPP diacid in combination with PSS brush also forms network-like structures similar to those
under neutral conditions. In contrast, TMPyP diacid assembles into “huge” broader meshed networks
and TMPyP monoacid makes larger undefined structures with PSS brush.

3.2. Structural Investigation by Small Angle Neutron Scattering (SANS)

To gain further insight into the structure and the shape of the aggregates in solution, small
angle neutron scattering (SANS) measurements for each system were performed at polyelectrolyte
concentrations of c (PSS brush) = 1 g¨L´1, except for the TMPyP diacid sample where the concentration
was c (PSS brush) = 0.05 g¨L´1. Data are reported in Figure 2a. Scattering curves (Figure 2a) give
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evidence of the cylindrical shape of the PSS brush as the slope in a log/log representation for the
intermediate q-range is ´1.09, according to the scaling of the form factor P(q) with q´1 for long
rods. From the first point or from the point where a plateau can be seen, the minimum length or
approximate length of the cylinder is found via l = 2π/qmin which is approximately 250 nm. To gain
more information, the curves have been analyzed by Guinier analysis (Figure 2b). The linearity of
a cross-section Guinier plot confirms the cylinder shape. From the slope, the cross-section radius of
gyration RGc, can be obtained, which for the PSS brush is RGc = 4.8 nm. Assuming a homogeneous
structure, this RGc can be converted into a cross-section radius and consequently into a diameter, which
is 13.8 nm, in good agreement with former studies [26,30]. To see how the porphyrin influences the PSS
brush in the aggregates, samples with the same loading ratio l were investigated for each porphyrin.
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In each case, cylindrical nanoassemblies were found. Table 1 shows the cylinder lengths, RGc

and radii. On the basis of this first analysis, the experimental curves have been fitted according to
structural models to obtain the particle shape and dimensions. Results are given in Figure 2a (solid
lines) and Table 1. It can be seen that all the determined radii are smaller than the one of the PSS
brush alone, while lying all in the same range. TMPyP diacid-PSS brush differs, as with 12 nm the
radius is nearly twice as large as that of the PSS brush. The result fits well with the observations
during sample preparation as precipitation occurs immediately for polyelectrolyte concentrations of
c (PSS brush) = 1 g¨L´1, which is why a distinct smaller concentration has to be used.

Table 1. Cylinder lengths, cross-section radii and radii from SANS data.

Sample RGC
1

(nm)
Diameter 1

(nm)
Model Length

(nm)
Radius

(nm)

PSSbrush neutral 4.8 13.8 Cylinder 140 ˘ 10 5.9 ˘ 0.1
TMpyP + PSSbrush 4 11.4 Cylinder 100 ˘ 10 5.1 ˘ 0.1

TMPyPmonoacid + PSSbrush l = 0.4 4.0 11.4 Cylinder 93 ˘ 3 4.8 ˘ 0.1
TMPyP diacid + PSS brush l = 0.4 – – Cylinder 2,700 * 12 ˘ 0.1

Zn-TMPyP + PSS brush l = 0.4 4.6 13 Cylinder 200 * 5.8 ˘ 0.1
TAPP diacid + PSSbrush l = 0.4 4.3 12.3 Cylinder 100 * 5.2 ˘ 0.1

1 Determined via Guinier approximation and modeling; * Length taken from AFM.

Hence, SANS results showed that cylindrical aggregates are formed, which is consistent with
AFM where individual strands of the networks exhibit a cylindrical shape. The lengths of these
cylinders range from 93 to 2700 nm. Differences in length are also evident from the AFM images:
for the TMPyP diacid-PSS brush sample, large network-like structures were found, the single-strand
dimensions of which are given in comparison are the longest and widest. The largest radius for the
cylinders formed by TMPyP diacid and PSS brush is in good agreement to the corresponding AFM.
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An exception is the TMPyP monoacid, where structures found in AFM are quite undefined. All the
diameters are smaller than that of TMPyP diacid and also the determined lengths are all distinctly
smaller. Hence, overall SANS and AFM results are in very good agreement.

The observation that, with the exception of TMPyP daicid, the radii are all smaller than those of
PSS brush in a broader view agrees very well with observations from former studies, where SANS
measurements under neutral conditions with and without salt were performed [62,66]. It was observed
that PSS brush had the largest radius followed by TAPP-PSS brush and TMPyP-PSS brush. Thus the
shrinkage herein can derive from the larger number of charges of the porphyrin, which causes the
porphyrin to enter more into the inside of the PSS brush, as the PSS brush has more power to bind it
due to the additional two charges and therefore smaller diameters result. Former studies pointed out
that side-chain interconnections seem to be responsible for the smaller diameters of the porphyrin-PSS
brush assemblies under neutral conditions, [30] which also is the case for TAPP diacid and TMPyP
monoacid. The behavior of TMPyP diacid, in contrast, appears to be different and is not understood yet.

3.3. Spectroscopic Investigation

The difference in valency becomes evident spectrochemically as can be seen in Figure 3.
Here, samples with and without polyelectrolyte under neutral and acidic conditions are investigated for
the three different porphyrins. Figure 3a–c exhibit the complete spectrum, whereas Figure 3d–f focus on
the enlarged Q-bands. Under neutral conditions, the Soret band of pure TAPP (Figure 3a) is red-shifted
for TAPP-PSS brush aggregates with l = 0.4, indicating the formation of J-aggregates and a head-to-tail
interaction of the transition dipole moments. Changing the pH from neutral to acidic, the TAPP Soret
band undergoes a bathochromic shift indicating the formation of J-aggregates. This bathochromic shift
with 9 nm under neutral conditions is slightly larger than under acidic conditions with 6 nm indicating
larger interactions between the TAPP and the PSS brush or the formation of larger J-aggregates under
neutral conditions. This pH change is, as already mentioned, accompanied by an increase of symmetry,
which again is accompanied by a reduction of the number of Q-bands from four to two. The presence
of PSS brush leads to a small further red-shift of the TAPP diacid Soret band (Figure 3b). The Q-bands
undergo no spectral shift upon combination with the polyelectrolyte under neutral conditions, while
this is different under acidic conditions. Here, a slight bathochromic shift of the Q-bands in the
presence of PSS brush can be seen. Spectral data from Figure 3 are summarized in Table 2. In the case
of TMPyP (Figure 3c), no band shifts of the Soret band from the neutral TMPyP to TMPyP monoacid
can be observed. The presence of PSS brush in neutral conditions leads to a small change of the Soret
band characteristics but not to a band shift. For the TMPyP diacid, a clear bathochromic shift of the
Soret band can be observed indicating the formation of J-aggregates and a head-to-tail interaction
of the transition dipole moments as for TAPP diacid, which in the presence of PSS brush is slightly
more expressed. For TMPyP monoacid, the presence of PSS brush leads to a red-shift of the Soret
band and for the illustrated charge ratio to a band splitting, indicating that more than one dominant
species exists. In addition, in the Q-region, some spectral shifts occur (Figure 3d). For the neutral
TMPyP samples, a slight red-shift of the Q-bands with polyelectrolyte addition can be seen. This is
also the case for the TMPyP diacid. For Zn-TMPyP (Figure 3e) less spectral changes are expected,
because the metal center prevents the increase of charge and also symmetry changes are not expected.
Thus, only for pure Zn-TMPyP Soret band can a slight blue shift by changing the milieu from neutral
to acidic be observed, thereby indicating the formation of H-aggregates and a face-to-face interaction.
However, the corresponding Q-bands show shifts (Figure 3f).

For the pure Zn-TMPyP in solution, the first Q-band rises at 519 nm, the second at 563 nm and,
additionally, a weak shoulder at higher wavelengths is present. In the presence of the PSS brush under
acidic conditions, four Q-bands can be seen, which are almost at the same wavelengths as TMPyP under
neutral conditions, indicating that Zn-TMPyP becomes demetallated under such acidic conditions.
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Table 2. Spectroscopic data for porphyrin-PSS brush assemblies in different media.

System Soret-Band (nm) Qy(1,0) (nm) Qy(0,0) (nm) Qx(1,0) (nm) Qx(0,0) (nm)

TAPP diacid 432 589 640 – –
TAPP diacid l = 0.4 438 594 647 – –

TAPP 412 514 549 579 634
TAPP l = 0.4 421 516 549 588 644

TMPyP diacid 445 591 642 – –
TMPyp diacid l = 0.1 450 595 647 – –

TMPyp monoacid 423 518 558 586
TMPyP monoacid l = 0.4 430/447 518 554 592 644

TMPyp 422 519 555 584 640
TMPyP l = 0.4 424 520 555 591 646

Zn-TMPyP acidic 428 519 563 – –
Zn-TMPyP acidic l = 0.4 445 518 566/591/645 – –

Zn-TMPyP 436 562 606 – –
Zn-TMPyP l = 0.4 442 566 608 – –
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The spectroscopic investigation therefore showed that the structure formation of porphyrin and
polyelectrolyte always leads to a red-shift indicating the formation of J-aggregates. For the TMPyP
monoacid, additionally a band splitting can be observed indicating the presence of more than one
species, which fits very well to the rather undefined structures in AFM.

3.4. Catalysis

Recently we found that at pH = 7 porphyrin-polyelectrolyte assemblies catalyze the light-induced
oxidation of iodide in aqueous solution more effectively than the unassociated porphyrin [67].
Here, we performed a study of the catalysis of different porphyrins under strongly acidic conditions.
The free-base porphyrins are two-fold protonated, resulting in two additional charges, i.e., hexavalent
porphyrins. Due to the fact that electrostatic interactions between the positively charged porphyrins
and the negatively charged polyelectrolytes are responsible for structure formation and the structure
formation itself under neutral conditions has caused a higher catalytic performance, two additional
charges are expected to have a substantial influence on the catalytic activity. Therefore, porphyrin
diacid-polyelectrolyte assemblies are promising for catalysis especially under strong acidic conditions
where a variety of systems cannot be used. For the main part of the catalysis study, three different
porphyrins, TAPP, TMPyP and Zn-TMPyP, are each combined with a cylindrical PSS brush and
the catalytic activity of these aggregates was compared with the one of porphyrin only in acidic
solution. In addition, measurements were also done with linear PSS to identify the role of the
polyelectrolyte architecture.

The chosen model reaction is the light-induced oxidation of iodide into triiodide, because I´/I3
´

is used, for example, in solar cell applications. The generation of triiodide can be monitored through
two characteristic absorption bands at 287 and 353 nm in the UV/Vis spectrum. The development
of the triiodide absorption as a function of time for the different systems is plotted in Figure 4.
Triiodide concentrations are summarized in Table 3. The system of TAPP diacid and PSS brush is
exemplarily chosen and the influence of the loading ratio l on the catalytic activity was investigated
over a large l regime 0.01 ď l ď 2. As can be seen from Figure 4a, the catalytic activity of TAPP
diacid-PSS brush assemblies increases successively with an increasing amount of polyelectrolyte:
that is, the concentration of triiodide increases from l = 2 successive up to l = 0.03 where the highest
catalytic activity can be observed. Further increase of polyelectrolyte leads to a smaller catalytic activity,
which shows that l = 0.03 is the optimum loading ratio which is necessary for an improvement of
the catalytic activity. At l = 0.01, the amount of TAPP is too small to allow for building sufficient
aggregates. Between 0.3 ď l ď 0.6, no differences can be seen. Similar observations can be made for
the TMPyP monoacid-PSS brush system, where the considered regime was 0.1 ď l ď 0.5. As can be
seen in Figure 4b, a distinct difference in the catalytic activity with and without polyelectrolyte can be
observed. The highest catalytic activity was found for l = 0.1. For the Zn-TMPyP-PSS brush system,
the results of which are illustrated in Figure 4c, samples with 0.1 ď l ď 0.8 were investigated. Similar to
the results for the TMPyP monoacid-PSS brush system, a distinct increase in catalytic activity through
the polyelectrolyte can be seen.

Table 3. Generated concentrations of triiodide (mol/L).

Porphyrin species With PE Without PE Activity increase with PE

TMPyP diacid 4.2 ˆ 104 4.2 ˆ 104 unchanged
TAPP diacid 1.5 ˆ 104 5.9 ˆ 105 2.5ˆ

Zn-TMPyP 8.7 ˆ 105 6.1 ˆ 105 1.3ˆ

TMPyP monoacid 7.8 ˆ 105 2.3 ˆ 105 3.4ˆ

Hence, the activity increases with increasing amount of polyelectrolyte so that for l = 0.1 the
highest amount of triiodide was found. For the TMPyP diacid-PSS brush system, the observations
are different as can be seen in Figure 4d. The pure TMPyP diacid solution is the catalytically most
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active one of the investigated porphyrin only solutions. With polyelectrolyte, the catalytic activity
is the same as without polyelectrolyte. Among the considered loading ratios, l = 0.1 shows the
highest catalytic activity, but the activity does not continuously increase with increasing amount
of polyelectrolyte. Among the considered systems, TMPyP diacid-PSS brush assemblies with
c (I3

´) = 4.2 ˆ 10´4 mol¨L´1 generate the highest concentration of triiodide followed by TAPP
diacid with c (I3

´) = 1.5 ˆ 104 mol¨L´1, Zn-TMPyP with c (I3
´) = 8.7 ˆ 10´5 mol¨L´1 and TMPyP

monoacid with c (I3
´) = 7.8 ˆ 10´5 mol¨L´1, as can be seen in Table 3.
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These observations are also evident from the corresponding turnover numbers (TON) and the
turnover frequency (TOF), which are summarized in Table 4. TON describes the amount of triiodide
which can be generated with the chosen porphyrin concentration. TOF is the turnover per time.
The catalytic activity of TMPyP diacid-PSS brush assemblies is evident with a TON of 109 and a TOF
of 1.82, which are higher than those of pure TMPyP diacid and essentially larger than those of the
other systems. Thus, the catalytic activity of TAPP diacid, TMPyP monoacid and Zn-TMPyP can be
obviously enhanced with regard to triiodide generation in the presence of polyelectrolyte.

From the results it can be seen that one additional charge in the case of TMPyP enhances the
catalytic activity tremendously. The effect of the porphyrin diacids is much more significant than with
the porphyrin under neutral pH conditions [31]. Under acidic conditions, the triiodide generation is
up to 13.6 times larger than in the pH 7 case in the TAPP diacid-PSS brush and up to 4.1 times larger
in the case of TMPyP monoacid-PSS brush, and finally up to 22.1 times larger in the case of TMPyP
diacid-PSS brush.
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Table 4. Corresponding TON/TOF of investigated porphyrin-polyelectrolyte assemblies.

Porphyrin species
TON TOF/min´1

With PE Without PE With PE Without PE

TMPyP diacid 109 104 1.82 1.73
TAPP diacid 20 6 0.66 0.1
TAPPneutral 2 – 0.03 –
Zn-TMPyP 8 47 0.14 0.8

TMPyP monoacid 10 3 0.14 0.04
TMPyP neutral 4 2 0.06 0.04

To identify if a certain polyelectrolyte architecture is necessary to increase the catalytic activity,
measurements with linear PSS as polyelectrolyte at one chosen loading ratio l = 0.4 were performed.
As shown in Figure 5, also with the linear polyelectrolyte, the catalytic activity becomes enhanced
whereas in the case of TMPyP diacid, the catalytic activity without linear PSS is slightly higher than
that with linear PSS. The concentrations of generated triioide are slightly higher for the TMPyP diacid
with linear PSS as with the PSS brush, while the other porphyrins lie in the same range as with PSS
brush, as given in Table 5. This is in contrast to neutral conditions. From Figure 5 and Table 5, it is
evident that most triiodide is generated with the TMPyP diacid system, which is consistent with the
results of the PSS brush. For selected samples, the influence of long-time irradiation on the catalytic
performance of porphyrin diacid-PSS brush aggregates was investigated. Samples were irradiated up
to five hours. A more extended irradiation interval was not possible for the TMPyP diacid samples
due to absorption limits reached at the chosen concentration. Again, the extinction coefficients are
plotted versus the irradiation time in Figure 6. It becomes evident that the further increase of the
catalytic activity due to the four-hour longer irradiation is not that significant for the majority of the
porphyrin-polyelectrolyte samples. Only for the TMPyP diacid system can a clear enhancement of
the catalytic activity be observed. Consistent with the results for one-hour irradiation, the highest
concentration of generated triiodide is found for TMPyP diacid-PSS brush aggregates, as summarized
in Table 5. Yet, still no increase of the iodide concentration due to the polyelectrolyte can be seen.
The activity of both samples is nearly the same as after one-hour irradiation. For the remaining three
porphyrin-PSS brush systems, a clear increase of the catalytic activity caused by the polyelectrolyte is
evident. Again, the observations can be underlined with the corresponding TON and TOF, which are
summarized in Table 6. The maximum increase with a 7.5-times higher concentration of generated
triiodide was found for TAPP diacid-PSS brush.
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Table 5. Generated concentrations of triiodide (mol/L) after 5 h of irradiation.

Porphyrin species With PE Without PE Increased activity with PE

TMPyP diacid 9.42 ˆ 104 1.00 ˆ 103 slightly less catalytically active
TAPP diacid 5.26 ˆ 104 7.01 ˆ 105 7.5ˆ

Zn-TMPyP 2.59 ˆ 104 7.73 ˆ 105 3.6ˆ

TMPyP monoacid 2.01 ˆ 104 7.35 ˆ 105 2.7ˆ

Table 6. TON/TOF for the long-term studies of porphyrin-polyelectrolyte assemblies.

Porphyrin species
TON TOF/min´1

With PE Without PE With PE Without PE

TMPyP diacid 243 246 0.81 0.82
TAPP diacid 78 10 0.25 0.03
Zn-TMPyP 33 9 0.11 0.03

TMPyP monoacid 46 16 0.15 0.05

The increase of the catalytic activity can additionally be seen from the color of the investigated
samples in Figure 6. Samples with porphyrin and polyelectrolyte evidently are more intensively
yellow-colored.

The reusability of the porphyrin diacid-PSS brush-assemblies was also investigated. For this, a
sample of TAPP diaicd-PSS brush and a TAPP diacid solution, which were already irradiated and used
as catalyst, were irradiated on the next day again. The measurements showed that TAPP diacid-PSS
brush assemblies are still catalytically active.

4. Discussion

Possible origins for the difference in catalytic activity are different lifetimes of the excited triplet
states, the symmetry of the porphyrins as well as the electronic structure of the porphyrins. As shown
in Scheme 3, the generation of triiodide from iodide occurs via irradiation of the porphyrin as a
photosensitizer and its excited triplet state. Thereby, 1O2 is generated which oxidizes iodide into
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triiodide. Table 7 summarizes the excited triplet state lifetimes for the porphyrins used. From this, it
may be assumed that Zn-TMPyP should exhibit the highest catalytic activity under neutral conditions
due to the largest lifetime and that TAPP should be more catalytically active than TMPyP, both under
neutral and acidic conditions.
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Table 7. Lifetimes of the excited triplet states of the different porphyrins under different conditions.

Porphyrin pH ΦTriplet tT

TMPyP 7 0.92 [64] 0.17 ms [84]
TAPP 7 0.8 [65] 0.54 ms [85]

Zn-TMPyP 7 0.9 [64] 2 ms [84]
TMPyP diacid acidic – 90 µs [76]
TAPP diacid acidic – 268 µs [76]
Zn-TMPyP acidic – –

Results above show the opposite. Therefore, effects other than the lifetimes of the excited triplet
states evidently are more significant for the difference in catalytic activity. Generally, molecular
symmetry can also play a role for the different catalytic behavior, but TMPyP and TAPP exhibit the
same symmetry under neutral and acidic conditions, so that the molecular symmetry also turns out
not to be the reason for the difference in catalytic activity.

A likely cause contributing to the enhancement of the catalytic activity is the prevention of
uncontrolled aggregation, as previously observed under neutral conditions. Therefore, for porphyrin
diacid-PSS brush systems, the change of the Soret band during irradiation was considered in
detail (Figure 7). The behavior is quite complex. With polyelectrolyte, the intensity of the Soret
band increases with increasing irradiation time until its disappearance after 60 min of irradiation.
Without polyelectrolyte, one can first see a decrease of the Soret band and afterwards an increase and
disappearance of the Soret band already after 20 min of irradiation. This observation indicates that
TMPyP diacid-PSS brush assemblies are destroyed with increasing irradiation time, and more free
TMPyP diacid becomes present in the solution. Different observations can be made in the case of TAPP
diacid. With polyelectrolyte, only a slight decrease of the Soret band can be observed, whereas without
polyelectrolyte, the Soret band decreases, indicating undefined aggregation, which is prevented by the
PSS brush in the assembly system. The same result can be seen for TMPyP monoacid and Zn-TMPyP.
This observation of the Soret band behavior fits well with the long-term photocatalytic activity results.
There, the amount of generated triiodide for the TMPyP diacid sample and for the TMPyP diacid-PSS
brush sample in relation to the short-term experiment did not increase tremendously. With the results
from Figure 7 it becomes evident that this is because TMPyP diacid-PSS brush assemblies are not stable
enough under the investigated conditions, so that after one-hour irradiation, aggregates no longer exist
and therefore the catalytic activity of the samples with and without polyelectrolyte is the same. In the
case of TAPP diacid, the aggregates are more stable and are still present after one-hour irradiation and
therefore a distinctly larger increase of the triiodide concentration can be observed in the long-term
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studies. In summary, the prevention of aggregation through the polyelectrolyte is likely the reason for
the enhanced catalytic activity of TAPP diacid, while for TMPyP diacid, this appears not to be the case.

Polymers 2016, 8, 180 13 of 19 

 

Table7. Lifetimes of the excited triplet states of the different porphyrins under different conditions. 

Porphyrin pH ΦTriplet tT

TMPyP 7 0.92 [64] 0.17 ms [84] 
TAPP 7 0.8 [65] 0.54 ms [85] 

Zn-TMPyP 7 0.9 [64] 2 ms [84] 
TMPyP diacid acidic – 90 μs [76] 
TAPP diacid acidic – 268 μs [76] 
Zn-TMPyP acidic – – 

Results above show the opposite. Therefore, effects other than the lifetimes of the excited triplet 
states evidently are more significant for the difference in catalytic activity. Generally, molecular 
symmetry can also play a role for the different catalytic behavior, but TMPyP and TAPP exhibit the 
same symmetry under neutral and acidic conditions, so that the molecular symmetry also turns out 
not to be the reason for the difference in catalytic activity 

A likely cause contributing to the enhancement of the catalytic activity is the prevention of 
uncontrolled aggregation, as previously observed under neutral conditions. Therefore, for porphyrin 
diacid-PSS brush systems, the change of the Soret band during irradiation was considered in detail 
(Figure 7). The behavior is quite complex. With polyelectrolyte, the intensity of the Soret band 
increases with increasing irradiation time until its disappearance after 60 min of irradiation. Without 
polyelectrolyte, one can first see a decrease of the Soret band and afterwards an increase and 
disappearance of the Soret band already after 20 min of irradiation. This observation indicates that 
TMPyP diacid-PSS brush assemblies are destroyed with increasing irradiation time, and more free 
TMPyP diacid becomes present in the solution. Different observations can be made in the case of 
TAPP diacid. With polyelectrolyte, only a slight decrease of the Soret band can be observed, whereas 
without polyelectrolyte, the Soret band decreases, indicating undefined aggregation, which is 
prevented by the PSS brush in the assembly system. The same result can be seen for TMPyP monoacid 
and Zn-TMPyP. This observation of the Soret band behavior fits well with the long-term 
photocatalytic activity results. There, the amount of generated triiodide for the TMPyP diacid sample 
and for the TMPyP diacid-PSS brush sample in relation to the short-term experiment did not increase 
tremendously. With the results from Figure 7 it becomes evident that this is because TMPyP diacid-
PSS brush assemblies are not stable enough under the investigated conditions, so that after one-hour 
irradiation, aggregates no longer exist and therefore the catalytic activity of the samples with and 
without polyelectrolyte is the same. In the case of TAPP diacid, the aggregates are more stable and 
are still present after one-hour irradiation and therefore a distinctly larger increase of the triiodide 
concentration can be observed in the long-term studies. In summary, the prevention of aggregation 
through the polyelectrolyte is likely the reason for the enhanced catalytic activity of TAPP diacid, 
while for TMPyP diacid, this appears not to be the case. 

Polymers 2016, 8, 180 14 of 19 

 

Figure 7. Change of the porphyrin Soret band during irradiation; (a) TMPyP diacid + PSS brush, l = 
0.1; (b) TMPyP diacid; (c) TAPP diacid + PSS brush, l = 0.4; (d) TAPP diacid. 

Differences between the TMPyP and TAPP system can derive from their electronic structures. 
Wang investigated the interactions of porphyrin-borate complexes and he also applied density 
functional theory [86]. For TMPyP, he observed a redshift of the Soret band when complexed with 
borate resulting from the reduced energy levels of the TMPyP in complexes. The methylpyridinium 
groups with their four positive charges exhibit an electron-withdrawing character and have both an 
inductive and a mesomeric effect. The inductive effect appears to have no influence on the energy of 
the π-orbitals. It proceeds via the σ-bonds of the substituents towards the porphyrin σ-system. On 
the contrary, the mesomeric effect reflects proceeds via the porphyrin π-system. For resonance 
interaction, the substituents need to rotate towards a coplanar configuration. Therefore, the dihedral 
angles between the methylpyridinium groups and the pyrrole rings for the TMPyP monomer were 
considered: all are 67.30° and become smaller when TMPyP is complexed. This means that TMPyP 
exhibits a higher planarity and becomes flattened in porphyrin-borate complexes [86]. TAPP, 
conversely, has localized charges on the substituents, which cannot be delocalized onto the porphyrin 
π-system so effectively. Cho investigated the electronic perturbation of meso-substituted free-base 
porphyrins [87]. P-aminophenyl acts as an electron-donating group and additionally participates in 
the extension of the π-conjugation of the HOMO of the porphyrin unit. P-aminophenyl-sibstituted 
porphyrins should have characteristic properties resulting from the unique MO interactions of the 
porphyrin and the p-aminophenyl substituents. It was concluded that the p-aminophenyl substituent 
can efficiently perturb the π-electronic system of the porphyrin unit. Due to the fact that the dihedral 
angle is important for efficient interunit interactions, Cho also investigated the dihedral angle, 
revealing an angle between the porphyrin and p-aminophenyl, pentafluorophenyl or phenyl 
substituents that is approximately 70°. The p-aminophenyl substituent should be the energetically 
and geometrically most effective unit for interunit interactions with the porphyrin. The LUMOs of 
free-base porphyrins are localized on the porphyrin unit; however, electron delocalization through 
p-aminophenyl substituents has its origin in an intramolecular charge transfer character in the excited 
states. P-aminophenyl substituents with non-orthogonal geometry lead to efficient electron 
delocalization. This is supported by a large electron density on the p-aminophenyl substituent in the 
HOMO [87]. Thus, these are significant differences in the electronic structure of TMPyP and TAPP 
that can contribute to a different behavior in photocatalysis. With this understanding, the concept 
presented may be extended towards versatile and tunable photocatalytic structures that can be 
designed by electrostatic self-assembly, in particular with regard to solar energy conversion. 

5. Conclusions 

We have shown that electrostatic self-assembly of highly charged porphrins with 
polyelectrolytes in aqueous solution can yield a variety of nanostructures with significantly 
improved properties for photocatalysis. The study revealed an enhancement of the photocatalytic 
activity of different porphyrin diacids through assembly with the poly(styrene sulfonate) (PSS) brush. 
The diacids of meso-tetrakis(4-(trimethylammonium) phenyl)-porphyrin (TAPP) and meso-tetrakis(4-

Figure 7. Change of the porphyrin Soret band during irradiation; (a) TMPyP diacid + PSS brush, l = 0.1;
(b) TMPyP diacid; (c) TAPP diacid + PSS brush, l = 0.4; (d) TAPP diacid.

Differences between the TMPyP and TAPP system can derive from their electronic structures.
Wang investigated the interactions of porphyrin-borate complexes and he also applied density
functional theory [86]. For TMPyP, he observed a redshift of the Soret band when complexed with
borate resulting from the reduced energy levels of the TMPyP in complexes. The methylpyridinium
groups with their four positive charges exhibit an electron-withdrawing character and have both an
inductive and a mesomeric effect. The inductive effect appears to have no influence on the energy of
the π-orbitals. It proceeds via the σ-bonds of the substituents towards the porphyrin σ-system. On the
contrary, the mesomeric effect reflects proceeds via the porphyrin π-system. For resonance interaction,
the substituents need to rotate towards a coplanar configuration. Therefore, the dihedral angles
between the methylpyridinium groups and the pyrrole rings for the TMPyP monomer were considered:
all are 67.30˝ and become smaller when TMPyP is complexed. This means that TMPyP exhibits a
higher planarity and becomes flattened in porphyrin-borate complexes [86]. TAPP, conversely, has
localized charges on the substituents, which cannot be delocalized onto the porphyrin π-system so
effectively. Cho investigated the electronic perturbation of meso-substituted free-base porphyrins [87].
P-aminophenyl acts as an electron-donating group and additionally participates in the extension of
the π-conjugation of the HOMO of the porphyrin unit. P-aminophenyl-sibstituted porphyrins should
have characteristic properties resulting from the unique MO interactions of the porphyrin and the
p-aminophenyl substituents. It was concluded that the p-aminophenyl substituent can efficiently
perturb the π-electronic system of the porphyrin unit. Due to the fact that the dihedral angle is
important for efficient interunit interactions, Cho also investigated the dihedral angle, revealing an
angle between the porphyrin and p-aminophenyl, pentafluorophenyl or phenyl substituents that is
approximately 70˝. The p-aminophenyl substituent should be the energetically and geometrically most
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effective unit for interunit interactions with the porphyrin. The LUMOs of free-base porphyrins are
localized on the porphyrin unit; however, electron delocalization through p-aminophenyl substituents
has its origin in an intramolecular charge transfer character in the excited states. P-aminophenyl
substituents with non-orthogonal geometry lead to efficient electron delocalization. This is supported
by a large electron density on the p-aminophenyl substituent in the HOMO [87]. Thus, these are
significant differences in the electronic structure of TMPyP and TAPP that can contribute to a different
behavior in photocatalysis. With this understanding, the concept presented may be extended towards
versatile and tunable photocatalytic structures that can be designed by electrostatic self-assembly, in
particular with regard to solar energy conversion.

5. Conclusions

We have shown that electrostatic self-assembly of highly charged porphrins with polyelectrolytes
in aqueous solution can yield a variety of nanostructures with significantly improved properties
for photocatalysis. The study revealed an enhancement of the photocatalytic activity of
different porphyrin diacids through assembly with the poly(styrene sulfonate) (PSS) brush.
The diacids of meso-tetrakis(4-(trimethylammonium) phenyl)-porphyrin (TAPP) and meso-tetrakis(4-N-
methylpyridinium) porphyrin (TMPyP) have been investigated as well as TMPyP monoacid and
Zn-TMPyP. The results showed in the case of TMPyP that the more charges the porphyrin exhibits,
the higher the generated amount of triiodide. TMPyP diacid-PSS brush assemblies generate up to
22 times more triiodide than TMPyP-PSS brush assemblies under neutral conditions and otherwise
same conditions. The amount of polyelectrolyte also influences the catalytic activity of porphyrin-PSS
brush assemblies: A maximum of catalytic activity enhancement was found for l = 0.03. Atomic force
microscopy (AFM) revealed that porphyrin diacids assemble with PSS brush into larger networks with
different density of meshes, which can be due to symmetry changes and a difference in ionic strength,
while small angle neutron scattering (SANS) confirmed the cylindrical shape of the network moieties.
The difference in catalytic activity was related to difference in electronic structure of the porphyrin
and porphyrin-porphyrin interaction, while lifetimes and molecular geometry turned out to not be
directly connected with the catalytic activity. Hence, electrostatic self-assembly of polyelectrolytes
with multivalent functional counterions leads to functional nanostructures with tunable structure
and activity. The advantage of the concept presented is a simple toolbox principle based on ionic
interactions, which opens the route to a wide variety of tunable self-assembled catalysts formed
with polyelectrolytes.
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