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Purpose: Heart failure (HF) is a clinical syndrome in which structural or functional abnormalities of the heart result in impaired 
ventricular filling or ejection capacity. In order to improve the adaptability of models to different patient populations and data 
situations. This study aims to develop predictive models for HF risk using six machine learning algorithms, providing valuable insights 
into the early assessment and recognition of HF by clinical features.
Patients and Methods: The present study focused on clinical characteristics that significantly differed between groups with left 
ventricular ejection fractions (LVEF) [≤40% and >40%]. Following the elimination of features with significant missing values, the 
remaining features were utilized to construct predictive models employing six machine learning algorithms. The optimal model was 
selected based on various performance metrics, including the area under the curve (AUC), accuracy, precision, recall, and F1 score. 
Utilizing the optimal model, the significance of clinical features was assessed, and those with importance values exceeding 0.8 were 
identified as crucial to the study. Finally, a correlation analysis was conducted to examine the relationships between these features and 
other significant clinical features.
Results: The logistic regression (LR) model was determined to be the optimal machine learning algorithm in this study, achieving an 
accuracy of 0.64, a precision of 0.45, a recall of 0.72, an F1 score of 0.51, and an AUC of 0.81 in the training set and 0.91 in the testing 
set. In addition, the analysis of feature importance indicated that blood calcium, angiotensin-converting enzyme inhibitors (ACEI) 
dosage, mean hemoglobin concentration, and survival duration were critical to the study, each possessing importance values exceeding 
0.8. Furthermore, correlation analysis revealed a strong relationship between blood calcium and ionized calcium (|cor|=0.99), as well 
as a significant association between ACEI dosage (|cor|=0.68) and left ventricular metrics (|cor|=0.58); on the other hand, no 
correlations were observed between mean hemoglobin levels and other clinical characteristics.
Conclusion: The present study identified LR as the most effective risk prediction model for patients with HF, highlighting blood 
calcium, ACEI dosage, and mean hemoglobin level as significant predictors. These findings provide significant insights for the clinical 
prevention and early intervention of HF.
Keywords: left ventricular ejection fractions, logistic regression, blood calcium, area under the curve, correlation analysis

Introduction
Heart failure (HF) is a multifaceted and life-threatening syndrome characterized by high morbidity and mortality rates, 
impaired functional capacity and quality of life, and substantial economic burden, affecting over 64 million individuals 
worldwide.1 There are four principal categories of heart failure: systolic heart failure, diastolic heart failure, right heart 
failure and acute heart failure. The aetiology of systolic heart failure is primarily the result of a reduction in the 
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contractility of the cardiac muscle, which impairs the heart’s ability to effectively pump blood to the peripheral 
circulation.2 In this form of heart failure, the left ventricular ejection fraction (LVEF) is typically less than 40%. 
Diastolic heart failure is characterised by impaired filling of the heart during the diastolic phase. In contrast to systolic 
heart failure, patients with diastolic heart failure may exhibit normal or only mildly reduced LVEF (≥ 40–50% LVEF).3 

Additionally, there are specific forms of heart failure, such as right heart failure, which primarily affects the right 
ventricular function.4 The ventricular ejection fraction (RVEF) can be utilized as a diagnostic indicator in such cases. 
Acute heart failure, on the other hand, is primarily diagnosed based on the presence of myocardial infarction or 
arrhythmia, along with a notable decline in cardiac function as observed through cardiac ultrasound.5 While several 
biomarkers that correlate with the prediction of HF occurrence have been identified, the left ventricular ejection fraction 
(LVEF) remains the principal criterion for diagnosis, prognosis, and treatment selection in HF.2–4 As evidenced by these 
factors, the development of HF predictive models can not only improve early detection and intervention of HF but also 
enhance patient prognosis and quality of life while concurrently alleviating the strain on the healthcare system.6 

However, predictive models that utilize markedly distinct clinical features or clinical data screening for HF patients 
are currently absent.

Machine learning is an artificial intelligence technique that is trained on a substantial corpus of data with the objective 
of identifying patterns and relationships within the data, thereby enabling the generation of predictions or decisions.7 The 
utilisation of a substantial corpus of patient data, encompassing clinical symptoms, laboratory test results, imaging data, 
and other pertinent information, enables medical practitioners to diagnose heart failure with greater precision and 
anticipate the disease’s progression and the patient’s prognosis.7,8 The utilization of machine learning has progressively 
emerged as a crucial approach for improving clinical strategies in medical research.8 Clinical predictive models have 
been shown to effectively predict the risk of mortality in patients that were diagnosed with HF and admitted to the 
intensive care unit (ICU). In this context, extreme gradient boosting (XGBoost) models have been analyzed using 
Shapley Additive exPlanations (SHAP), enabling a comprehensive examination of the prognostic factors associated with 
HF.7 The SHAP method is an invaluable tool for elucidating the predictions of machine learning models and is 
instrumental in analysing the relationships inherent to complex models.7 Notwithstanding the varied etiologies of HF, 
the performance of the natural language processing (NLP) model and the predictors of adverse outcomes within one year 
were consistent across LVEF categories, suggesting the model’s broad applicability.9

It is worth noting that the Australian Heart Failure (AUS-HF) model utilizes routine data gathered from peer-to-peer 
interactions, facilitating real-time risk assessment that is easy to implement in clinical settings and aids in decision- 
making concerning the intensity of post-discharge follow-up.10 The AUS-HF model is a specific model designed for the 
diagnosis and prognosis of heart failure.10 It is typically based on the patient’s clinical characteristics, laboratory test 
results, imaging data, and patient history information. A previous study has shown that chronic heart failure patient- 
reported outcomes (CHF-PRO) possess strong predictive ability concerning patient outcomes, significantly improving the 
predictive model’s efficacy.11 The CHF-PRO is a tool designed to assess the health status and quality of life of patients 
with chronic heart failure (CHF) across multiple domains, including physical, psychological, and social functioning.11 

This is achieved through patient self-reporting. Historically, data analysis from various sources has been performed in 
isolation, utilizing statistical and machine learning techniques. However, the integration of multiple omics and clinical 
data is essential for the progression of biomedical research and precision medicine. Data integration introduces novel 
computational challenges while also exacerbating issues related to uniomics research. Additionally, the proficient and 
effective analysis of integrated biomedical data from various sources requires the creation of specialized computational 
techniques.8 As a result, mortality risk scores generated using machine learning methods is more precise than current 
scores. Thus, in the modelling process, particular attention was paid to the inclusion of left ventricular ejection fraction 
(LVEF) as a pivotal input variable, given that LVEF is markedly diminished in patients with systolic heart failure.12

Additionally, indicators reflecting the degree of myocardial damage, such as myocardial troponin levels, were 
included, as myocardial infarction and other causes of systolic heart failure are frequently accompanied by myocardial 
cell damage. A low LVEF (less than 40%) typically indicates a significant impairment in the systolic function of the 
heart, which may be associated with the extensive loss of cardiomyocytes resulting from myocardial infarction and 
cardiomyopathy. In patients with HF exhibiting relatively high LVEFs (greater than 40%), the presence of diastolic 
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dysfunction or other complex pathophysiological processes may be a concern. The aforementioned indicators assist in the 
identification of characteristics indicative of a poor prognosis in patients with heart failure. It is expected to enhance the 
evaluation of patients with HF, along with other situations where risk prediction is challenging.13 A substantial body of 
evidence attests to the pivotal role played by numerous clinical predictive models in the fields of medical research and 
practice.14,15 In instances where conventional clinical data prove inadequate for providing sufficient predictive informa
tion, the incorporation of biomarkers into a predictive model may enhance its overall accuracy.

The current study aimed to create an HF risk prediction model utilizing six machine learning algorithms, emphasizing 
the differences in clinical characteristics based on LVEF values below and above 40. After excluding features with 
excessive missing values, the samples were randomly partitioned into training and validation sets. Six machine learning 
algorithms including logistic regression (LR), support vector machine (SVM), linear discriminant analysis (LDA), 
random forest (RF), naive bayes (NB), and K-nearest neighbor (KNN), were utilized to construct the predictive models. 
The optimal model was then selected based on an assessment of various metrics, including the area under the curve 
(AUC), accuracy, specificity, recall, and F1 scores. Furthermore, key clinical features were identified based on 
a hierarchy of feature significance. The study, thus provide a substantial basis for clinical assessment and a valuable 
tool for the prompt identification of HF and the formulation of intervention strategies.

This study employed a range of machine learning algorithms to construct a prediction model for heart failure patients 
with a poor prognosis. The optimal model was selected based on multiple performance indicators to investigate the 
clinical characteristics of significant differences between patients with a left ventricular ejection fraction (LVEF) of less 
than 40% and those with a LVEF of 40% or greater. This offers insights into the clinical characteristics that differentiate 
patients with disparate left ventricular ejection fractions (LVEF). As a result, the prediction model is better positioned to 
account for these differences, predict heart failure (HF) risk with greater precision, and provide a foundation for 
subsequent disease diagnosis, treatment, and prognosis evaluation.

Materials and Methods
Data Collection and Patient Stratification for HF
The data for this study were obtained from a sample of 160 patients suffering from heart failure (HF) with a total of 279 
clinical features, informed consent was obtained from the patients, and all the studies were conducted in accordance with 
the ethical standards set by the Institutional Review Board of Shaanxi Provincial People’s Hospital, and approval was 
obtained from the Ethics Committee of Shaanxi Provincial People’s Hospital. On the day of 14th March, 2023 under the 
approval number of SPPH-LLBG-17-3.2. Following the data acquisition, patients were categorized according to the 
follow-up LVEF assessed one year subsequently. Cases lacking follow-up LVEF were excluded. Subsequently, the 
patients were classified into two groups based on a cutoff value of 40%: LVEF≤40% and LVEF >40%. Classification 
according to EF (LVEF≤40% and LVEF >40%) improved the predictive accuracy and relevance of the model. A low 
LVEF (≤ 40%) usually indicates significantly impaired cardiac systolic function, which may be associated with massive 
loss of cardiomyocytes due to myocardial infarction, cardiomyopathy, etc., whereas patients with HF who have 
a relatively high LVEF (> 40%) may have cardiac diastolic dysfunction or other complex pathophysiological processes.

Development and Validation of Machine Learning Models
In order to screen out important clinical features related to heart failure, a t-test was performed using the rstatix 
package (v 0.7.2) to examine the relationship between different clinical features and LVEF in HF patients, thus 
comparing the two groups (LVEF≤ 40% and LVEF > 40%) with a significance level of P <0.05. The data were re- 
evaluated for clinical features exhibiting significant differences to eliminate variables lacking numerical values. 
Finally, the model was constructed the clinical feature data remaining after this data cleaning. Subsequently, six 
machine learning algorithms from the caret package (v 6.0–94)16 were utilized to predict the factors that were 
associated with the LVEF in HF patients. The samples were randomly allocated to the training set (60%) and the 
testing set (40%) using the createDataPartition function. The machine learning models in the training were developed 
using KNN, LDA, LR, NB, SVM, and RF. After the models were successfully established, the receiver operating 
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characteristic (ROC) curves were generated using the pROC package (v1.18.0).17 The accuracy, precision, recall, and 
F1 score of each model were computed based on the ROC curve of the results. The AUC value was calculated using 
the “roc” function of the “pROC” package (v1.18.0)13 Based on the projected and actual values, it was calculated by 
the following formulae:

Where FN stands for false negative rate; FP stands for false positive rate; TN stands for true negative rate; TP stands for 
true positive rate.

To evaluate the reliability of the results derived from the training set, six machine learning models were then 
constructed and assessed using identical methodology on the testing set. The optimal machine learning model was 
chosen for further analyses based on the computed performance metrics.

Ranking of Clinical Features Based on Importance
Importance ranking of clinical features refers to the assessment and ranking of various clinical features associated with 
a disease based on certain criteria or methods to determine which features have a more important impact on the 
diagnosis, treatment and prognosis of the disease. When the optimal machine learning model determined from prior 
analyses was used in the current study, the clinical features that demonstrated significant disparities between the groups 
were ranked according to their importance, which helps to identify clinical features that play a key role in the differences 
groups in LVEF. Consequently, clinical features with an importance value exceeding 0.8 were recognized as essential 
clinical features for this study.

Correlation Analysis
In order to understand the correlation between key clinical characteristic variables and the remaining significantly 
different clinical characteristic variables. Spearman correlation analysis was employed to examine the relationship 
between identified key clinical features and other clinically significant features. The correlation coefficients were 
calculated and subsequently visualized using a heatmap through the ggplot2 package (v3.4.4).18

Statistical Analysis
This study predominantly employed the R package (v4.2.2) for statistical analysis. Additionally, the t-test was employed 
to assess differences between groups (P <0.05).

Results
Baseline Features
160 patients with HF after excluding cases with null LEVF at one year follow-up. Following data exclusion, the study 
included a total of 102 patients, comprising 71 in the LVEF≤40% group and 31 in the LVEF >40% group. Statistically 
significant differences in clinical features were identified between the two groups (P value < 0.05), specifically regarding 
the following: angiotensin-converting enzyme inhibitors (ACEI) dose (P = 0.001), survival time (P = 0.046), left 
ventricular end systolic diameter (LVESD) (P = 0.001), left ventricular end systolic volume (LVESV) (P = 0.002), left 
ventricular end diastolic diameter (LVEDD) (P <0.001), left ventricular end diastolic volume (LVEDV) (P = 0.002), 
mean hemoglobin concentration (P = 0.020), atypical lymphocyte percentage (P = 0.010), albumin (P = 0.047), ionized 
calcium (P = 0.001), red blood cells (P = 0.026), and blood calcium (P = 0.012) (Table 1).
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The LR Model Was Screened as the Optimal Machine Learning Model
In order to found factors that can significantly influence the rise in ejection fraction scores, models were further 
constructed using machine learning algorithms. Further data cleaning was performed for significantly different clinical 
features that were screened using t-tests. After excluding clinical features with significant missing data (albumin, ionized 
calcium, atypical lymphocyte percentage, red blood cells, LVESD, LVESV, LVEDD, LVEDV), four clinical features 
(blood calcium, ACEI dose, mean hemoglobin concentration, and survival time) were selected for the construction of the 
predictive model. Following data cleaning, 42 samples were retained, comprising 29 in the LVEF≤40% group and 13 in 
the LVEF>% 40 group.

Utilizing the four clinical features derived from the aforementioned results, six machine learning algorithms were 
employed to develop risk prediction models within the training set. The area under the ROC curve (AUC) for the risk 
prediction models derived from the six machine learning algorithms exceeded 0.7 in both the training and testing sets, 
with the SVM algorithm attaining the highest AUC (training set AUC = 0.98, testing set AUC = 0.93) (Figure 1a and b).

Furthermore, all performance metrics were assessed, revealing that the LR model emerged as the optimal machine 
learning algorithm for modeling, exhibiting an accuracy of 0.64, precision of 0.45, recall of 0.72, F1 score of 0.51, AUC 
of 0.81 in the training dataset and AUC of 0.91 in the testing set (Table 2), this suggested that the model had good 
generalisation ability.

Three Clinical Features Were Identified
The LR model used a logistic regression modelling algorithm ranked the significance of clinical features, identifying 
blood calcium, ACEI dose, mean hemoglobin level, and survival time as the most critical predictors. Survival time was 
a key indicator for assessing treatment efficacy and patient prognosis. Differences in survival time between groups of 
patients may reflect the effectiveness of treatment, disease progression, or patient biology. Among these, the clinical 
features with importance exceeding 0.8 were selected as the key clinical features for this study, and included blood 
calcium, ACEI dose, and mean hemoglobin level (Figure 2).

Correlation Analysis Between Key Clinical Features and Other Significant Clinical 
Features
Correlation analysis was performed for the key clinical features and other significant clinical features. A robust 
correlation was noted between blood calcium and ionized calcium (cor = 0.99, P = 3.84×10−14). In addition, significant 
correlations were identified between ACEI dosage and several left ventricular parameters, including LVESD (cor = 0.72, 
P = 7.94×10−4), LVESV (cor = 0.57, P = 1.40×10−2), LVEDD (cor = 0.68, P = 1.77×10−3), and LVEDV (cor = 0.58, P = 

Table 1 T-Test of Identifying Important Risk Factors

Clinical_feature T_test Mean (Group<40%) Mean (Group>40%) p value Stderr

ACEI Dose 3.64 8.64 4.769 0.001 1.063
Survival Time −2.034 32.352 35.935 0.046 1.762

LVESD 3.509 61.606 55.484 0.001 1.745

LVESV 3.236 168.357 125.667 0.002 13.192
LVEDD 3.896 73.423 66.903 0 1.673

LVEDV 3.247 235.086 182.433 0.002 16.217

Mean Hemoglobin Concentration −2.385 32.389 33.623 0.02 0.517
Atypical Lymphocyte Percentage 2.648 1.772 1.358 0.01 0.156

Albumin 2.059 43.469 41.274 0.047 1.066
Ionized Calcium −3.378 1.203 1.243 0.001 0.012

Red Blood Cells 2.278 4.661 4.356 0.026 0.134

Blood Calcium −2.596 2.41 2.483 0.012 0.028

Notes: The results analyzed by t-test. Set the p-value < 0.05 as the threshold.
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Figure 1 ROC curves plotted based on six machine learning algorithms (a) test set (b) training set.
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1.24×10−2). However, no significant correlation between mean hemoglobin levels and other clinical factors was observed 
in this study. Nonetheless, a correlation with additional clinical characteristics cannot be dismissed, necessitating further 
comprehensive investigation (Figure 3 and Table 3).

Discussion
The field of medical research and clinical practice is witnessing a notable shift towards digitalisation and precision. The 
advent of machine learning algorithms has ushered in a new era of efficient methods for disease diagnosis, treatment and 

Table 2 Evaluation of Six Machine Learning Models in the Training Set

Model Accuracy Precision Recall F1 Train AUC Test AUC

Logistic Regression 0.64 0.45 0.72 0.51 0.81 0.91
Support Vector Machine 0.29 0.05 0.17 0.51 0.98 0.93

Linear Discriminant Analysis 0.36 0.1 0.28 0.15 0.82 0.85

Random Forest 0.26 0.04 0.35 0.07 0.79 0.77
Naive Bayes 0.38 0.12 0.31 0.17 0.77 0.78

K-nearest neighbor classifier 0.65 0.36 0.65 0.45 0.74 0.77

Notes: The results in the ROC (Receiver operating characteristic) curve were utilized to recalculate the accuracy, 
precision, recall (sensitivity), and F1 - score for each model. FN represented the false - negative rate; FP represented the 
false - positive rate; TN represented the true - negative rate; and TP represented the true - positive rate.

Figure 2 Clinical feature ranking based on LR model.
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prognosis assessment. In this study, the logistic regression model was identified as the optimal algorithm, which is of 
great significance. This is because the study found that the characteristics of blood calcium, ACEI dose and so on are of 
outstanding importance, and therefore have great guiding value in disease diagnosis and treatment. The results of this 

Figure 3 Results of correlation analysis of key clinical features with other significant clinical features.

Table 3 Correlations Between Clinical Features

Clinical_feature Clinical_feature Correlation P value

ACEI dose ACEI Dose 1 1.16E-126

ACEI dose Survival Time 0.114877097 6.50E-01

ACEI dose LVESD 0.717897315 7.94E-04
ACEI dose LVESV 0.567892194 1.40E-02

ACEI dose LVEDD 0.683237711 1.77E-03

ACEI dose LVEDV 0.57564121 1.24E-02
ACEI dose Mean Hemoglobin Concentration −0.324519349 1.89E-01

ACEI dose Atypical Lymphocyte Percentage 0.21210053 3.98E-01

ACEI dose Albumin 0.199157575 4.28E-01
ACEI dose Ionized Calcium −0.310603058 2.10E-01

ACEI dose Red Blood Cells 0.341262817 1.66E-01

ACEI dose Blood Calcium −0.272745543 2.74E-01
Blood calcium ACEI Dose −0.272745543 2.74E-01

Blood calcium Survival Time −0.017895026 9.44E-01
Blood calcium LVESD 0.18134715 4.71E-01

Blood calcium LVESV 0.038282509 8.80E-01

Blood calcium LVEDD 0.198129238 4.31E-01

(Continued)
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study provide a more targeted indicator for clinical assessment of patients’ HF (heart failure) risk, which can more 
accurately capture the potential risk of patients developing HF.

A significant number of HF prediction models and algorithms have emerged in recent years. In a previous retro
spective cohort study utilizing a comprehensive public ICU database, researchers formulated and validated four machine 
learning algorithms to predict the mortality of patients diagnosed with HF.7 Herein, the XGBoost model demonstrated 
enhanced performance relative to the LR, RF, and SVM models. As a result, an interpretable XGBoost prediction model 
was developed that demonstrated superior efficacy in assessing the mortality risk of patients with HF. Another study 
established and validated predictive models for all-cause mortality and hospitalization resulting from HF in patients 
receiving maintenance hemodialysis (MHD).15 Herein, the patients faced a significantly elevated risk of developing 
cardiovascular disease (CVD), exhibiting a 20-fold increased probability relative to the general population. In another 
study, a superior model for predicting HF incidents using standard electronic health records data was established, offering 
a promising direction for additional research into the prediction of other intricate conditions.19 Accordingly, the LR 
model was found to exhibit the highest efficacy in predicting HF. As a result, LR has been deemed the gold-standard for 
clinical prediction. This is further confirmed by additional studies wherein the LR model was found to be more effective 
than the regression tree model in accurately predicting in-hospital mortality for patients with HF.20

The present study identified blood calcium, ACEI dosage, and mean hemoglobin level as the most critical clinical 
features, as determined by the optimal machine learning model. An increasing amount of evidence suggests that 
a disruption in calcium homeostasis correlates with a heightened risk of short-term mortality in patients with HF.21 In 
fact, about one-third of HF patients exhibit hypocalcemia, which is associated with an unfavorable prognosis. Scientific 
literature has established that elevated serum calcium levels correlate with an increased risk of HF with preserved 
ejection fraction (HFpEF) in patients with type 2 diabetes.22 Moreover, it has been concurrently recorded that reduced 

Table 3 (Continued). 

Clinical_feature Clinical_feature Correlation P value

Blood calcium LVEDV 0.022245241 9.30E-01

Blood calcium Mean Hemoglobin Concentration −0.142857219 5.72E-01
Blood calcium Atypical Lymphocyte Percentage −0.181677116 4.71E-01

Blood calcium Albumin 0.087900912 7.29E-01

Blood calcium Ionized Calcium 0.98704005 3.84E-14
Blood calcium Red Blood Cells −0.347014158 1.58E-01

Blood calcium Blood Calcium 1 0.00E+00

Mean hemoglobin level ACEI Dose −0.324519349 1.89E-01
Mean hemoglobin level Survival Time −0.207475867 4.09E-01

Mean hemoglobin level LVESD −0.170289946 4.99E-01

Mean hemoglobin level LVESV −0.114211902 6.52E-01
Mean hemoglobin level LVEDD −0.186495545 4.59E-01

Mean hemoglobin level LVEDV −0.120930249 6.33E-01

Mean hemoglobin level Mean Hemoglobin Concentration 1 0.00E+00
Mean hemoglobin level Atypical Lymphocyte Percentage −0.132885212 5.99E-01

Mean hemoglobin level Albumin 0.135330651 5.92E-01

Mean hemoglobin level Ionized Calcium −0.100466201 6.92E-01
Mean hemoglobin level Red Blood Cells 0.145823484 5.64E-01

Mean hemoglobin level Blood Calcium −0.142857219 5.72E-01

Notes: Perform Spearman correlation analysis on the key clinical feature variables and the remaining 
clinically characteristic variables with significant differences in Table 1. A correlation coefficient (cor) greater 
than 0.3 indicates the existence of correlation. 
Abbreviations: HF, heart failure; LVEF, left ventricular ejection fraction; ICU, intensive care unit; NLP, natural 
language process; CHF-PRO, chronic heart failure patient-reported outcome; LR, logistic regression; NB, naive 
bayes; KNN, K-nearest neighbor; AUC, area under the curve; ROC, receiver operating characteristic; ACEI, 
angiotensin-converting enzyme inhibitors; LVESD, left ventricular end systolic diameter; LVEDD, left ventricular 
end diastolic diameter; LVEDV, left ventricular end diastolic volume.
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serum magnesium levels and increased serum phosphorus and calcium concentrations are each independently associated 
with a heightened risk of developing HF.23 Herein, the correlation analysis of key clinical features and other notable 
differences demonstrated a significant relationship between blood calcium and ionic calcium. A previous study demon
strated that elevated doses of ACE inhibitors had no significant impact on all-cause mortality, cardiovascular mortality, or 
hospitalization rates.

However, the reduced systolic Ca transient noted in HF may be partially ascribed to a decrease in sarcoplasmic 
reticulum Ca2+ levels. This decline can be ascribed to reduced SERCA activity, heightened leaky RyRs, or increased 
NCX activity.24 Alterations in the process of electrical coupling regarding both local and global calcium signals 
constitute a crucial mechanism that underlies contractile depression and the propensity for arrhythmia.25 However, it 
was noted that ACEI improved functional capacity and increased the risk of hypotension, while simultaneously 
decreasing the incidence of cough.26 In patients with HF with reduced ejection fraction (HFrEF), elevated doses of 
ACE inhibitors and Angiotensin II Receptor Blockers (ARBs) exhibited a modest decrease in the composite endpoints of 
all-cause mortality and heart failure hospitalization relative to lower doses. Nonetheless, no substantial impact was noted 
on drug discontinuation rates.27 Furthermore, the optimal dosage of ACEI/ARB attained in elderly individuals with 
HFrEF correlates with prolonged survival.28 A decrease in hemoglobin levels can aggravate organ damage associated 
with HF, and anemia may also play a role in the onset of HF. Iron deficiency also comprises a common factor leading to 
reduced hemoglobin levels in patients with HF.29 Other results indicate a significant correlation between HbA1C and an 
elevated risk of both HFpEF and HFrEF, with a similar degree of association.30 Even slight increases in hemoglobin 
levels have been associated with a heightened annual incidence of new-onset HF.31 Thus, iron therapy, as a principal 
treatment for anemia, was linked to enhancements in quality of life (QOL) and objective measures of congestive heart 
failure (CHF), without any associated adverse effects.32

The present study utilized machine learning algorithms to create and validate six predictive models, with the LR 
model demonstrating superior performance. This is mainly due to the fact that compared with other models, LR model 
has the characteristics of high computational efficiency, stable model training and strong interpretability.33 This 
algorithm, utilizing the clinical characteristics of notable differences among various ejection fraction HF subgroups, 
demonstrated that blood calcium, ACEI dosage, and average hemoglobin level were significant predictors of HF risk. 
These findings highlight the particular importance of factors such as blood calcium as predictors of heart failure risk in 
specific ejection fraction subgroups. It should be noted, however, that the study is not without limitations. Firstly, the 
sample size and morbidity types are not sufficiently comprehensive, which limits the generalisability of the constructed 
prediction model. Consequently, the accuracy and reliability of the model may be significantly reduced when applied 
to a wider group of HF patients. Secondly, in the process of data processing, this study constructed a prediction model 
by eliminating features with significant missing values. It is possible that some potentially valuable information may be 
lost.

In future research, it would be beneficial to increase the number of samples from different types. Inclusion of a more 
diverse range of HF patient samples, comprising patients from different regions, age groups and with different 
aetiologies, would enable a more comprehensive reflection of the actual situation of the HF patient population. 
Furthermore, it would be beneficial to investigate more sophisticated techniques for handling missing values. This 
approach could enhance data integrity while retaining a greater proportion of the sample information, thereby enhancing 
the reliability of the prediction model. Additionally, the incorporation of disease-specific biomarkers into the model could 
facilitate more effective clinical practice. By employing these strategies, it may be possible to more effectively identify 
potentially crucial features related to HF within the data, ultimately leading to more accurate HF risk prediction. 
Nonetheless, the study’s sample size was limited, and in the absence of particular clinical characteristics, certain factors 
that could potentially affect the ejection score of HF patients were excluded. In future studies, more samples can be 
collected to further validate the model established in this research.

Conclusion
By utilizing the optimal model LR, blood calcium, ACEI dosage, and average hemoglobin level were determined as 
effective predictors of HF risk in the present study. The monitoring of these indicators enables the identification of HF 
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patients with poor prognosis risk at an early stage, thereby facilitating the development of more targeted treatment 
strategies.

Data Sharing Statement
The data that support the findings of this study were 160 patients with HF and 279 clinical features from clinical patients. 
Specific clinical data information can be further obtained by contacting the corresponding author. Further clinical studies 
are currently being conducted on the basis of these data, and therefore it is not feasible to make the data public at this 
time.
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