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Abstract

Constraint-based approaches have been used for integrating data in large-scale metabolic networks to obtain insights into
metabolism of various organisms. Due to the underlying steady-state assumption, these approaches are usually not suited
for making predictions about metabolite levels. Here, we ask whether we can make inferences about the variability of
metabolite levels from a constraint-based analysis based on the integration of transcriptomics data. To this end, we analyze
time-resolved transcriptomics and metabolomics data from Arabidopsis thaliana under a set of eight different light and
temperature conditions. In a previous study, the gene expression data have already been integrated in a genome-scale
metabolic network to predict pathways, termed modulators and sustainers, which are differentially regulated with respect
to a biochemically meaningful data-driven null model. Here, we present a follow-up analysis which bridges the gap between
flux- and metabolite-centric methods. One of our main findings demonstrates that under certain environmental conditions,
the levels of metabolites acting as substrates in modulators or sustainers show significantly lower temporal variations with
respect to the remaining measured metabolites. This observation is discussed within the context of a systems-view of
plasticity and robustness of metabolite contents and pathway fluxes. Our study paves the way for investigating the
existence of similar principles in other species for which both genome-scale networks and high-throughput metabolomics
data of high quality are becoming increasingly available.
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Copyright: � 2014 Töpfer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Max-Planck-Society (http://www.mpg.de/). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: nikoloski@mpimp-golm.mpg.de

Introduction

Organisms, especially plants, are exposed to almost perpetually

changing environments (e.g., light intensity and quality, nutrient

and water supply) to which they respond by readjusting their

cellular setup to efficiently utilize available resources and to ensure

viability [1–6]. These transitions are often systemic in that they

affect almost all levels of cellular organization, starting from gene

expression to protein abundances and metabolite levels [7–9].

Therefore, a systems-based analysis is particularly suited for

understanding the responses of plants to changes in the

environment. Such an approach offers the possibility to integrate

data which were simultaneously collected across different cellular

levels to identify dependence between processes and to aid in

testing hypotheses concerning the behavior of individual compo-

nents or pathways.

Constraint-based approaches provide a modeling framework

which is particularly amenable for systems-based analyses, since

they not only allow for the integration of high-throughput data,

but also rely almost solely on the stoichiometry of the reactions

included in the models. For instance, with the help of Flux Balance

Analysis (FBA, for details see Material and Method section)

[10,11] condition-specific steady-state flux distributions and

growth capabilities can be readily predicted [12]. Moreover,

recent studies have established that integration of high-throughput

data can narrow down the space of feasible flux distributions and,

therefore, results in improved predictions of biomass or contributes

to more physiologically realistic engineering strategies [13–15].

The existing constraint-based approaches, which integrate data

rely mostly on transcriptomics data and assume a relationship

between the expression level of a given gene and the flux

boundaries of the corresponding reaction in the metabolic network

[14,16,17].

However, one of the main drawbacks of most constraint-based

approaches lies in the nature of their problem formulation, i.e., the

steady-state assumption, which precludes the integration and

prediction of metabolite levels (detailed in the Materials and

Methods section). Therefore, these approaches usually neglect the

metabolome i.e., the levels of all considered metabolites which,

along with reaction fluxes, act as one of the most informative

indicators of the cellular metabolic state [18]. Existing attempts to

integrate metabolite levels/concentrations into constraint-based

approaches are restricted to predictions of reaction directionality

via thermodynamic analysis [19–21] or require relaxation of the
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steady-state assumption [22]. In the current study, we ask whether

(and if so, to what extent) we can make inferences about metabolite

levels from a constraint-based analysis that is based on the

integration of transcriptomics data.

In order to do so, we extend a previous study in which we used

microarray data from Arabidopsis thaliana [23,24] and integrated

them in a metabolic network [25] to predict flux capacities for a

large set of pathways under eight different light- and temperature

conditions [26]. Furthermore, to make statistical statements, we

compared the flux capacity profiles to those obtained from a

biochemically meaningful data-driven null model. Based on this,

we defined a pathway to be differential under a given condition if

it exhibits a flux capacity profile that has an average absolute

z{score greater that 2 with respect to the null model. Moreover,

we introduced the concept of metabolic sustainers and modulators.

Sustainers are metabolic functions that are differentially up-

regulated with respect to the null model and sustain a certain

functioning, whereas modulators are differentially down-regulated

[23,24] to control a certain flux and modulate affected processes.

A more detailed description of this study is given in the Results

section.

Here, we present observations that link predictions made

from the integration of transcriptomics data to metabolomics

data from the same experiment. By doing so, we bridge the gap

between flux- and metabolite-centric approaches. Most impor-

tantly, our findings demonstrate that under certain conditions,

metabolites acting as substrates in pathways defined as

modulators or sustainers of the metabolic state show a

significantly lower temporal variation in comparison to the

remaining metabolites. These observations are discussed within

the context of a systems-view of plasticity and robustness of

metabolite content as well as reaction/pathway fluxes. Taken

together, our results demonstrate the power of transcriptomic

data in predicting metabolic behavior in large-scale models and

suggest an underlying regulatory principle governing metabolic

stability.

Results

Data integration in a constraint-based model to predict
condition-specific differential metabolic functions

FBA’s objective function has a large effect on the predicted flux

distribution [27]. For microorganisms under ambient conditions,

the maximization of growth is a widely used cellular objective

[28,29]. However, when modeling plants metabolism this assumed

objective does not necessarily hold true. Plants are more complex

than microorganisms. They have multiple compartments within

the cell, different cell types, several tissues and organs, which make

it difficult to define a single objective function for the entire plant.

Defining such an objective becomes even more challenging under

stress conditions which have been shown to drastically alter plant’s

cellular chemical composition (see [5,30,31] and references

therein).

In consideration of the absence of a reasonable biological

objective function for plants experiencing stress, in our previously

presented approach [23] we did not attempt to make predictions

about actual fluxes through a metabolic pathway but rather aimed

at predicting flux capacities. These capacities are derived from the

integration of transcriptomics data into a large-scale metabolic

model and represent maximum fluxes which certain pathways can

carry under certain environmental conditions. While this concept

can also be applied to single reactions of a network, we relied on

the investigation of the functional units, the pathways, or in a more

generic terminology, the metabolic functions.

We employed a transcriptomics dataset which captures the

temporal response of Arabidopsis thaliana to eight different light and

temperature conditions [26] and used the data to constrain the

upper and lower flux boundaries of the reactions based on the E-

Flux method [16] in a recent compartmentalized genome-scale

model of Arabidopsis [25]. Subsequently, we predicted the flux

capacities through a set of 167 metabolic functions, from primary

and secondary metabolism, for each time-point and each

condition.

Furthermore, to make statistical statements about the metabolic

functions under consideration we compared the resulting flux

capacities to predictions from a null model as a reference state.

This analysis was motivated by the need to determine behavior of

a metabolic function in a particular condition irrespective of an

artificially placed reference state, which may not be representative

for the ‘‘naturally occurring environment’’ which the plant

experiences in the field. The employed null model was based on

the permutation of the assigned flux boundaries while keeping

thermodynamic and exchange constraints unaltered. In this

manner, we circumvented issues with the selection of a reference

state and relied on the average behavior determined solely by the

network structure and the imposed flux boundaries. We re-

computed the flux capacities from the null model for 100

repetitions for each time point and condition. Based on this, a

metabolic function was deemed differential if it showed an

absolute z{score greater than 2 with respect to the expectation

from the null model in at least one but not all conditions under

consideration. Pathways that were differentially up-regulated were

termed sustainers—sustaining a certain metabolic functioning,

while those that were differentially down-regulated were referred

to as modulators—modulating a certain metabolic functioning. A

complete list of these pathways and their classification under the

eight conditions considered is given in [23].

Metabolites in metabolic functions
The working hypothesis of this study was motivated by the

following: The determined modulators and sustainers exhibit flux

Author Summary

Organisms are usually exposed to changing environments
and balance these perturbations by altering their meta-
bolic state. Gaining a deeper understanding of metabolic
adjustment to varying external conditions is important for
the development of advanced engineering strategies for
microorganisms as well as for higher plants. One tool
which is particularly suited for investigating these pro-
cesses is genome-scale metabolic models. These large-
scale representations of the underlying metabolic net-
works enable the integration of experimental data and
application of constrain-based mathematical approaches
to estimate flux rates through the chemical reactions of
the network under different environmental scenarios.
However, for most of these approaches the assumption
of a steady-state (flux balance) is indispensable and
therefore precludes the prediction of metabolite concen-
trations. Here, we present a data-driven observation that
relates results from a flux-centric constraint-based ap-
proach that is based on transcriptomics data to metabolite
levels from the same experiments. Our observations
suggest that constraint-based modeling approaches in
combination with high-throughput data can be used to
infer regulatory principles about the plasticity and robust-
ness of metabolic behavior from the stoichiometry of the
underlying reactions alone.

Differential Pathways and Metabolite Variability
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capacities significantly different from the capacities expected by

the null model. Furthermore, we observed that the direction of the

differential behavior is unaltered across environmental conditions

(i.e., differential metabolic functions are robust, or in genetic

terminology, canalized [32,33]). Therefore, we expected the

likelihood for this observation to increase if the metabolites

participating in these differentially behaving functions show

persistently smaller fluctuations compared to metabolites involved

in other functions. To test this hypothesis, we analyzed the

metabolite profiles that were collected alongside with the

transcriptomics data in the same experiments [26]. A schematic

representation of the overall workflow from the data mapping and

integration to the statistical analysis is provided in Figure 1. For

each of the eight environmental conditions and set of investigated

functions, we categorized the 65 mapped metabolites (see

Materials and Methods) according to the following criteria: (1)

participation in (non-)differentially behaving metabolic function

and (2) metabolite, substrate, or product of a pathway. In addition,

we made the distinction between substrates/products and initial

substrates/initial products of the pathway.

We defined a substrate of a pathway as any metabolite that acts

as a substrate in a reaction involved in the pathway but not as

product/intermediate of the same pathway. Furthermore, an

initial substrate is a substrate in the first reaction of the pathway. In

an analogous manner: a product of a given pathway is defined as

any metabolite acting as a product in a reaction of the pathway but

not as a substrate/intermediate of the pathway. A product of the

last reaction of the pathway is defined as a final product. For the

metabolic function in Figure 2, S1,i, S2,i, S3 and S4 are substrates,

Figure 1. Schematic representation of the analysis framework. Transcriptomics and metabolomics data capturing Arabidopsis thaliana’s
temporal response to eight different environmental conditions (combinations of different light and/or temperature regimes) are collected for a time-
series of 24 hours. The transcriptomic data are used to constrain flux boundaries of the respective reactions in a large-scale network by assuming a
correlation between the transcript abundance and the upper flux boundary through the respective enzyme-catalyzed reaction. Based on a model
with randomized flux boundaries (null model), pathways are classified as differential for a given condition if they exhibit an absolute z{scorew2.
Differentially up-regulated (down-regulated) pathways are termed sustainers (modulators) of the metabolic state, respectively. Independently from
this categorization, the temporal variation of the metabolite profiles was determined. Under certain conditions, substrates in the differential
pathways exhibit a significantly lower temporal variation with respect to other groups of metabolites.
doi:10.1371/journal.pcbi.1003656.g001

Figure 2. Representation of a metabolic function and its
metabolites. Shown is a metabolic pathway with four reactions,
represented by the arrows. The dots represent the metabolites, which
are categorized as substrates S, intermediates I and products P with
the subgroup of initial substrates Si and final products Pf .
doi:10.1371/journal.pcbi.1003656.g002

Differential Pathways and Metabolite Variability
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while S1,i and S2,i are initial substrates; moreover, P1,P2,f and

P3,f are products, while P2,f and P3,f are final products.

Variability of substrates in differential metabolic
functions

We calculated the variability of each considered metabolite over

the time course following the perturbation by calculating the

coefficient of variation (CV) as described in the Materials and

Methods section. In order to determine differences in the

distribution of CVs over the considered categories of metabolites

we employed the Wilcoxon rank-sum test (which also is applicable

to non-normal distributions) at a significance level of 0.05. We

considered the distribution of CVs across all metabolites, across

products only, and across substrates only, in the following six

comparisons of groups: modulators vs. all metabolites, sustainers

vs. all metabolites, differentially behaving functions (i.e., modula-

tors and sustainers) vs. all metabolites, modulators vs. non-

modulators, sustainers vs. non-sustainers, and differentially

behaving functions vs. non-differentially behaving functions. As

shown in Table 1, this summed up to a total of 144 statistical tests

for three categorizations of metabolites over six groupings under

eight conditions. A list containing the numbers of tested

metabolites for each scenario is given in the Supporting

Information S1.

First, considering the group of all metabolites (Table 1 top), we

found the mean CV of metabolites involved in differential

metabolic functions to be smaller in comparison to the mean

CV of all metabolites under one conditions, i.e., high-light (210C

and 300mEm{2s{1, p{value~0:019). This was also the case

when considering the mean CV of metabolites in modulators and

sustainers, separately (p{value~0:040 and 0:024, respectively).

Secondly, analyzing the group of products of the pathways, we did

not observe any significant differences in the CVs in any of the

tested groups under any of the eight conditions (Table 1 middle).

In contrast, investigating the third group—the substrates

(Table 1 bottom) — we found the mean CV of the substrates in

modulators to be significantly smaller than the mean CV of all

metabolites under two conditions, i.e., 320C{150mEm{2s{1

(p{value~0:030) and 210C{300mEm{2s{1 (p{value~
0:019). Moreover, the mean CV of the substrates in sustainers

was significantly smaller than the mean CV of all meta-

bolites under one condition, i.e., 210C{300mEm{2s{1

(p{value~0:033). Altogether, the mean CV of the substrates in

differentially behaving metabolic functions was significantly

smaller than the mean CV of all metabolites under

three conditions, namely, under 320C{150mEm{2s{1

(p{value~0:033), 210C{75mEm{2s{1 (p{value~0:026),

and 210C{300mEm{2s{1 (p{value~0:008). Furthermore,

the mean CV of the substrates in modulators was significantly

smaller than the mean CV of substrates in non-modulators under

two conditions, i.e., 40C{darkness (p{value~0:004) and

320C{150mEm{2s{1 (p{value~0:037), while the mean CV

of sustainers was significantly smaller than the mean CV of

substrates in non-sustainer under 320C{darkness
(p{value~0:046). Finally, the mean CV of the substrates in

differentially behaving metabolic functions was significantly

smaller than the mean CV of substrates in all non-differential

functions under four conditions, namely under 210C{darkness
(p{value~0:043), 40C-darkness (p{value~0:033), 320C{

150mEm{2s{1 (p{value~0:046), and 210C{75mEm{2s{1

(p{value~0:029).

Figure 3 shows a histogram of the distribution of CVs for all

measured metabolites and those that participate as substrates in

the metabolic functions which were previously identified as

sustainer or modulator over all eight investigated conditions.

Histograms for each condition separately can be found in the

Figure S2 in Supporting Information S2.

Inspecting the list of mapped metabolites, we identified 15 out

of 65 to act as substrates in a differential pathway in at least one of

the considered conditions, namely: alanine, pyruvate, serine,

threonine, aspartate, methionine, glutamine, 2-oxoglutarate,

citrulline or arginine, spermidine, glycine, glutamate, ethanol-

amine, valine, and b-alanine. The temporal profiles of these

metabolites for those conditions in which they act as substrates in

modulator or sustainer are shown in Figure 4. All of these

metabolites are either amino acids or essential intermediates in

central carbon or nitrogen metabolism. The differential pathways

they belong to fall into the larger groups of primary nitrate

assimilation (glutamate, glutamine, and 2-oxoglutarate), photores-

piration (glycine, serine, and ethanolamine), TCA cycle (pyruvate

and 2-oxoglutarate), amino acid metabolism (alanine, arginine,

threonine, aspartate, methionine, and valine) and polyamine

biosynthesis (spermidine and b-alanine). A discussion about the

involvement of the respective differential pathways in stress

responses to the eight environments investigated was already

given in [23]. Apart from their involvement as substrates in

modulators and sustainers, these metabolites have also been

implicated in various other stress responses, e.g., anoxia [34] or

hypoxia [35], oxidative stress [36], drought stress [37], or general

stress responses [38,39].

Additionally, we tested if the described patterns of robustness in

the metabolite profiles can also be found in the flux capacity

profiles of the differential metabolic functions they belong to.

Interestingly, only for 320C{darkness we also observe the flux

capacity profiles of the differential pathways to exhibit significantly

lower CVs than the non-differential pathways (p{value~0:029).

Another general observation that we made is, that for all metabolic

functions for which substrate measurements were available, the

CVs of these substrates were significantly lower than the CVs of

the respective flux capacity profile. These two observations further

underline the none-trivial interconnection between flux rates and

the levels of metabolites.

Substrates in differential metabolic functions are more
connected

Next, we investigated whether the group of substrates in

differential metabolic functions shows distinct characteristics with

respect to the network topology. For the analysis we neglected

evidently ubiquitous cofactors, such as: O2, CO2, Hz, ADP, ATP,

H2O, NAD(P)z, NAD(P)H, CoA, (pyro-)phosphate. This strat-

egy has also been followed in other studies [40]. Furthermore, to

arrive at a value for the connectivity of each metabolite, i.e., the

number of reactions in which a metabolite is involved (as defined

in [41]), we kept the compartmentalized structure of the network

and considered the instances of a metabolite appearing in more

than one compartment as different reactants. Based on the given

stoichiometry we determined the number of reactions in which

each metabolite participates. Interestingly, we find the group of

measured substrates of differential pathways to be on average

significantly more connected than the group of all metabolites—

6.24 vs. 2.99 reactions (p{value~3:75e{06, Wilcoxon rank-sum

test). Clearly, one has to keep in mind that our analysis is based on

a generic compartmentalized network reconstruction. The con-

nectivity values might vary in different tissues, due to the presence

or absence of certain pathways. Nevertheless, we belief that the

well-curated model we use in our study serves a good starting point

for the analysis.

Differential Pathways and Metabolite Variability
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Differential metabolic functions have less substrates
To further investigate which attributes are typical for differen-

tially behaving pathways, we next investigated the number of

(initial) substrates of the pathways. Cofactors of the considered

reactions were neglected from the analysis (see Supporting

Information S3). Counting the number of substrates, we found

their average number in the differential pathways to be

significantly smaller in comparison to all considered pathways/

all non-differential pathways (2.6 and 3.3/3.5 substrates,

p{value~0:016/p{value~0:004, respectively). In contrast to

this, when considering the number of initial substrates, we found

that 29.7% of differential pathways have two initial substrates,

while the remaining ones have only one substrate. In the whole

group of metabolic pathways and the group of non-differential

pathways this value is lower (25.5% and 26.2%, respectively)

although not significant.

Discussion

In this study, we extended our earlier analysis of Arabidopsis’s

metabolic acclimation to varying light and/or temperature

Figure 3. Histogram of temporal coefficient of variation for metabolites. Distribution of CVs over all measured metabolites (green) and all
metabolites identified as substrates in a differentially behaving functions for the respective conditions (red). The plot summarizes the distributions
over all eight considered conditions.
doi:10.1371/journal.pcbi.1003656.g003
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conditions which was based on transcriptomics data [23,24]. Here

we considered metabolomics data from the same experiment and

investigated the temporal variation of the metabolite profiles. Our

findings from the integrative analysis include the following: (i) for

specific environmental conditions, differential metabolic functions

have substrates, which on average show a lower CV than other

metabolite groups tested, (ii) when considering the network

topology, these substrates are on average more connected than

the remaining metabolites and (iii) differential metabolic pathways

have on average fewer substrates than the other metabolic

functions investigated.

Closer inspection of the environmental conditions that exhibit

low substrate variability leads to the following hypothesis: substrate

robustness can be observed under stressful environmental condi-

tions. Yet, we do not observe substrate robustness, or in genetic

terms canalization, under conditions which are not perceived as

stress by the plant (e.g., 210C{150mEm{2s{1) and moreover the

canalization effect might get lost under those conditions which are

too extreme or prolonged (e.g., 40C{85mEm{2s{1). The latter

scenario might cause a serious disturbance of the acclimation

which could potentially lead to non-resilience, i.e., non-recovery.

Therefore, we believe that the observed substrate robustness is an

inducible genetic mechanism, both depending on the metabolic

network structure and the specific environmental condition.

Determining the range of conditions that permit the observed

robust behavior would be an interesting undertaking for future

experimental testing.

Deriving flux values from transcriptomics data is a delicate

issue. In recent years, a large set of methods have been proposed

that use transcriptomics data to infer condition-specific networks,

mainly applied on microorganisms (GIMME, [42], iMat [43],

E-flux [16], PROM [44], MADE [45], TEAM [46]). While most

approaches rely on a discretization of the expression data and

employ user-defined thresholds, the here applied E-flux method

does not rely on these requirements. It assumes a relationship

between the amount of a certain transcript and the upper flux

boundary of the respective reaction. While mechanisms, such as

post-transcriptional modification and hierarchical regulation

[47,48] cannot be explicitly considered, they are implicitly

accounted for by only restricting the upper flux boundary. In

other words if a certain amount of transcript was measured the

predicted flux can range between zero and the upper

boundary; no enforcements on certain minimum flux values

are made. Additionally, claims are even made with more

reservation since the approach does not attempt to predict

actual fluxes but flux capacities that are compliant with the

data. Moreover, one needs to keep in mind that the employed

metabolite data are not compartment-specific. In the analysis

presented here, we assigned the same metabolite profile to each

compartment-specific compound in the model. It would be

interesting to investigate in future studies, when more

compartment-or tissue specific metabolite data become avail-

able, if the observed patterns of substrate robustness are not

only specific for certain environments, but also for particular

compartments or tissues.

Finally, like any other modeling attempt, any results

depend on the quality of the network as well as on the

quality of the collected data. Here, we relied on the most

recent and most comprehensive network reconstruction of

Arabidopsis and a dataset that was collected with a single

technology in a single laboratory to minimize technical

artifacts.

Figure 4. Time-series of the metabolites acting as substrates in differential metabolic functions. Profiles of the relative metabolite
content of those measured metabolites that act as substrates in a pathway classified as differential with respect to the null model under the
respective condition. The horizontal line indicates time point 60 minutes after stress application. All measurements before that time point were
excluded from the analysis since they represent the phase of initial re-organization and transition into a new metabolic state.
doi:10.1371/journal.pcbi.1003656.g004
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Comparison to related studies
The principle of keeping levels of metabolites involved in

important pathways from exhibiting fluctuations was recently

discussed in another context. Reznik at al. used the dual

formulation of a classical FBA problem, which uses the

maximization of biomass as a cellular objective, to compute

sensitivities of the objective value to flux imbalances, i.e., deviations

from the steady-state assumption [49]. The so-called shadow price

of a given metabolite captures the influence of the metabolite’s

accumulation or depletion on the maximum value of the objective.

Thereby, a negative shadow price implies that the corresponding

metabolite is growth limiting. By using data from S. cerevisae under

different nutrient limiting conditions the authors were able to show

that the determined shadow prices negatively correlate with the

growth limitation of the respective measured intracellular metab-

olites. Moreover, based on these findings, the authors argued that

growth-limiting metabolites cannot exhibit large fluctuations.

Using data from E. coli’s metabolic response to carbon and

nitrogen perturbations, they further demonstrated that metabolites

associated with a negative shadow price indeed show lower

temporal variation in comparison to metabolites with zero shadow

prices in a perturbed system.

What both approaches, ours and the one briefly described

above, have in common is the principle that metabolites important

for a particular function exhibit less temporal variation than other

metabolites. In the latter, an important metabolite is defined as a

metabolite with a negative shadow price with respect to the

assumed cellular objective of growth maximization. In contrast to

this, our analysis is driven by integration of transcriptomics data

and does not assume a particular overall cellular objective. In our

approach, we consider a metabolite relevant if it acts as a substrate

in a metabolic pathway which behaves differentially in comparison

to a condition-specific null model for flux capacities. These

relevant metabolites may thus play a role in the plant acclimation

to environmental changes.

The role of substrates of differential metabolic functions
in network topology

Additionally to the observed substrate robustness in differential

pathways under certain abiotic stress conditions, we also showed

that these substrates are on average more connected i.e., involved

in more reactions. The role of these highly connected metabolites

has previously been discussed in terms of evolution [40,50]. In the

latter, the authors identified among others, pyruvate, serine,

aspartate, 2-oxoglutarate, and glutamate and put forward the

hypothesis that the most highly connected metabolites should also

be the phylogenetically oldest [40]. The connection between

metabolites involved in core reaction of central carbon metabolism

and their involvement in abiotic stress acclimation, together with

the observation that they are on average more connected, extends

this concept and puts the evolutionary structure of metabolic

networks into a more dynamic context—one which also accounts

for the changing environments affecting the organism.

The role of substrates as systems input in terms of
number and variability

Our third finding concerning the smaller number of substrates

in differentially behaving metabolic functions has wide implica-

tions on the interplay between plasticity and robustness in

metabolism. Most notably, our findings differ from claims made

with respect to evolution of robustness and cellular stochasticity of

gene expression. In a recent study, the author proposed that the

degree to which varying cellular components combine to

determine robust phenotypes may be predictive of the amount

of their inherent variability. The basis for this claim is the

observation that averaging over multiple independent inputs is a

general way to reduce variability of molecular phenotypes [51].

This implies that the larger the number of variable inputs is, the

smaller the variability of the phenotypic output will be. However,

this observation does not apply to metabolic reactions which are

governed by multiplicative (e.g., mass action, as the simplest) rather

than averaging laws. Here we observe that fewer input variables

with smaller fluctuations, do not necessarily result in smaller

fluctuations of the output (i.e., the flux capacity in our case) but in

robust differential behavior. Furthermore, our findings also

showed that for all metabolic functions for which substrate

measurements are available, the CVs of their substrates are

significantly lower than the CVs of the respective flux capacity

profile. This further highlights the particularities of regulation,

variability, and robustness of metabolic pathways.

Further biological implications
Robustness of certain pathway fluxes and specific metabolite

concentrations have long been documented. The concept of

network rigidity has initially been proposed in S. cerevisae [52].

Subsequently it has been demonstrated to be functional in plant

systems too, especially in the context of central metabolism

[53,54]. Moreover, considered evidence has also accrued for

certain metabolite levels to be exceptionally stable, for example the

levels of alanine, pyruvate, 2-oxoglutarate, glutamine and spermi-

dine [55,56]. Furthermore, it has been shown that levels of

metabolites such as serine coordinately control the level of

expression of genes which encode multiple steps of the pathway

in which they themselves take part [57].

In our view, the high stability of a pool of primary metabolites,

invariant to environmental heterogeneity, fulfills two major

functions. On the one hand, it efficiently sustains a set of ‘‘core’’

reaction rates which are deemed essential for the plant’s objective

function across a wide range of different stresses. On the other

hand, the observed substrate stability enables a tight conditional

control on a set of metabolic functions to act as modulators or

sustainers in response to specific stresses only.

Finally, the fact that the robust metabolites may well be the

most biologically relevant for metabolic regulation is an important

point since it is at odds with the manner in which the majority of

the metabolomics community assesses their data. This fact

additionally highlights the potential difficulties and challenges in

interpreting data from a single level of the cellular hierarchy and

thus provides further grounds for integrated models such as the

one we present here.

Taken together, our findings show that the integration of large-

scale modeling with high-throughput data can be used to infer

regulatory principles from the stoichiometry of the underlying

reactions alone. Furthermore, we presented an approach that

bridges the gap between flux-centric and metabolite centric view

of large-scale data. Therefore, our study paves the way for

investigating the existence of similar principles relating plasticity of

metabolic profiles and robustness of metabolic behavior across

other species for which both genome-scale networks and high-

throughput (time-resolved) metabolomics data of high quality are

becoming increasingly available.

Materials and Methods

Data
The investigated data set captures the time-resolved response

of Arabidopsis thaliana to changing light and/or temperature

Differential Pathways and Metabolite Variability
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conditions [26]. The previously published data comprise time-

series measurements for eight environmental conditions covering

combinations of four different light intensities (ranging from high-

light (300mEm{2s{1) to darkness) and three different tempera-

tures (4, 21, and 320C). A schematic representation of the

combinations of abiotic stresses is provided in the Figure S1 in

Supporting Information S2. In brief, wild-type Arabidopsis thaliana

Columbia-0 plants were grown in soil under short-day-conditions

for 4 weeks and then transferred to long-day-conditions for

another 2 weeks. Subsequently, they were exposed to the

following conditions: 210C{150mEm{2s{1; 210C{dark;

40C{85mEm{2s{1; 40C{dark; 320C{150mEm{2s{1;

320C{dark; 210C{75mEm{2s{1, and 210C{300mEm{2s{1.

Metabolite and transcript profiles were collected from

samples harvested at 22 time points ranging from 0 to

24 hours after the stress application. Further details of the

experimental procedures and data processing can be found in

the original publication [26]. Transcriptomics data are deposited

in the array express repository (http://www.ebi.ac.uk/

arrayexpress) under Arabidopsis light and temperature response

ArrayExpress accession: E-MTAB-375 and they can be down-

loaded using the following link: http://www.mpimp-golm.

mpg.de/Supplementary-Materials-for-Publications/Caldana-et-

al_Filtered-Affymetrix-Gene-Expression-Data.zip. Metabolomics

data are provided on the following website http://www.

mpimp-golm.mpg.de/Supplementary-Materials-for-Publications/

Caldana-et-al_Normalized-metabolic-data.zip.

Mapping of high-throughput data onto the model
From the total of 82 measured metabolites, 65 can be mapped

onto the model. It must be noted that the metabolomics data are

not compartment-specific and 61 out of 65 mapped metabolites

appear in more than one compartment in the model. Due to a lack

of this information, for those non-unique metabolites we assigned

the same profile to each compartment-specific compound in the

model. The mapping dictionary is given in the Supporting

Information S4.

The mapping of the transcriptomics data from our

previous study has a network coverage of 46%, i.e., 627 out of

1363 reactions can be constrained by transcriptomics data

[23,24].

Flux Balance Analysis
FBA is a constraint-based approach for predicting steady-state

fluxes in a metabolic network independent of enzyme kinetics and

metabolite concentrations [10,11]. The method solely relies on the

physico-chemical constraints of the network (e.g., the reaction

stoichiometry, reversibility, and maximum uptake rates) and a

putative biological objective of the organism under consideration

(e.g., biomass production for microorganisms under ambient

conditions). A central element of the approach is the assumption

of a steady-state which implies that each internal metabolite Xi in

the network is produced and consumed at the same net rate if

considering the system at a small time interval, or in a

mathematical representation:

X
(fluxincoming{fluxoutgoing)~

dXi

dt
~0, ð1Þ

which results in a decoupling of the flux predictions from the

metabolite concentrations. Adding the above mentioned

additional constraints and assumptions leads to the following linear

program:

max : c:v ð2Þ

s:t: S:v~0 ð3Þ

vminƒvƒvmax, ð4Þ

where S is the stoichiometric matrix of the system under

consideration in which the rows denote the metabolites Xi and

the columns represent the reactions of the model. The reaction

fluxes are captured in the flux vector v. The respective lower

and upper boundaries of the reaction are given by vmin and

vmax. The vector c encodes the ratios at which certain

precursors (e.g., amino acids, fatty acids, nucleotides, sugars)

contribute to the objective function. For a detailed review of

FBA and other related constraint-based optimization approach-

es see [11,13].

Metabolic functions
The analysis presented here extends results recently presented in

[23]. In brief: In our previous study we had simulated flux

capacities through a set of a 167 metabolic functions. The

simulation of metabolic functions has initially been proposed to

demonstrate the quality of a metabolic reconstruction [58] and it

has also been used in the original model reconstruction [25] to

ensure model functionality. The set of selected pathways cover

primary as well as secondary metabolism and is obtained from

AraCyc/MetaCyc [59–61]. These databases incorporate commu-

nity-wide efforts to integrate current biological knowledge and

understanding of metabolic pathways. In our previous study we

extended the proposed concept to simulate time-and condition-

specific flux capacities by integrating transcriptomics data based

on a modification of the E-flux method [16], which assumes a

relationship between the amount of a certain transcript and the

upper flux boundary of the respective reaction. Since the

correspondence between transcript and protein abundance is

crucial when using transcriptomics data to constrain flux

boundaries, the approach only makes weak assumptions. Proteins

are allowed to be present and active if the respective gene

product is detected. In contrast, no enforcements on protein

activities are made if the gene product was detected with certain

abundance. Additionally, our claims are stated with even greater

reservation since the approach does not attempt to predict

actual fluxes but flux capacities that are compliant with the data.

For details of the simulation and the list of metabolic functions

refer to [23,25].

Statistical methods
To determine the temporal variation of the metabolite profiles

we used the coefficient of variation (CV) which is defined as the

ratio of the standard deviation s and the mean m of the

observable:

CV~
s

m
: ð5Þ

We applied this statistic to the mapped metabolite profiles for

each condition separately. While doing so, we neglected the data

for the first hour (first six time points) after the stress application

during which the system experiences the strongest effect, i.e.,
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differential regulation of pathways involved in the response. To

ensure that the categorization of differential metabolic functions is

robust to the removal of this time-interval we repeated the analysis

of our previous study. Reassuringly, we find our results, i.e., the

classification as a sustainer or modulator of a given metabolic state,

to be robust to the removal of up to six time points from the

beginning of the time series.

Supporting Information

Supporting Information S1 List of tested metabolites.
Given is the number of metabolites in the respective group for

each condition on which the Wilcoxon-test is based.

(XLS)

Supporting Information S2 Additional figures. Figure S1:

Schematic representation of the eight environmental conditions.

Plants were grown under ambient conditions and then transferred

into one of the eight indicted conditions. Figure S2: Condition-

specific distribution of the coefficients of variation (CVs) for all

mapped metabolite profiles. Given are the distributions of CVs for

all measured metabolites (green) and those that participate as

substrates in the metabolic functions that were previously

identified as sustainer or modulator (red) for all eight investigated

conditions separately.

(DOC)

Supporting Information S3 Metabolites regarded as
cofactors or constant and neglected from the analysis.
Given is the Metabolite ID, the AraCyc/PMN ID, the KEGG ID,

the metabolite name, and the formula.

(XLS)

Supporting Information S4 Metabolite dictionary. Given

is the mapping of the metabolites between that data and the

model. Some metabolites have two possible metabolites IDs in the

model. Note that a metabolite ID is not unique and the same

metabolite can participate in reactions in different compartments.

(XLS)
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