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Background: Here, we establish a prognostic signature based on glycosyltransferase-
related genes (GTRGs) for head and neck squamous cell carcinoma (HNSCC) patients.

Methods: The prognostic signature of GTRGs was constructed via univariate and
multivariate Cox analyses after obtaining the expression patterns of GTRGs from the
TCGA. A nomogram based on the signature and clinical parameters was established to
predict the survival of each HNSCC patient. Potential mechanisms were explored through
gene set enrichment analysis (GSEA) and immune cell infiltration, immune checkpoints,
immunotherapy, and tumor mutational burden (TMB) analyses. The expression differences
and prognostic efficacy of the signature were verified through the gene expression
omnibus (GEO) and several online databases.

Results: The prognostic signature was constructed based on five glycosyltransferases
(PYGL, ALG3, EXT2, FUT2, and KDELC1) and validated in the GSE65858 dataset. The
pathways enriched in the high- and low-risk groups were significantly different. The high-
risk group had higher tumor purity; lower infiltration of immune cells, such as CD8+ T cells
and Tregs; higher cancer-associated fibroblast (CAF) infiltration; lower immune function;
and lower checkpoint expression. The signature can also be applied to distinguish whether
patients benefit from immunotherapy. In addition, the high-risk group had a higher TMB
and more gene mutations, including those in TP53, CSMD1, CDKN2A, and MUC17.

Conclusion: We propose a prognostic signature based on glycosyltransferases for
HNSCC patients that may provide potential targets and biomarkers for the precise
treatment of HNSCC.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common neoplastic disease in humans, accounting for 90%
of head and neck cancers (Wang et al., 2021). Every year, more
than 830,000 people worldwide are diagnosed with head and neck
cancers, most of which are advanced type, and 430,000 patients
die from the disease. The 5-year survival rate of HNSCC patients
is approximately 43% (Epstein et al., 2012; Chi et al., 2015).
Approximately 40–60% of patients relapse even after a
combination of surgery, radiation, and chemotherapy
(Tolstonog and Simon, 2017). Therefore, it is important to
evaluate the prognosis of HNSCC patients. The current
evaluation for prognosis is mainly based on the TNM staging
system, which includes assessing the primary tumor, lymph node
metastasis, and distant metastasis and has limited accuracy (Chen
et al., 2021). Therefore, it is necessary to construct a stable model
to evaluate patient prognosis.

Glycosylation is a common posttranslational modification of
proteins (Fournet et al., 2018). Several glycosidic linkages,
including N-, O-, and C-linked glycosylation and
glycophosphatidylinositol (GPI)-anchored attachment, are the
main features of glycosylation (Rasheduzzaman et al., 2020).
Glycosylation can modify the biological function of proteins,
mainly affecting cell adhesion, migration, interactions with the
cell matrix, cellular metabolism, cell signaling, and immune
surveillance. Aberrant O-glycosylation was shown to be
associated with tumor cell infiltration. For example, α-N-
acetylgalactosamine (α-GalNAc) and α-2,6-sialyltransferase I
(ST6GalNAc-I) overexpression could cause sialyl Tn (STn)
expression disorder and C1GalT1-specific chaperone 1
(C1GALT1C1) mutation (Pinho and Reis, 2015).

The majority of current protein-based cancer biomarkers,
such as PSA for prostate cancer or CA-125 for ovarian cancer,
are glycoproteins (Almeida and Kolarich, 2016). Glycosylation
was recognized to occur widely in tumor cells, resulting in the
secretion of associated polysaccharides or glycoproteins, which
serve as vital biomarkers, into the bloodstream (Silsirivanit,
2019). Glycosylation increases the heterogeneity and functional
variability of tumor cells (Pinho and Reis, 2015), thus allowing
tumor cells to have different glycan profiles at different stages of
tumor growth and metastasis (Schjoldager et al., 2020).

At present, there are few studies on the construction of
prognostic signatures based on glycosyltransferases. Therefore,
we focused on glycosyltransferase to construct a signature in
HNSCC patients using public databases to better distinguish their
survival status. Furthermore, we explored pathway enrichment,
immune cell infiltration, benefits of immunotherapy, and gene
mutation status according to the signature.

MATERIALS AND METHODS

Data Source
Transcriptome data, genomic mutation data, and corresponding
clinical information from HNSCC patients, which contained
44 normal and 495 primary tumor tissues, were downloaded

from The Cancer Genome Atlas (TCGA). GSE65858, containing
270 tumor samples with survival data, was obtained from the
Gene Expression Omnibus (GEO) database to verify the
prognostic signature. GSE30784 and GSE37991 were used to
differentiate the expression levels of the genes in the signature
between normal and HNSCC tissues. Moreover, we downloaded
the expression data of one normal cell line (HaCaT) and six
HNSCC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25,
and SQ20B) from GSE62027. A total of 169 glycosyltransferase-
related genes (GTRGs) were derived from a previous study
(Mohamed Abd-El-Halim et al., 2021).

Identification of Differentially Expressed
GTRGs (DE-GTRGs) in HNSCC
A volcano plot and heatmap were used to visualize the DE-
GTRGs, which were defined as those with p < 0.05 and |log2
(foldchange)| > 1. Then, a protein–protein interaction (PPI)
network of DE-GTRGs was constructed by the GeneMANIA
database to identify the interactions of glycosyltransferases.
Moreover, the correlation between the expression of various
DE-GTRGs was also analyzed.

Construction of the Prognostic Signature
Univariate and multivariate Cox regression analyses were used to
screen GTRGs to construct the prognostic signature. The signature
reflects both the expression levels of the selected genes and their
relative regression coefficient weights calculated from the
multivariate Cox analysis. Patients in the training set were
classified into high-risk and low-risk groups based on the
median risk score. The Kaplan–Meier (KM) method was used
to describe the differences in overall survival (OS) between the two
groups. Receiver operating characteristic (ROC) curve analysis was
further used to demonstrate the specificity and sensitivity of the
signature. Principal component analysis (PCA) and T-distributed
stochastic neighbor embedding (tSNE) methods were used to
conduct dimension reduction analysis for all patients to evaluate
the effect of the signature on the ability to distinguish between
them. Finally, we incorporated the risk score and clinical
parameters into the univariate and multivariate Cox regression
analyses to prove that the risk score was an independent risk factor
for prognosis.

Correlation of Clinical Parameters and Risk
Score
Clinical parameters including age, sex, tumor grade, tumor stage,
T stage, and lymph node metastasis were used to perform a
stratified analysis of OS. In addition, we analyzed differences in
the risk score between subgroups based on the aforementioned
clinical parameters.

Nomogram and Calibration Curve
Construction
A nomogram was established based on clinical parameters and
the risk score. The calibration curves were drawn to assess the
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FIGURE 1 | Identification of DE-GTRGs between 44 normal and 495 HNSCC tissues. (A) Brief flow chart of this study. (B) Volcano plot of 29 DE-GTRGs in TCGA-
HNSCC. Red means upregulated and blue means downregulated genes. (C) Heatmap of DE-GTRGs between normal and HNSCC tissues. (D) PPI network based on
the DE-GTRGs using the GeneMANIA database. (E) Correlation of the expression of DE-GTRGs in HNSCC tissues. DE-GTRGs, differentially-expressed
glycosyltransferase-related genes; HNSCC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome Atlas; PPI, protein–protein interaction.
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consistency between the actual and predicted probabilities of 1-
year, 2-year, and 3-year survival. Furthermore, nomograms and
calibration curves were also constructed according to the
GSE65858 dataset.

Gene Set Enrichment Analysis
GSEA was performed to identify the pathways enriched in the
high-risk group or in the low-risk group according to the
reference gene set Hallmark and KEGG analysis. An |NSE| >

FIGURE 2 | Construction of the prognostic signature based on five GTRGs. (A) Univariate Cox regression analysis identified five GTRGs associated with the
prognosis. Red means risk genes and blue means protective genes. (B) Coefficients of the selected five genes in the signature through multivariate Cox analysis. (C)
High-risk group had a worse prognosis than the low-risk group through the KM curve and log-rank test. (D) Risk score, survival time, survival status, and the relative
expression of five genes between the high- and low-risk groups. (E) ROC curve analysis of the signature at 1-year, 2-year, and 3-year survival in the training cohort.
(F) ROC curve analysis of the signature and the other clinical parameters in the training cohort. (G) PCA in the training cohort. (H) tSNE analysis in the training cohort. (I)
Univariate Cox analysis of the signature and the other clinical parameters. (J) Identification of risk score as an independent risk factor for HNSCC patients through
multivariate Cox analysis in the training cohort. KM, Kaplan–Meier; ROC, receiver operating characteristic; PCA, principal component analysis; tSNE, t-distributed
stochastic neighbor embedding.
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1, a p value <0.05 and a false discovery rate (FDR) < 0.25 were set
as the cut-off values.

Immune Cell Infiltration, Checkpoints, and
Immunotherapy Analyses Based on the
Signature
The R package “ESTIMATE” was used to analyze the immune,
stromal, and estimate scores and tumor purity between the high-
and low-risk groups. TIMER, CIBERSORT, QUANTISEQ,
MCPCOUNTER, and EPIC were used to compare the

differences in immune cells between the two groups using the
Wilcoxon test. Moreover, we analyzed the differences in immune
cells and immune function between the two groups by using the
ssGSEA method. Immune checkpoints, obtained from the
TISIDB, were used to evaluate the differences between the two
groups. Finally, to assess the value of the signature in patients
receiving immunotherapy, multiple datasets were obtained to
evaluate whether the signature could be used in immunotherapy
patient cohorts. The cohorts included Van Allen’s cohort (CTLA-
4 blockade in 40 metastatic melanoma patients) (Van Allen et al.,
2015), Braun DA’s cohort (PD1 blockade in 311 advanced clear

FIGURE 3 | Validation of the prognostic signature in the GSE65858 validation cohort. (A) KM curve showed that the high-risk group had a shorter survival time than
the low-risk group. (B) Distribution of the risk score, survival time, and survival status as well as the heatmap between the two groups in the validation cohort. (C) ROC
analysis of the signature at 1-year, 2-year, and 3-year survival in the validation cohort. (D) ROC analysis of the signature and the other clinical parameters in the validation
cohort. (E) PCA in the external validation cohort. (F) tSNE analysis in the external validation cohort. Univariate (G) and multivariate (H) Cox analyses of the signature
and the clinical parameters in the validation cohort.
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cell renal cell carcinoma patients) (Braun et al., 2020), Riaz N’s
cohort (nivolumab in 50 advanced melanoma patients) (Riaz
et al., 2017) and David Liu’s cohort (PD1 blockade in
121 metastatic melanoma patients) (Liu et al., 2019a).

Tumor Mutational Burden and Gene
Mutation Analysis
TMBwas compared between the high- and low-risk groups and was
used to analyze its prognostic value in HNSCC patients through KM
analysis. In addition, survival analysis was performed according to
TMB and the risk score. Gene mutation frequency was also analyzed
between the two groups based on themutation data from the TCGA,
and the top 30 mutated genes are shown on a waterfall plot. We also
obtained genes with significant mutation differences between the
two groups.

Identification of the Expression Levels and
Prognostic Value of the Selected Genes
Immunohistochemistry images of PYGL, ALG3, FUT2, and
KDELC1 were obtained from the HPA database. UALCAN was
utilized to compare the protein levels of PYGL, EXT2, FUT2, and
KDELC1 between normal and tumor tissues. Finally, a KM plotter
was used to analyze the prognostic value of the five genes in HNSCC
patients.

RESULTS

Screening and Analysis of DE-GTRGs
A flow chart of the current study is shown in Figure 1A. We first
obtained the expression values of 169 glycosyltransferase genes in
normal and tumor tissues from the TCGA, and differential
analysis was performed according to the abovementioned
criteria. Twenty-nine DE-GTRGs were identified, among
which 10 were downregulated and 19 were upregulated
(Figures 1B,C). Based on the DE-GTRGs, a PPI network was
constructed through the GeneMANIA database, and significant
interactions were observed among these glycosyltransferases
(Figure 1D). In addition, a generally positive or negative
correlation was found among these DE-GTRGs (Figure 1E).

Construction of a Prognostic Signature
Univariate and multivariate Cox regression analyses were used to
screen genes associated with patient prognoses and construct a
prognostic signature. The results of the univariate analysis
showed that five DE-GTRGs were associated with the
prognosis of HNSCC patients, of which PYGL, ALG3,
KDELC1, and EXT2 were risk factors and FUT2 was a
protective factor (Figure 2A). Then, a prognostic signature
based on five GTRGs was constructed utilizing multivariate
Cox analysis, and the coefficients of the five genes are shown

FIGURE 4 | KM curves showed that the low-risk group had a better prognosis than the high-risk group stratified by the clinical features. (A) Age<=65 years and
age>65 years. (B) Female and male. (C) Grades 1–2 and grades 3–4. (D) Stages I–II and stages III–IV. (E) T1-2 and T3-4. (F) N0 and N1-3.
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in Figure 2B. Risk score = (0.043622*KDELC1) +
(0.009262*ALG3) + (0.00617*PYGL) + (0.003267*EXT2) -
(0.00738*FUT2). The median risk score was applied to divide
the HNSCC patients into a high-risk group and a low-risk
group. Patients in the low-risk group had a better prognosis
than those in the high-risk group (Figure 2C). As the risk score
increased, there were more deaths and shorter survival times

(Figure 2D). The areas under the curve (AUCs) of the signature
at 1, 2, and 3 years were 0.619, 0.656, and 0.675, respectively
(Figure 2E). The AUC of the risk score was 0.630, which was
higher than that of the other six clinical parameters (Figure 2F).
PCA and tSNE analyses were used to reduce dimensionality in all
patients, and we found that patients with different risk scores
could be distinguished significantly (Figures 2G,H). To analyze

FIGURE 5 | Analysis of the signature and clinical parameters. (A) Distribution of the clinical parameters and the expression of the five genes between the two
groups. (B) Difference analysis of the risk score grouped by the clinical parameters. Construction of the nomogram combined with the risk score and the clinical
parameters in the training cohort (C) and GSE65858 validation cohort (D). Calibration curve of the nomogram at 1-year, 2-year and 3-year survival in the training cohort
(E) and GSE65858 validation cohort (F). Pathways enriched in the high-risk group (G) and low-risk group (H) through GSEA. GSEA, gene set enrichment analysis.
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the prognostic value of the signature, univariate and multivariate
analyses were used, and the results showed that the risk score was
an independent risk factor for prognosis (Figures 2I,J).

Validation of the Signature in an External
Dataset
To validate the signature constructed through the TCGA, we
obtained the expression profile and clinical parameters of the
GSE65858 dataset. Similar to the training model, KM analysis
showed poor prognosis in the high-risk group (Figure 3A). An
increasing number of deaths were observed as the risk score
increased (Figure 3B). ROC curve analysis revealed that the
signature was of great value for patient prognosis. The AUCs
of the signature at 1, 2, and 3 years were high, and the AUC of the

risk score was 0.625, similar to the trainingmodel and higher than
the other clinical parameters (Figures 3C,D). The results of PCA
and tSNE analyses suggested that the prognostic signature can
effectively distinguish high- and low-risk patients (Figures 3E,F).
Again, the signature was an independent risk factor for patients in
the external dataset (Figures 3G,H).

Application of the Prognostic Signature in
Clinical Subgroups
To determine the value of the signature in different clinical
subgroups, we performed a stratified analysis. We divided the
patients into age ≤ 65 years, age >65 years, female, male, grades
1–2, grades 3–4, stages I–II, stages III–IV, T1–2, T3–4, N0, and
N1–3 groups based on various clinical parameters (age, sex,

FIGURE 6 | Immune landscape between the high- and low-risk groups based on multiple algorithms. (A) Comparison of the immune score, stromal score,
ESTIMATE score, and tumor purity between the high- and low-risk groups based on the ESTIMATE algorithm. (B) Heatmap of the immune cell infiltration calculated by
five algorithms, including TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and EPIC between the two groups. (C) Boxplot of the immune cell infiltration calculated
by the abovementioned algorithms between the two groups. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
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tumor grade, tumor stage, T stage, and lymph node metastasis).
The signature showed good efficacy in differentiating patient
outcomes across all subgroups (Figure 4), indicating that the
signature can be applied to all patients regardless of there being
multiple clinical variables.

Correlation With the Clinical Parameters
and Construction of the Nomogram
Due to the important value of the signature in different clinical
subgroups, we then analyzed its correlation with clinical
parameters. We found that the signature correlated
significantly with tumor stage and tumor size; that is, in
advanced tumors (stages III–IV) or when the tumor size was
large (T3-4), the risk score was higher (Figures 5A,B). We also
integrated the signature and clinical features to construct a
nomogram. The nomogram was constructed to predict the 1-
year, 2-year, and 3-year survival probabilities in the TCGA cohort
(Figure 5C) and in the GSE65858 cohort (Figure 5D). The
calibration curve showed good agreement between the
predicted and actual 1-year, 2-year, and 3-year survival rates
in both the training and validation cohorts (Figures 5E,F). GSEA
showed that the high-risk group was associated with a variety of
pathways related to tumor development, such as angiogenesis,

epithelial–mesenchymal transition (EMT), glycolysis, hypoxia,
and the TGF beta signaling pathway (Figure 5G), while the low-
risk group was mainly enriched in IL2-STAT5 signaling, KRAS
signaling, metabolism-related pathways, and others (Figure 5H).

Differences in Immune Cell Infiltration and
Immune Checkpoints
We first evaluated the immune score, stromal score, ESTIMATE
score, and tumor purity. The immune and ESTIMATE scores
were significantly lower in the high-risk group, while tumor
purity was higher in the high-risk group (Figure 6A). We also
compared the differences in immune cell infiltration between the
two groups according to various algorithms. Based on the
TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and
EPIC, we found that B cells, CD8+T cells, dendritic cells, and
Tregs were lower in the high-risk group and that cancer-
associated fibroblasts (CAFs) were higher in the high-risk
group (Figures 6B,C). In addition, we estimated the difference
in immune cells and immune function between the two groups by
using the ssGSEA algorithm. The results showed that immune cell
infiltration was similar to that of the previous algorithm
(Figure 7A), while multiple immune function scores were
lower in the high-risk group, including checkpoints

FIGURE 6 | (Continued).
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(Figure 7B). We, therefore, analyzed the differences between
immune checkpoints in the two groups. Most checkpoints were
significantly different between the two groups, and the expression
levels of immune checkpoints were lower in the high-risk group, a
pattern similar to that using the ssGSEA algorithm (Figure 7C).

Immunotherapy Analysis According to the
Signature
Immunotherapy has been considered to play an important role in
a variety of malignant tumors and can markedly improve the
prognosis. Therefore, it is necessary to identify people who may
benefit from immunotherapy. We evaluated the value of the
prognostic signature in immunotherapy for malignant tumors
using four cohorts. Patients in the high-risk group had a shorter
survival time (OS and progression-free survival) than those in the
low-risk group in the four cohorts (Figures 7D–I).

Relationship Between TMB and the
Signature
TMB was calculated based on the somatic mutation obtained
from the TCGA and was compared between the two groups. TMB
in the high-risk group was higher than that in the low-risk group
(Figure 8A), and the higher TMB group was associated with
shorter survival time (Figure 8B). In addition, a stratified analysis
based on TMB and the risk score showed significantly worse
outcomes in the high-TMB + high-risk group than in the low-
TMB + low-risk group (Figure 8C). Gene mutations visualized as
a waterfall plot showed that the five most frequent somatic
mutations in the high-risk group were those in TP53, TTN,
FAT1, CDKN2A, and MUC16 (Figure 8D), while the five
most frequent somatic mutations in the low-risk group were
those in TP53, TTN, FAT1, NOTCH1, and PIK3CA (Figure 8E).
Differential analysis between the two groups showed that the
mutation frequencies of TP53, CSMD1, NPAP1, AJUBA,

FIGURE 7 | Immune function, immune checkpoints, and immunotherapy analysis based on the signature. Comparison of immune cells (A) and immune function
(B) between the high- and low-risk groups through the ssGSEA algorithm. (C) Differences in the expression of 23 immune checkpoints between the high- and low-risk
groups. (D)KM curve of OS in Van Allen’s cohort grouped by the signature. KM curves of OS (E) and PFS (F) in Braun DA’s cohort. (G) KMcurve of OS in Riaz N’s cohort.
KM curves of OS (H) and PFS (I) in David Liu’s cohort. OS, overall survival; PFS, progression-free survival. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
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FIGURE 7 | (Continued).

FIGURE 8 |Relationship between the risk score and TMB. (A)Comparison of TMB between the high- and low-risk groups. (B) KM curve of the low-TMB and high-
TMB groups. (C) KM curve of the HNSCC patients stratified by TMB groups and risk groups. Oncoplots displaying the top 30 somatic mutated genes in the high-risk
group (D) and the low-risk group (E). (F) Differences of the mutation frequency of the genes between the two groups. TMB, tumor mutational burden. (*p < 0.05).
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CDKN2A, MUC17, and PRDM9 were higher in the high-risk
group (Figure 8F).

Validation of the Selected Genes in Various
Databases
ThemRNA expression levels of the five genes in GSE30784 revealed
that PYGL, ALG3, EXT2, and KDELC1 were upregulated while
FUT2 was downregulated in HNSCC (Figure 9A). The differential
expression analysis of the genes in the 40 paired normal and tumor
tissues in GSE37991 showed similar results (Figure 9B).
Furthermore, the expression level detected in one normal and
six tumor cell lines was essentially consistent with that in tissues
(Figure 9C). The immunohistochemistry images of PYGL, ALG3,
FUT2, and KDELC1 in normal oral mucosa andHNSCC tissues are
shown in Figure 9D. Meanwhile, the protein levels in the UALCAN
database suggested that PYGL, EXT2, and KDELC1 were higher
while FUT2 was lower in HNSCC tissues (Figure 9E). Finally, we
performed survival analysis using KM curves in the KM plotter
database. The results showed that the prognosis of patients with
high expression of PYGL, ALG3, EXT2, and KDELC1 was worse,
while high expression of FUT2 indicated longer survival time
(Figure 9F).

DISCUSSION

Recently, due to advances in precision therapy in tumors, a
variety of researchers have constructed prognostic models or
identified molecular subtypes based on the associated gene sets of
various malignant phenotypes. Qiu et al. constructed a prognostic
model based on ferroptosis-related genes in pancreatic cancer and
found possible correlations with different immune cells and
classic immune checkpoints (Qiu et al., 2021). However, few
researchers have constructed a prognostic model or identified
subtypes based on GTRGs in different tumors. A previous study
identified a series of glycosyltransferases and proposed a
signature based on GTRGs to better classify pancreatic cancer
patients with different prognoses and found the specific
mechanisms of glycosylation in tumors and the
microenvironment during tumor development (Mohamed
Abd-El-Halim et al., 2021). Therefore, we aimed to identify
the role of glycosyltransferases in HNSCC and construct a
prognostic signature.

In this study, we identified a prognostic signature based on the
five GTRGs (PYGL, ALG3, EXT2, FUT2, and KDELC1) through
univariate and multivariate Cox regression analyses. The
signature was proven to be an independent risk factor for

FIGURE 9 | Expression and prognosis validation of the five glycosyltransferases. (A) Difference in the mRNA level of the five genes between 45 normal and
167 tumor tissues in the GSE30784 dataset. (B) Difference in mRNA level of the five genes between 40matched normal and tumor tissues in the GSE37991 dataset. (C)
mRNA level of the five genes in one normal cell line (HaCaT) and six HNSC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25, and SQ20B) in the
GSE62027 dataset. (D) Immunohistochemistry images of the four glycosyltransferases in oral mucosa and HNSCC tissues from the HPA database. (E) Protein
level of the four proteins between normal and tumor tissues in the UALCAN dataset. (F) KM curves of the five genes in HNSCC patients through the KM-plotter database.
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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HNSCC. In addition, the GSE65858 dataset was used to verify the
prognostic performance of the signature, and we found that it can
well-distinguish the prognoses of patients at high and low risk.
We also found that the signature was closely related to immune
cell infiltration and immune function. Patients in the high-risk
group often had lower expression of immune checkpoints.
Analyses of several immunotherapy cohorts also demonstrated
that the signature can well-differentiate whether patients benefit
from immunotherapy.

PYGL is a key phosphorylase that catalyzes the release of
glucose molecules from glycogen (Han et al., 2018). A previous
study indicated that an increased PYGL expression level was
associated with increased tumor size in breast cancer, suggesting
that PYGL may participate in tumor progression. In vitro and in
vivo, hypoxia can induce the upregulation of glycogen
metabolism and accumulation of glycogen in the early stage.
The depletion of PYGL and decrease in glycogen accumulation
decreased nucleotide synthesis and increased reactive oxygen
species (ROS) levels, resulting in a decrease in breast cancer

growth (Favaro et al., 2012). Several studies found that PYGL
expression was upregulated in several cancers, including
seminoma, brain cancer, and papillary renal cell carcinoma.
KCNMB2-AS1 promotes esophageal cancer development by
binding to miR-3194-3p and further upregulating PYGL
expression (Xu et al., 2021). Numerous results have shown
that PYGL is a vital target for anticancer therapy.

ALG3 is located on chromosomal region 3q27.1 and is a
member of the mannosyltransferase family. Aberrant
expression of several high-mannose type N-glycans during
cancer progression has been increasingly identified (Munkley
et al., 2016). Upregulation of ALG3 promoted the progression of
cervical cancer (Choi et al., 2007) and non–small-cell lung cancer
(Ke et al., 2020) and was proven to be associated with lymph node
metastasis in esophageal squamous cell carcinoma (Shi et al.,
2014). High ALG3 expression, negatively regulated by miR-98-
5p, exerted a pro-carcinogenic effect by promoting EMT, thus
leading to poor prognosis in non–small-cell lung cancer (Ke et al.,
2020). In a 30-sample breast cancer cohort (including

FIGURE 9 | (Continued).

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 85667113

Wu et al. Glycosyltransferase-Related Signature in HNSCC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


15 radioresistant and 15 radiosensitive tumors), ALG3 was the
most highly expressed of the ALG family in the radiation-
resistant tissue. In addition, high ALG3 expression was
associated with poor clinical parameters, short OS, and short
relapse-free survival (Sun et al., 2021). A cancer stem cell–like
(CSC) shape is thought to be the main cause of radioresistance
(Knezevic et al., 2015). ALG3 can increase the radioresistance and
tumor stemness of breast cancer cells and can upregulate several
key CSC-like markers (Nanog, OCT4, and SOX2) by promoting
the glycosylation of TGF-beta receptor II (Sun et al., 2021).

EXT2 is a member of the exotoxin glycosyltransferase family
and is involved in the elongation of heparan sulfate (Ahn et al.,
1995; Busse and Kusche-Gullberg, 2003). A large number of
studies have found that mutations in EXT1 and EXT2 lead to
loss of the protein domain, which is closely related to multiple
osteochondromas (Guo et al., 2021; Tong et al., 2021). EXT2 was
downregulated in breast cancer cells (Sembajwe et al., 2018) but
upregulated in squamous cell lung carcinoma (Wu et al., 2021).
Moreover, Huang et al. found that EXT2 was an independent risk
factor for hepatocellular carcinoma (Huang et al., 2019).

Inactivating polymorphisms in FUT2, which encodes alpha
1,2-fucosyltransferase, were found to be associated with the
increasing incidence of HNSCC (Campi et al., 2012; Su et al.,
2016). FUT2 was decreased in HNSCC cells, and downregulation
of FUT2 was related to a short survival time. EGFR was proven to
be one of the potential alpha 1,2-fucosylated adhesion molecules
(Montesino et al., 2021). In addition, FUT2 was upregulated and
promoted cell migration and invasion in lung adenocarcinoma. A
potential mechanism suggests that FUT2 may be involved in the
TGF-beta/SMAD signaling pathway (Deng et al., 2018). The
effect of FUT2 on tumor development and progression was
also observed in breast cancer. Specifically, FUT2 can promote
the proliferation, migration, and invasion of cells and is related to
cell morphology changes, that is, from cuboidal to small and
round cells (Lai et al., 2019). The expression of FUT2 was also
downregulated by miR-15b and can facilitate the proliferation in
hepatocellular carcinoma (Wu et al., 2014).

POGLUT2, formerly known as KDELC1 and homologous to
POGLUT1, is a newly discovered protein O-glucosyltransferase
that modifies sites different from POGLUT1 and can affect the
Notch signaling pathway (Takeuchi et al., 2018). POGLUT2 was
an independent prognostic factor and was used to construct a
prognostic signature in clear cell renal cell carcinoma (Li et al.,
2021), but few studies have examined the tumor mechanism.

Using multiple immune cell infiltration assessment
algorithms, we found that the numbers of CD8+ T cells and
Tregs were lower in the high-risk group, while the number of
CAFs was higher. A previous study found that an increase in
CD8+ T cells was an important prognostic indicator for OS in
patients with relapsed HNSCC (So et al., 2020). Tregs play an
important role in suppressing spontaneous tumor-associated
antigen-specific immune responses (Oweida et al., 2019). Tregs
were shown to be highly enriched in in situ HNSCC models and
were associated with chemotherapy resistance (Oweida et al.,
2018). Compared to healthy donors, HNSCC patients had

increased tumor and blood Treg levels and lower CD8/Treg
ratios. Indeed, high Treg and low CD8+ T-cell levels were
considered poor prognostic factors for various tumors,
including melanoma, ovarian cancer, colorectal cancer, and
HNSCC. (Overacre-Delgoffe et al., 2017; Dolina et al., 2021),
consistent with our results. CAFs are considered to be one of the
most abundant mesenchymal cells and are observed in almost all
types of solid tumors (Liu et al., 2019b; Chen and Song, 2019).
Studies have shown that CAFs are associated with multiple
biological oncogenic behaviors such as migration, invasion,
self-renewal of tumor stem cells, chemotherapy resistance, and
immune cell evasion (Zhang et al., 2013; Costa et al., 2018; Su
et al., 2018). In oral squamous carcinoma, a higher density of
CAFs suggests a more advanced tumor stage, a greater likelihood
of lymph node metastasis, a greater incidence of local recurrence
and distant metastasis, and a shorter survival time (Luksic et al.,
2015). In addition, CAFs have been shown to play an important
role in promoting HNSCC progression (Wheeler et al., 2014),
mainly by secreting growth factors such as IL-6 and IL-8 (New
et al., 2017), remodeling the extracellular matrix and enhancing
therapeutic resistance (Bergers and Hanahan, 2008).

However, some deficiencies can also be found in our study.
First, our data were based entirely on the public databases, such as
the TCGA and GEO, and lacked experimental validation for the
expression differences and prognostic model efficacy. Second, the
pro- or antitumor phenotypes or mechanisms of the five genes
have not been confirmed by in vivo or in vitro experiments. Third,
the effect of the signature with respect to immunotherapy should
be further examined using real-world data in future research.

CONCLUSION

We proposed a prognostic signature for HNSCC patients
constructed by incorporating five GTRGs from public
databases. The high-risk group had lower immune CD8+

T cell and Treg infiltration but higher CAF infiltration.
Furthermore, the signature can help judge prognostic
differences in HNSCC patients and screen patients who may
benefit from immunotherapy.
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