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Abstract
The large and increasing volume of genomic data analyzed by comparative methods pro-

vides information about transcription factors and their binding sites that, in turn, enables

statistical analysis of correlations between factors and sites, uncovering mechanisms and

evolution of specific protein-DNA recognition. Here we present an online tool, Prot-DNA-

Korr, designed to identify and analyze crucial protein-DNA pairs of positions in a family of

transcription factors. Correlations are identified by analysis of mutual information between

columns of protein and DNA alignments. The algorithm reduces the effects of common phy-

logenetic history and of abundance of closely related proteins and binding sites. We apply it

to five closely related subfamilies of the MerR family of bacterial transcription factors that

regulate heavy metal resistance systems. We validate the approach using known 3D struc-

tures of MerR-family proteins in complexes with their cognate DNA binding sites and dem-

onstrate that a significant fraction of correlated positions indeed form specific side-chain-to-

base contacts. The joint distribution of amino acids and nucleotides hence may be used to

predict changes of specificity for point mutations in transcription factors.

Introduction

Specific binding of transcription factors to DNA is a major mechanism of regulation of gene
expression, hence boosting interest to the problem of the protein-DNA recognition code. Ini-
tial hopes stemmed from the observations that single amino acid substitutions can drastically
change the protein affinity to its DNA sites. On the other hand, the structure of the DNA dou-
ble helix is relatively rigid. An early (mid-70s) paper suggested that specific recognition
depends on hydrogen bonds between side chains of amino acid residues and nucleotides bases,
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demonstrated that this recognition is easier in the major groove of the double helix than in the
minor one, and discussed the role of the guanidine group of arginine in the recognition of the
GC base pair [1].

The substantial progress in the 80s and 90s was based on the analysis of X-ray structures of
protein-DNA complexes. It has been established that the recognition depends not only on
hydrogen bonds, but on other types of weak interactions, and some empirical rules of the pro-
tein-DNA recognition have been suggested. Analysis of twenty structures demonstrated that
the most common contacts between amino acid residues and nucleotide bases may be
explained by the physical and chemical properties of the residues—the hydrophobic methyl
group of alanine often interacts with the methyl group of thymine; arginine forms two hydro-
gen bonds with guanine; asparagine forms two hydrogen with adenine; etc. [2]. Moreover,
while the orientation of DNA-binding protein structural elements varies in different protein
families, within a family the binding is defined by a fixed, limited set of positions. For example,
in the helix-turn-helix (HTH) domains, the binding element is the second α-helix, with resi-
dues 1, 2, 6 recognizing four successive bases in the major groove [2].

These rules were subsequently confirmed in a larger study that analyzed 129 protein-DNA
complexes with close homologs filtered out [3]. About one third of ‘residue side chain—base’
hydrogen bonds are involved in complex interactions where one residue interacts with two
consecutive nucleotides in DNA. In addition to universal contacts, there exist context-depen-
dent contacts contributing to the recognition specificity, but unique for a given complex.

Currently it is widely accepted that, unlike protein-protein contacts, the regions of protein-
DNA contacts are rich in polar residues (Arg, Ser, Tyr, Thr, Asn) [4]. The most positively
charged patch on the protein surface often coincides with the DNA-binding site. Purines are
more selective in their contacts than pyrimidines [4]. Aromatic amino acids have different
specificities, e.g. phenylalanine prefers adenine and thymine, and histidine prefers thymine and
guanine [5].

At the same time, there are as many exceptions as there are rules [6]. There is no simple
relationship between the amino acid sequence of a protein and the nucleotide sequence of its
binding DNA site, and the protein-DNA code is degenerate on both sides [7]. This is not sur-
prising, given the existence of complex contacts [2, 8] and diversity of contact geometries and
docking surfaces [9], even for structurally similar proteins [10]. Moreover, the protein’s inter-
action with its sites is not an all-or-nothing, but rather a quantitative parameter [11], not lim-
ited to the chemical identity of the interacting residues and bases, but involving changes in the
protein and/or DNA conformation upon interaction known as indirect readout [6]. This
shifted the focus of attention from identification of empirical rules to creation of statistical
functions based on structural data [6] using neural networks [12, 13], support vector machines
[13], or Bayesian classifiers [14] trained on known structures and then applied to protein
sequences.

High-throughput experimental techniques such as SELEX [15], ChIP-chip [16, 17],
DIP-ChIP [18], ChIP-Seq [19] and PBMs [20], as well as comparative genomic analyses [21,
22] provide large number of binding sites for a given TF. Available data on binding sites of
transcription factors, collected in databases such as TRANSFAC [23], JASPAR [24],
Factorbook [25], RegTransBase [26], and RegPrecise [27], exceed by orders of magnitude the
number of solved structures of protein-DNA complexes and even transcription factors without
DNA. Hence statistical analysis of correlations between transcription factors and their sites
becomes both a possibility and a necessity.

Transcription factors (TFs) from one structural family tend to recognize similar DNA
motifs [8, 28, 29] and that allows one to construct family-specificmotifs that may be used both
for the identification of candidate binding sites (BS) and for the classification of transcription
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factors [30]. The correlation between the level of conservation of specific residues in DNA-
binding proteins and that of DNA sites has been demonstrated for 21 protein families [31].
The residues contacting the sugar-phosphate backbone are conserved,whereas the residues
contacting nucleotide bases are conserved if binding motifs are similar for all proteins from a
family, and variable otherwise.Within a genome, there is a correlation between the degree of
conservation of a consensus nucleotide and the number of contacts it forms with DNA [32]. In
the TAL-effector family of Xanthomonas TFs, injected into plant cells during infection, there
exists a recognition code linking pairs of amino acid residues, so-called repeat-variable diresi-
dues, and base pairs in the recognized site [33, 34], and this code may be used to predict TAL-
effector targets [35, 36]. A similar code was suggested for the CRO family of phage TFs [37].

These and similar observations formed a base for the identification of specificity-determin-
ing positions in aligned, homologous protein sequences divided into groups by specificity
towards ligands, cofactors or DNA motifs [38]. For each alignment column, the mutual infor-
mation is calculated as a measure of correlation between the positional amino acid distribution
and the division into specificity groups. This method was applied to identification of specific-
ity-determining positions in prokaryotic [38, 39] and eukaryotic [40] transcription factors, and
the predictions were in good agreement with the structural and mutagenesis data. The main
drawback of the method, the need to define specificity groups in advance, may be partially off-
set by automated clustering of protein sequences [40, 41].

Similar methods based on measuring the mutual information are widely used for the identi-
fication of protein-protein interactions (e.g. [42, 43]) or even prediction of the protein three-
dimensional structure [44]. They do not require structural or phylogenetic information. Such
methods were applied to identify a fraction of functionally important contacts in several fami-
lies of eukaryotic TFs [45, 46] and the LACI family of bacterial TFs [28]. A caveat is that this
method requires large training samples and an estimate of expectedmutual information. It
also, by construction, underestimates the importance of conservedpositions. One more prob-
lem is that it is sensitive to shared evolutionary history of the analyzed factors (phylogenetic
trace), and special techniques need to be developed to get rid of the latter [38, 43]. A related
approach, applied to the EGR subfamily of eukaryotic zinc finger TFs [47] and to bacterial
LACI and TETR families [48], is assigning interaction energies to contacting pairs of residues
and bases, and it may suffer from similar drawbacks. Direct analysis of available structures sup-
plemented with calculation of a physical energy functionwas used to redefine binding motifs
for 67 yeast TFs [49, 50]. Binding specificity predictions derived from 3D structures are system-
ized in the 3D-footprint database [51].

Predicted specific interactions were used to construct mutant TFs with new specificities for
a variety of families, both eukaryotic, e.g. zinc fingers [52, 53] and BHLH [54], and prokaryotic,
such as TAL effectors [55], LACI [28], and CRP/FNR [56]. On the other hand, extensive experi-
mental screens sometimes produced discouraging results: randomization of DNA-interacting
residues of a zinc-finger protein Zif268 [57] and LACI-family TFs [58] did not yield consistent,
family-specific protein-DNA interaction codes.Most residues, including non-contacting ones,
were shown to influence binding of LACI-family TFs [59, 60]. Contacting residues are not suffi-
cient to explain binding specificity of eukaryotic FOX (forkhead box) TFs [61].

Previously we adapted a number of techniques used to identify specificity determining
positions [39] to the identification of correlated protein and nucleotide positions, likely
important for protein-DNA recognition. In addition to simple computation of mutual infor-
mation, our algorithm assesses statistical significance correcting for (possible) overrepresen-
tation of closely related TFs and common ancestry (phylogenetic trace) of some subgroups in
a dataset. An objective threshold is set based on probabilistic calculations (the so-called
Bernoulli threshold). The algorithm was implemented as a web server Prot-DNA-Korr
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(http://bioinf.fbb.msu.ru/Prot-DNA-Korr) and applied to study co-evolution of TFs and
binding motifs in the NRTR [62] and REX [63] families of TFs. Here we describe it in detail
and apply to the MERR family of bacterial TFs.

MerR family

TFs from the MERR family regulate response to various stresses: antibiotics, heavy metals, oxi-
dative stress [64], nitrosative stress [65, 66], heat shock [67, 68], carbonyl stress [66, 69, 70], as
well as polyamine degradation [71], nitrogen metabolism [72], carotenoid biosynthesis [73],
curli and biofilm formation [74], degradation of isoprenoids [75] and branched-chain amino
acids [76]. In particular, the family contains a group of TFs that act as transcriptional activators
of heavy metal resistance (HMR) systems. These HMR regulators form a distinct cluster within
the MERR family (GenBankCDD accession number cl02600). The spectrumof toxic metals
includes mercury, copper, zinc, cadmium, lead, silver, and gold.

Experimentally studied proteins, MerR, HmrR, CueR, ZntR, CadR, PbrR, GolS use mono-
and divalent metal ions as ligands [64, 77, 78]. In addition, several heavy-metal resistance regu-
lons (sets of operons regulated by particular TFs) were subject for a comparative-genomics
study [79]. The binding sites of these TFs are located between the promoter −35 and −10 boxes
of the regulated operons, an arrangement being typical for MERR-family transcriptional activa-
tors. Moreover, the distance between the promoter boxes in such promoters equals 19–20 bp
instead of usual 16–17 bp [64, 69, 70, 79, 80]. The mechanism of transcriptional activation is
known from structural and mutational studies [81]. DNA untwisting and base pair distortion
decrease the distance between the promoter boxes and set them in a conformation capable of
binding by the RNA polymerase. This distance change approximately equals 2 bp. Deletion of
2 bp from the promoter spacer has the same effect on transcription.

The crystal structures in complexes with DNA are known for six MERR-family proteins:
BmrR [81–84], MtaN [82] and GlnR [85] from Bacillus subtilis, TnrA from Bacillus megater-
ium [85], SoxR from Escherichia coli [86, 87], and TipAL from Streptomyces lividans (PDB ID
2VZ4). None of them are involved in heavy metal resistance. DNA-free structures are available
for BmrR [88] and Mta [89] from B. subtilis, CueR and ZntR from E. coli [90], NmlR from
Bacillus thuringiensis (PDB ID 3GPV), BC_0953 from Bacillus cereus (PDB ID 3HH0),
LMOf2365_2715 (PDB ID 3GP4) and lmo0526 (PDB ID 3QAO) from Listeria monocytogenes,
and SCO5550 from Streptomyces coelicolor [91]. These structures show that TFs from the
MERR family have very similar spatial conformations, GlnR, TnrA and SCO5550 being excep-
tions. The DNA-binding winged helix-turn-helix (WHTH) domain is located in the N-termi-
nus followed by the antiparallel coiled coil providing dimerization. The ligand-binding
domains located in the C-terminus may differ in length, sequence and structure. SCO5550 has
a different dimerization domain resulting in a different overall structure. GlnR and TnrA have
a dimerization domain located in the N-terminus that results in a different mode of interaction
betweenmonomers also yielding a different overall dimer architecture. Similar crystal struc-
tures and promoter organization suggest that the mechanism of transcriptional activation is
the same for all MERR-family activators sharing this structural organization.

Methods

Here we describe an outline of the algorithm for the identification of correlated pairs of posi-
tions. The details for each step are presented in the Results section. The program takes TFs and
TFBSs alignments as an input. For each pair of alignment positions we calculate the frequencies
of ‘nucleotide—amino acid’ (NT-AA) pairs. From the observed and expected (under hypothe-
sis of independence) frequences we derive a measure of correlation between pair of columns,
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mutual information. Applying the above steps for randomly generated pairs of columns, we
obtain the expectedmutual information values, which are then corrected by linear transforma-
tion to take into account shared ancestry of sequences as described in [38]. From the observed
and expectedmutual information values, a measure of statistical significance, Z-score, is then
derived. Pairs with top Z-scores are designated as statistically significantly correlated. The
actual number of pairs is determined by the Bernoulli cutoff procedure [39].

Study of MERR-family regulators of heavy-metal resistance

Genomic and protein sequences were taken from GenBank RefSeq database (release 55) [92].
Three-dimensional structures of proteins were taken from the PDB database [93]. The Gen-
Bank CDD database [94] was used for classification of transcription factor (TF) into subfami-
lies. Protein-DNA molecular contacts were taken from the NPIDB database [95]. Van der
Waals contacts were taken from the articles in which the structures were published. In the
NRTR, REX, MERR cross-family study, Van der Waals contacts were obtained using the HBPLUS
utility [96]. Structure-basedmultiple protein sequence alignments were built using the PRO-
MALS3D program [97]. Phylogenetic trees were constructed using the MEGA5 package [98].
The GenomeExplorer package [99] was used to build positional weighted matrices (PWMs)
and to search genomic sequences for transcription factor binding sites (TFBSs) and promoters.
TFBS and operon data were submitted to the RegPrecise database [27]. Ancestral protein and
DNA sequences were reconstructed using the PAML package [100]. Sequence logos were gen-
erated using the WebLogo program [101].

Results

Algorithm for the identification of correlated pairs of positions

The correlation between the residues A in an amino acid alignment column i and the basesN
in a nucleotide alignment column j is measured using the mutual information:

Ii;j ¼
X

a�A

X

n�N

fi;jða; nÞlog
fi;jða; nÞ
f exp
i;j ða; nÞ

ð1Þ

where fi,j(a, n) is the observedweighted frequency of a pair (amino acid a in the TF alignment
column i, nucleotide n in the site alignment column j) and f exp

i;j ða; nÞ ¼ fiðaÞ � fjðnÞ is the
expectedweighted frequency of this pair computed as a product of fi(a), the weighted fre-
quency of the amino acid a at the column i, and fj(n), the weighted frequency of the nucleotide
n at the column j.

To estimate the statistical significance of the observedmutual information values, one needs
the distribution of mutual information for a random pair of columns I�i;j . In order to obtain it,
TF-site pairs are randomly reconnected 10,000 times. Further, a linear transformation is
applied to take into account shared ancestries (the phylogenetic trace), as described in [38].
Finally the Z-score, a measure of statistical significance, is calculated as:

Zi;j ¼
Ii;j � EðI�i;jÞ

sðI�i;jÞ
ð2Þ

where EðI�i;jÞ and sðI�i;jÞ are the mean and the standard deviation, respectively.
The pairs are ranked by calculated Z-scores, and the top k pairs are selected, where k is

determined by the Bernoulli cutoff procedure [39]. In a nutshell it minimizes the probability
(reported as p-value) to observe k given Z-scores from the Gaussian distribution.
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Weighting. To avoid overrepresentation of similar, and closely related sequences, we
introduce weights of pairs TF–site as products of weights of individual TF and site sequences:
w(rs) = w(r) × w(s).

Here, the number of pairs residue a—nucleotide n (further denoted by [a − n]) in column
[i, j] is calculated as the sum of weights of TF–site pairs:

Ni;jða; nÞ ¼
X

rs�RSa;ni;j

wðrsÞ
ð3Þ

where RSa;ni;j is the set of TF–site pairs with the pair [a − n] in the columns [i, j].
Similarly, residues a in the column i are counted as:

NiðaÞ ¼
X

rs�RSai

wrs ð4Þ

where RSai is the set of TF–site pairs with the residue a at position i in TF.
Weights of TFs are determined using the Gerstein-Sonnhammer-Chothia algorithm [102].

To do that, the phylogenetic tree of TFs was constructed using the neighbor-joiningmethod
implemented in Clustal [103] and rooted in the middle of the longest path between leaves.

Pseudocounts. To account for non-observeddata and to avoid null frequencies, we intro-
duced pseudocounts supplementing the set of N observed sequences by k

ffiffiffiffi
N
p

random
sequences with amino acid and nucleotide frequencies drawn from the respective alignment
columns. At that, the amino acid pseudocounts reflected the amino acid substitution matrix, as
in the SDPPred algorithm [39], and the normalized frequency of the amino acid a in the align-
ment column i was defined as:

fiðaÞ ¼
NiðaÞ þ

k
ffiffiffiffi
N
p

X

b�A

NiðbÞPðb! aÞ

N þ k
ffiffiffiffi
N
p

ð5Þ

whereNi(a) is the weighted count of amino acid a in column i,N is the total number of residues
in the alignment column, P(b! a) is the probability of substitution b! a computed by the
BLOSUM [104] matrix at identity level 30–40%, κ = 0.5 is a parameter regulating the contribu-
tion of pseudocounts.

The nucleotide pseudocounts are introduced in the same way with substitution probabilities
P(m! n) = 1/4 for each pairm, n.

Finally, the frequency of a pair [a − n] in columns [i, j] is computed as:

fi;jða; nÞ ¼
Ni;jða; nÞ þ

k
ffiffiffiffi
N
p

X

b�A

X

m�N

Ni;jðb; qÞPðb;m! a; nÞ

N þ k
ffiffiffiffi
N
p

ð6Þ

By our null hypothesis nucleotide and residue substitutions are independent, thus P(b,m! a,
n) = P(b! a) × 1/4 and:

fi;jða; nÞ ¼
Ni;jða; nÞ þ

k

4
ffiffiffiffi
N
p

X

b�A

Pðb! aÞNiðbÞ

N þ k
ffiffiffiffi
N
p

ð7Þ

Implementation. The algorithm is implemented in the Java language and thus can be exe-
cuted on any computer provided a Java virtual machine is installed. The program and the
source code may be accessed from the web at http://bioinf.fbb.msu.ru/Prot-DNA-Korr.
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Calculated Z-scores are graphically represented via an interactive heatmap plot (TFs vs
TFBSs). A detailedNT-AA contingency table for a requested pair of positions can be drawn for
in-depth analysis. Under- and overrepresented NT-AA pairs in the table are emphasized by
coloring based on an arbitrary χ2-score summand cutoff (50 by default). The contingency
tables, along with the tables of χ2 and mutual information summands, as well as list of Z-scores
may be exported as a plain text.

Analysis of heavy-metal resistance regulators from the MERR family

Identification of transcription factors and construction of motifs. Proteins containing
HTH_CueR,HTH_MerR1, HTH_CadR-PbrR, HTH_CadR-PbrR-like and HTH_HMRTR
conserveddomains (Specific Protein option in GenBank CDD) were downloaded from the
GenBank RefSeq database. Further in this study they are referred to as TFs from the CUER,
MERR, CADR-PBRR, CADR-PBRR-like and HMRTR subfamilies, respectively. Only proteins
encoded in completely assembled genomes were retained for the analysis. In total they con-
tained 1516 TFs (see Table 1 for details). TFs with sequences longer than 190 bp and shorter
than 110 bp were excluded from the study, given that typical proteins of these subfamilies have
the length of 130–140 bp [79, 90]. Structure-basedmultiple sequence alignments were con-
structed using structural information from CueR (PDB ID 1Q05, 1Q06, 1Q07) and ZntR (PDB
ID 1Q08, 1Q09, 1Q0A) from Escherichia coli [90]. Phylogenetic trees for each subfamily were
built by the neighbor-joiningmethod with pairwise gap deletion option that keeps the informa-
tion from gap-containing columns. BmrR from Bacillus subtilis (GI 50812267) was used as an
outgroup. Only one of each group of nearly identical proteins (distance between the leaves on
the tree less than 0.02) encoded in genomes of different strains of the same species was retained
for further study. Following the application of these procedures, 906 TFs remained in the stud-
ied set (Table 1). Most of them (783 TFs) are encoded in genomes of Proteobacteria. Other
phyla represented in this set include Actinobacteria (52 TFs), Cyanobacteria (22 TFs), and Fir-
micutes (18 TFs).

We built selective PWMs for searching the genomes for putative TFBSs using sites from
[79] as a starting point. One PWM per subfamily was built with the exception for MERR and
HMRTR where a single PWM did not provide desired sensitivity. Hence, two PWMs were con-
structed for the MERR subfamily and three for the HMRTR subfamily, each corresponding to a
separate smaller branch on the phylogenetic tree of studied TFs. The PWMs are presented in
S1 File. The length of CUER, CADR-PBRR and CADR-PBRR-like motifs was 21 bp, whereas the
length of MERR and HMRTR motifs was 22 bp. The selected genomes were searched for TFBSs
in regions from −400 to +50 bp relative to the gene translation start sites annotated in Gen-
Bank. The threshold for TFBS search was set to 3.5.

Table 1. TFs and TFBSs statistics.

Subfamily TFs (counts) TFs after filtering TFs with identified TFBSs TFBSs

CUER 511 260 238 324

MERR 205 123 105 106

CADR-PBRR 253 193 172 174

CADR-PBRR-like 189 147 100 110

HMRTR 358 183 148 170

Total 1516 906 763 884

doi:10.1371/journal.pone.0162681.t001
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Exclusion of false positive TFBS. Numerous experimental and computational studies of
promoters regulated by transcriptional activators from the MERR family show that these TFs
bind specific sites located between the promoter boxes of the regulated operons [64, 69, 70, 79,
80]. Moreover, the distance between the promoter boxes in such promoters equals 19–20 bp
instead of usual 16–17 bp. Previous studies [105] demonstrated that the distance between the
center of the TFBS and the 3’-end of the −35 promoter box is fixed within a subfamily. Putative
promoters were found using the E. coli σ70 promoter consensus TTGACA-()-TATAAT. The
distance between the TFBS centers and the −35 promoter boxes equals 7 bp for CUER,
CADR-PBRR and CADR-PBRR-like sites (21-bp long) and 8 bp for MERR and HMRTR sites
(22-bp long). TFBSs scoring above the threshold were considered false positives if they did not
overlap with candidate promoters having 19–20 bp spacers or the distance between the center
of the site and the 3’-end of the −35 promoter box is other than 7 bp for 21-bp sites and 8 bp
for 22-bp sites. Further, only sites co-localizedwith the TF gene and/or located upstream of
genes with relevant function (heavy metal resistance) were retained.

Using this procedure, 884 TFBSs were identified for 763 TFs (Table 1, S2 File). We tested
how the usage of site and promoter overlap affects the number of found sites. We did this for
weak sites (with scores from 3.5 to 5.0) and strong sites (with scores above 5.0). For strong
sites, the number of candidates grows only slightly when the promoter information is omitted.
In contrast, for weak sites this number grows tremendously. On average, 97% of candidate sites
in a genome are weak sites without promoter support (S3 File). Therefore we used the informa-
tion about putative promoters.

Sequence Logos for the sites of each studied subfamily are presented in Fig 1. Each Logo
includes the binding motif as well as the −35 and −10 promoter boxes and three flanking posi-
tions. Then we built the phylogenetic tree for TFs with identified sites (Fig 1). TFs from differ-
ent subfamilies form distinct branches on the tree with only several exceptions, in agreement
with manually curated conserved-domain classification of HMR TFs from the MERR family
provided in GenBank CDD (GenBankCDD accession number cl02600). The identified TFBSs
were then aligned: one central position was deleted from the 21-bp long sites, and two, from
the 22-bp long sites. For the computation of correlations, the alignment block containing 74
columns was taken from the alignment of TFs of all studied subfamilies. This block completely
covers the N-terminal DNA-binding winged helix-turn-helix (WHTH) domain of these pro-
teins. A set of corresponding pairs of protein and DNA sequences was formed by this block
and the alignment of TFBSs. After deleting duplicate pairs, we obtained a set containing 776
unique pairs of corresponding protein and DNA sequences.

Identification and analysis of correlated positions. At the B-cutoff step (S1 Fig), Prot-
DNA-Korr suggested 32 correlated pairs corresponding to the global minimum of the p-value.
Correlation Z-scores are listed in S4 File. The heatmap showing the correlated positions is pre-
sented in Fig 2. This heatmap shows imperfect symmetry due to imperfect symmetry of TF
binding sites and respective binding motifs. We searched the literature and the NPIDB data-
base [95] for the contacts of TFs from the MERR family with DNA (Fig 2). All protein-DNA
contacts (side chains to bases, side chains to DNA backbone and protein backbone to DNA
backbone) are presented in S2 Fig overlaid with the same heatmap. A pair of positions was
marked as interacting if the interaction was reported at least once. Since CueR and ZntR struc-
tures were resolved in the DNA-free form [90], the experimental contacts come from crystal
structures of proteins from subfamilies not included in the present study [81–85, 87]. However,
these experimental data are relevant, as the structures of WHTH DNA-binding domains of the
TFs from the MERR family are conserved [82, 85, 87, 91]. These crystal structures of dimeric
TFs (except MtaN and GlnR from B. subtilis) consist of one monomer and one DNA strand.
The GlnR structure includes one monomer and one double-stranded half-site and MtaN
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structure includes both monomers and complete double-stranded site. Therefore we performed
a mirror reflection of the contacts to cover both half-sites. This results in a strictly symmetrical
map of contacts (Fig 2, S2 Fig).

Overall, 36 experimentally identified interacting pairs (side chain to base) were found. Nine
pairs appear as both correlated and forming side-chain-to-base contacts (Fisher’s exact test p-
value of 1.96 × 10−8). This proves the relevance of the applied procedure and cutoff selection.
Of 32 correlated pairs, 23 are located in the recognitionα-helix of the HTH domain of MERR-

Fig 1. Phylogenetic tree of TFs from studied subfamilies. Subfamily branches are colored: CUER—red, MERR—blue, CADR-PBRR—green, CADR-PBRR-

like—orange, HMRTR—purple. Sequence Logos represent binding motifs (magenta bars) with −10 and −35 promoter boxes (cyan bars) and 3 flanking

positions.

doi:10.1371/journal.pone.0162681.g001
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family proteins (positions 13–21 in the protein alignment in Fig 2). Other correlated pairs cor-
respond to the α1-helix of the WHTH domain and the β-hairpin between the β1 and β2 strands
that constitutes the first wing of the WHTH domain. The most significantly correlated pairs of
positions are symmetrical (6,14) and (13,14). Other correlations are much less significant.

Hereinafter pairs of positions are referred to as (j, i), where the TFBS position comes before
the comma and the TF position, after. Symmetrical TFBS positions give 19 when summed. The
‘nucleotide—amino acid’ pairs for the respective pairs of positions are denoted as NT-AA.

Over- and underrepresented NT-AA pairs along with subfamilies where they preferably
occur are listed in Table 2.

We mapped correlated pairs on the phylogenetic tree of the studied TFs (Fig 1), using only
pairs where several overrepresented pairs of residues had large (over 50) counts: (3, 13)—S3
Fig, (5,14)—S4 Fig, (6,14)—S5 Fig and (6,21)—S6 Fig. These data show that the same overrep-
resented pairs NT-AA appeared several times independently in course of evolution. We tested
whether mutations in the TF DNA-binding domains lead to subsequent changes in binding
motifs. At that, we reconstructed ancestral sequences of studied TFs and their binding sites in
internal nodes of the phylogenetic tree of the TFs (data not shown). We used the Jones-Taylor-
Thornton (JTT) substitution model for amino acids and general time-reversible (REV/GTR)
model for nucleotides. However, we could not observe a prevalence of either protein–DNA or
DNA–protein order of mutations leading to the formation of overrepresented pairs.

Algorithm performance analysis

Input data bootstraping. We studied to what extent our method tolerates inadequate data
in the input. For that, we progressively shuffled residues in 10%, 20%, etc. of aligned protein
sequences, simulating misalignment and wrong input data. Each progressive step was

Fig 2. Heatmap of protein-DNA correlations. TF positions are along the horizontal axis and at the Logo above. Site positions are along the vertical axis

and at Logo on the left. The color denotes the Z-score for a pair of positions with the color palette for significantly correlated pairs in the yellow to red interval,

while black through light green colors denoting positions below the significance threshold. Protein side chain—DNA base interactions are shown as stars:

blue—hydrogen bonds; red—Van der Waals contacts; yellow—water bridges; green—hydrophobic contacts. Interactions observed in the structures of

complexes at least once are shown. Elements of protein secondary structure (from the crystal structure of E. coli CueR—PDB ID 1Q05) are shown at the

top.

doi:10.1371/journal.pone.0162681.g002
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Table 2. Correlated pairs of positions with over- and underrepresented pairs ‘nucleotide—amino acid’.

Positions Residues Count Type Note

(6,14) T-E 200 + MerR, CadR-PbrR, CadR-PbrR-like

C-K 191 + CueR, HMRTR (Actinobacteria)

G-D 76 + HMRTR (Gammaproteobacteria)

A-A 7 +

T-K 7 -

C-E 3 -

(13,14) A-E 184 + CadR-PbrR, CadR-PbrR-like, HMRTR

G-K 180 + CueR, HMRTR (Actinobacteria)

C-D 79 + HMRTR (Gammaproteobacteria)

T-R 9 +

A-K 10 -

G-E 1 -

(8,15) A-M 104 + CueR

G-M 3 -

A-T 6 -

(11,15) T-M 102 + CueR

C-M 1 -

T-T 4 -

(3,13) C-V 208 + MerR, CadR-PbrR, CadR-PbrR-like

T-A 146 + CueR, HMRTR (Gammaproteobacteria)

G-K 3 +

C-A 12 -

T-V 9 -

(16,13) A-A 136 + CueR, HMRTR (Gammaproteobacteria)

A-V 6 -

(12,15) G-M 93 + CueR

T-M 13 -

G-T 13 -

(7,15) C-M 86 + CueR

A-M 18 -

C-T 16 -

(5,14) G-E 190 + MerR, CadR-PbrR, CadR-PbrR-like

C-K 152 + CueR, HMRTR (Actinobacteria and Cyanobacteria)

A-Q 38 + CadR-PbrR-like

G-K 24 -

C-E 1 -

(14,14) C-E 211 + MerR, CadR-PbrR, CadR-PbrR-like

G-K 143 + CueR, HMRTR (Actinobacteria)

T-Q 27 +

T-V 13 +

G-E 4 -

(6,15) C-M 106 + CueR

A-Q 6 +

(13,15) G-M 96 + CueR

(Continued )
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Table 2. (Continued)

Positions Residues Count Type Note

(6,21) T-R 159 + MerR, CadR-PbrR, CadR-PbrR-like

C-S 64 + CueR

C-E 56 + CueR

C-R 7 -

(13,21) A-R 149 + MerR, CadR-PbrR, CadR-PbrR-like

G-E 53 + CueR

C-K 61 + HMRTR (Gammaproteobacteria)

(7,5) C-A 87 + CueR

C-L 5 -

(12,5) G-A 95 + CueR

G-L 6 -

(14,21) G-R 3 -

(5,21) C-R 4 -

(3,14) T-K 191 + CueR, HMRTR (Actinobacteria)

A-H 2 +

C-K 18 -

T-E 23 -

(6,14) A-K 186 + CueR, HMRTR (Actinobacteria)

C-H 2 +

G-K 22 -

A-E 16 -

(12,14) G-K 124 + CueR, HMRTR (Actinobacteria)

(7,14) C-K 127 + CueR, HMRTR (Actinobacteria)

A-K 67 -

(8,5) A-A 97 + CueR

A-L 6 -

(11,5) T-A 93 + CueR

T-L 6 -

(13,5) G-A 110 + CueR

G-L 35 -

(6,5) C-A 117 + CueR

(1,35) A-Q 26 +

T-R 22 +

(18,35) T-H 11 +

A-I 17 +

A-R 15 +

(6,13) C-A 123 + CueR

(13,13) A-V 163 + MerR, CadR-PbrR, CadR-PbrR-like, HMRTR (Cyanobacteria)

G-A 108 +

(8,18) A-H 47 +

(8,69) A-W 106 + CueR

Pairs of positions are ordered by decrease of statistical significance. ‘Residues’ column shows pairs of residues. In ‘Type’ column ‘+’ stands for

overrepresented pair, ‘-’ stands for underrepresented pair. ‘Notes’ column shows preferred occurrence of the ‘nucleotide—amino acid’ pair.

doi:10.1371/journal.pone.0162681.t002
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performed 100 times independently. For each pair we calculated the number of its occurrences
in the top 32 correlated pairs, which corresponds to the previously established significance
threshold.

Bootstrap Table 3 shows that half of 32 significantly correlated pairs remain in the list even
if 50% of the data is scrambled. Moreover, top two correlated pairs remain in the list with only
30% of the valid input data. On the other hand, the weaker 1/3 of the list fall below the thresh-
old with only 10% of scrambled data. While the ranks of the said pairs usually drop only
slightly below the 32 rank threshold (S5 File), this happens in a consistent manner. For
instance, the (18,35) pair originally having rank 31 never gets to the top 32 pairs with 10% of
the data scrambled.

The bootstrap table suggests that the bottom 1/3 of the correlated list are sensitive to the
input data quality and, together with some pairs falling just below the significance threshold
may be considered as the “grey area”.

We also performed negative control of our method by providing shuffled regulator-site
pairs from the initial input data. The shuffling was performed similarly to shuffling for
expectedmutual information required for Z-scores calculation. The B-cutoff global minimum
log(p − value) = −14 (S7 Fig) obtained is negligible compared to −1250 yielded by the original
data (S1 Fig).

Conservationand correlation. Protein positional information content used in the logo
generation as a measure of conservationwas compared with Z-scores for corresponding pairs
of columns. The correlated protein positions appear to be moderately conserved. Fig 3 suggests
that overall highly conserved residues tend to have lower z-scores.

Conserved correlated residues that form contacts are very rare. In three PDB (3ikt, 3gz6,
1r8e) structures from the REX, NRTR and MERR families, respectively, we found 43 contacts
with either of the partners being conserved (S6 File). Only two such contacts in the NrtR struc-
ture appeared to be correlated.

Discussion

We developed and implemented an algorithm for the identification of pairs of positions that
are important for the protein-DNA recognition.Our method requires multiple alignments of
DNA-binding proteins and of their respective sites. The method does not rely on known 3D
structures of protein-DNA complexes, here we rather use them to validate our results. It should
be noted that of necessity the contacts and correlations were identified on different sets of TFs
belonging to different subfamilies.

The comparison with structural data shows good agreement both in quantitative and quali-
tative terms. The sets of correlated and contacting pairs strongly overlap (Fisher’s test p-value
1.96 × 10−8). The recognition helix of the HTH domain contains a large cluster of correlated
pairs. According to classic Suzuki studies of spatial structures [2], residues 1, 2, 6 of the recog-
nition helix that face the DNA major groove are most important for the protein-DNA recogni-
tion as they form hydrogen bonds with DNA bases hence allowing the protein to read the
DNA sequence. Here these residues participated in correlated pairs, with residue 2 being the
most correlated. The MERR and previously studied REX [63] and NRTR [62] families provide
correlation data on three families HTH binding domains. Residue 6 participates in correlations
in all three families and residues 1, 2 in two familes each.

Among hydrogen bonds, Van der Waals interactions, and hydrophobic contacts in the
three families we do not see any preference for either type to correspond to correlations (S5
File). However, the data are not sufficient to form a solid conclusion.
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Table 3. Occurrence of the pair in the top 32 pairs of the list with fraction of the input being scrambled over 100 iterations.

pair 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(6,14) 100 100 100 100 100 100 99 90 46 12 3

(13,14) 100 100 100 100 100 100 98 85 40 5 2

(3,13) 100 100 100 100 100 99 87 67 35 14 5

(11,15) 100 100 100 100 99 100 91 88 63 37 7

(8,15) 100 100 100 100 98 97 90 81 52 29 3

(5,14) 100 100 100 99 98 86 60 40 18 5 1

(16,13) 100 100 100 97 87 83 53 45 13 12 2

(3,14) 100 100 99 99 95 89 72 55 26 6 7

(8,69) 100 100 99 96 94 95 85 72 56 31 10

(16,14) 100 100 98 98 93 82 70 37 27 7 2

(14,14) 100 100 97 94 83 71 43 25 7 2 1

(12,15) 100 99 100 100 98 98 93 81 59 28 10

(7,15) 100 99 100 99 97 94 82 66 46 14 2

(12,14) 100 98 91 86 74 73 41 36 14 8 4

(7,14) 100 96 90 87 62 62 39 29 19 10 2

(6,21) 100 95 74 68 52 42 32 15 11 7 5

(13,21) 100 87 67 50 41 26 29 10 9 4 3

(14,21) 100 87 56 38 20 21 11 9 2 1 0

(5,21) 100 84 61 41 31 24 12 6 3 1 1

(6,15) 100 73 78 77 75 67 59 33 27 7 2

(6,13) 100 55 57 40 33 15 20 16 13 6 0

(13,13) 100 49 34 33 29 13 15 12 9 6 1

(12,5) 100 48 36 28 40 29 18 19 13 5 0

(7,5) 100 41 39 26 31 24 17 18 13 1 3

(1,35) 100 35 33 24 19 12 5 2 2 0 1

(13,15) 100 32 39 45 44 40 28 28 20 6 4

(8,5) 100 11 17 24 29 27 24 23 16 10 3

(11,5) 100 6 12 11 26 24 12 24 22 11 3

(13,5) 100 3 4 9 18 12 13 14 12 5 5

(8,18) 100 2 11 12 11 22 18 10 18 14 2

(18,35) 100 0 3 3 2 4 5 6 2 1 0

(6,5) 99 1 4 8 12 17 12 12 8 4 2

(11,69) 1 100 100 92 96 91 84 70 63 38 5

(12,69) 0 88 80 74 75 55 53 44 30 18 5

(6,69) 0 78 66 45 52 33 41 23 17 10 4

(11,12) 0 72 60 56 45 41 47 20 28 11 5

(13,1) 0 64 79 70 61 49 32 30 7 7 1

(6,1) 0 60 72 72 51 56 36 27 20 4 5

(7,1) 0 54 49 48 44 40 32 28 15 12 3

(7,69) 0 53 47 37 20 23 20 19 12 10 5

(13,69) 0 52 37 26 31 17 23 13 14 10 4

doi:10.1371/journal.pone.0162681.t003
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Although significantly correlated pairs are likely to be contacting ones, our algorithm is not
merely a substitute for a 3D structures analysis. Conserved interactions will not demonstrate
correlations due to the lack of sequence variation [45]. On the other hand, some residues may
affect specificity indirectly, and it would be difficult to identify them in 3D structures. The cor-
relation analysis identifies all coevolving pairs of positions and along with overrepresented
NT-AA pairs thus providing hints for future experimental investigations [56].

In most correlated pairs of positions, overrepresented NT-AA pairs appear independently
multiple times in course of evolution of the studied TFs. It has been shown that binding sites
for existing TFs can emerge rather rapidly from sequences that resemble weak sites [106, 107].
This model implies that changes in a TF sequence, decreasing its affinity to pre-existing sites,
yield changes in the sites, hence restoring the effective binding. The binding motif (in the sim-
plest form, the consensus of the sites) changes accordingly. We reconstructed ancestral
sequences of TFs and the respective DNA motifs, but failed to confirm the hypothesis about
the leading role of substitutions in TFs yielding subsequent substitutions in recognized sites
and hence motifs.

Fig 3. Z-score vs. protein column conservation. Red—significantly correlated pairs. Green—other pairs. Y-axis is the protein positional information

content for corresponding pair of columns after weighting and adding pseudocounts. X-axis is the Z-score of a pair.

doi:10.1371/journal.pone.0162681.g003
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We used several crystal structures of related TFs in the DNA-bound form to demonstrate
high level of coincidence between correlated pairs and contacting positions. At that, it is plausi-
ble that the conservedpositions provide for the initial DNA binding, whereas correlated posi-
tions fine-tune interactions with specific sites. A proof of concept was provided by an
experimental study of CRP, that demonstrated lack of specific binding after individual muta-
tions in either the TF or the site, but partially reconstituted binding after dual TF-site muta-
tions substituting one preferred NT-AA pair to another pair preferred at the given positions
[56]. While existing computational methods may not predict DNA motif given only TF
sequence and 3D structure, some progress has been already made. For example, it is possible to
match each TF from a given family, present in a genome, to the respective motif from a given
set of motifs recognizedby these TFs in the same genome [108]. The latter situation arises in
comparative-genomic prediction of transcriptional networks.

TFBS prediction and regulon reconstruction in multiple related genomes using comparative
genomic approaches has become a major source of information about regulatory networks.
Combined with identification of correlations between the sequences of TFs and their binding
sites, they may become powerful tools for studying the evolution of TF families and coevolu-
tion of interacting protein and DNA sequences using sequence data alone.

Supporting Information

S1 File. Positional weightedmatrices (PWMs) used to search the genomes for binding sites.
(PDF)

S2 File. TF and TFBS data.Data on different subfamilies are presented on separate sheets.
Only the first members of regulated operons are shown. TFBS positions are given relative to
translation starts of regulated genes annotated in the genomes.
(XLS)

S3 File. Distribution of site persentages.Horizontal axis shows the percentage of sites from a
given category from all sites found in genome. The vertical axis shows the number of such
genomes.
(PDF)

S4 File. List of Z-scores for pairs of positions.
(PDF)

S5 File. Average ranks of pairs after the input data bootstrap procedure.
(XLS)

S6 File. Contacts correlations and conservation in the Rex, NrtR, MerR familiesmembers.
(XLS)

S1 Fig. B-cutoff plot.Global minimum p-value corresponds to 32 pairs.
(PDF)

S2 Fig. Heatmap of protein-DNA correlations with complete map of contacts.TF positions
are along the horizontal axis and at the Logo above. Site positions are along the vertical axis
and at Logo on the left. The color denotes the Z-score for a pair of positions with the color pal-
ette for significantly correlated pairs in the yellow to red interval, while black through light
green colors denote positions below the significance threshold. Protein-DNA interactions are
shown as stars. Interactions observed in the structures of complexes at least once are shown.
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Elements of protein secondary structure (from the crystal structure of E. coli CUER – PDB ID
1Q05) are shown at the top.
(PDF)

S3 Fig. Phylogenetic tree of the TFs from theMerR family with pairs of residues in posi-
tions (3,13). Colors of branches show overrepresented pairs of residues in positions (3,13) (see
color codein the picture). Background colors show TF subfamilies: red—CUER, blue – MERR,
green—CADR-PBRR, beige—CADR-PBRR-like, pink—HMRTR.
(PDF)

S4 Fig. Phylogenetic tree of the TFs from theMerR family with pairs of residues in posi-
tions (5,14). Colors of branches show overrepresented pairs of residues in positions (5,14) (see
color code in the picture). Background colors show TF subfamilies: red—CUER, blue – MERR,
green—CADR-PBRR, beige—CADR-PBRR-like, pink—HMRTR.
(PDF)

S5 Fig. Phylogenetic tree of the TFs from theMerR family with pairs of residues in posi-
tions (6,14). Colors of branches show overrepresented pairs of residues in positions (6,14) (see
color code in the picture). Background colors show TF subfamilies: red—CUER, blue – MERR,
green—CADR-PBRR, beige—CADR-PBRR-like, pink—HMRTR.
(PDF)

S6 Fig. Phylogenetic tree of the TFs from theMerR family with pairs of residues in posi-
tions (6,21). Colors of branches show overrepresented pairs of residues in positions (6,21) (see
color code in the picture). Background colors show TF subfamilies: red—CUER, blue – MERR,
green—CADR-PBRR, beige—CADR-PBRR-like, pink—HMRTR.
(PDF)

S7 Fig. B-cutoff plot for shuffled regulator-site pairs.
(PDF)
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