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1  |  INTRODUC TION

The extinction of a population is a fundamental process in evo-
lutionary biology and, given its irreversible nature, a lot of 
work across scientific fields has been devoted to its prediction 
(Carlson et al.,  2014; Matuszewski et al.,  2017; Ovaskainen & 
Meerson, 2010; Wortel et al., 2021). For example, in medicine, the 
extinction time of a pathogen can decide whether its host survives 

or dies, whereas in conservation biology, looming extinction calls 
for immediate action.

In asexual populations, one of the possible causes of extinction 
is related to excessively high mutation rates. Since the majority of 
mutations are deleterious, non-recombining populations can suffer 
from increasing mutation load when the mutation rate is high or the 
population size is low (or a combination of both). This process, which 
results in the step-wise successive loss of the group of individuals 
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Abstract
Mutational meltdown describes an eco-evolutionary process in which the accumula-
tion of deleterious mutations causes a fitness decline that eventually leads to the 
extinction of a population. Possible applications of this concept include medical treat-
ment of RNA virus infections based on mutagenic drugs that increase the mutation 
rate of the pathogen. To determine the usefulness and expected success of such an 
antiviral treatment, estimates of the expected time to mutational meltdown are nec-
essary. Here, we compute the extinction time of a population under high mutation 
rates, using both analytical approaches and stochastic simulations. Extinction is the 
result of three consecutive processes: (a) initial accumulation of deleterious mutations 
due to the increased mutation pressure; (b) consecutive loss of the fittest haplotype 
due to Muller's ratchet; (c) rapid population decline toward extinction. We find ac-
curate analytical results for the mean extinction time, which show that the deleteri-
ous mutation rate has the strongest effect on the extinction time. We confirm that 
intermediate-sized deleterious selection coefficients minimize the extinction time. 
Finally, our simulations show that the variation in extinction time, given a set of pa-
rameters, is surprisingly small.
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with the highest fitness in the population (the fittest class) due to 
the combined effect of mutation accumulation and genetic drift, 
is termed Muller's ratchet (Felsenstein,  1974; Haigh,  1978; 
Muller, 1964). In finite populations, Muller's ratchet leads to a serial 
accumulation of deleterious mutations and, ultimately, extinction of 
the population. In evolutionary theory, this extinction process has 
been extensively studied under the names of mutational meltdown 
and lethal mutagenesis (Bull et al., 2007; Domingo & Perales, 2019; 
Elena & Sanjuán,  2007; Lynch et al.,  1993, 1995b; Matuszewski 
et al., 2017).

One promising application of the theory of mutational meltdown 
is the treatment of RNA virus infections (Bank et al., 2016; Jensen 
et al., 2020; Jensen & Lynch, 2020; Ormond et al., 2017). This is be-
cause RNA viruses have exceptionally high mutation rates as com-
pared to other viruses (Sanjuán et al., 2010), which may make them 
particularly susceptible to mutational meltdown by means of muta-
genic drug treatment. Recently, mutagenic drugs such as favipiravir 
and molnupiravir have been developed that have shown promise 
for inducing mutational meltdown in various RNA viruses (de Avila 
et al., 2017; Bank et al., 2016; Baranovich et al., 2013). For instance, 
favipiravir, a purine nucleoside analog, was proposed as a treatment 
for influenza viruses (Delang et al., 2018). Moreover, recent studies 
suggested that molnupiravir, an analog of the nucleoside cytidine, 
might be a promising tool against SARS-CoV-2 infections (Kabinger 
et al., 2021; Tao et al., 2021). One of the main concerns about the 
clinical use of mutagenic drugs is that, by enhancing mutation rates, 
the virus might be able to explore more genetic possibilities. These 
could include mutations that enable escape from mutational melt-
down or others that increase the success of the virus in future hosts 
(Nelson & Otto, 2021). For instance, Bank et al. (2016) and Goldhill 
et al.  (2018) observed candidate mutations in influenza for resis-
tance to favipiravir in the laboratory. A crucial aspect in this con-
text is the extinction (or survival) time of the virus under mutagenic 
treatment. Generally, the aim is that the mutagenic drug erases the 
virus population as quickly and predictably as possible. Therefore, it 
is fundamental to estimate the expected extinction time under the 
mutational meltdown process.

In this manuscript, we estimate the extinction time of large 
asexual populations with high mutation rates subject to mutational 
meltdown. Previously, analytical expressions for the mean extinc-
tion time have been derived by Lynch et al. (1995a, 1995b) for sex-
ually reproducing populations of small size. Here, using a different 
approach and aimed at potential applications to virus infections, we 
propose a novel analytical expression for the mean extinction time 
in a parameter regime that could represent mutagenic treatments 
of RNA viruses. Using a simple model of a clonal non-recombining 
population allows for analytical calculations that are supported by 
simulations of the eco-evolutionary dynamics. Our estimates rely on 
the analysis of the three consecutive phases of the mutation accu-
mulation and meltdown process, as described in Lynch et al. (1993): 
the rapid accumulation of mutations until the fittest class is lost, 
consecutive loss of the fittest class due to Muller's ratchet, and the 

meltdown phase, in which the population rapidly goes to extinction. 
Our models predict how the mean time to extinction depends on the 
mutation rate, the wild-type reproduction rate, the deleterious fit-
ness effect of mutations, and the carrying capacity of the population.

2  |  MODEL AND METHODS

We model the population dynamics and mutation accumulation of 
a non-recombining asexually reproducing population with a high 
mutation rate �. The main variable of interest is the population size 
N, which varies over time. When N reaches zero, the population 
goes extinct. In our model, the population size cannot exceed a 
given carrying capacity K imposed by the environment. We assume 
that all mutations have the same deleterious effect on fitness, rep-
resented by a selection coefficient −s, (s > 0). In particular, differ-
ent mutations act independently on fitness and back mutations are 
neglected. We use the reproduction rate as a measure for fitness. 
The reproduction rate w as a function of the number of mutations 
k is given by

where w0 is the initial reproduction rate of the mutation-free popula-
tion at time t = 0. Besides the population size, we also track the distri-
bution of the number of mutations in the population, which we refer to 
as mutation distribution in the following. The mutation distribution de-
termines the reproductive fitness of the population and indicates how 
the population size is changing. We model evolution in discrete time 
and with non-overlapping generations, starting with N0 founder indi-
viduals at time t = 0. Each generation individuals obtain mutations and 
are replaced by their offspring. If necessary (i.e., if the new population 
size would exceed the carrying capacity), the population is sampled 
randomly until K individuals remain. Since mutations occur inde-
pendently, the number of mutations an individual obtains each genera-
tion is approximately Poisson distributed with parameter �. We assume 
that also the number of offspring of an individual with k mutations per 
generation is Poisson distributed with parameter w(k). Repeated cy-
cles of mutation, reproduction, and population size control lead to an 
increasing mutation load and, hence, decreasing average population 
fitness. Since the carrying capacity ensures a finite population size, the 
unidirectional mutation accumulation leads to the eventual extinction 
of the population after the average fitness falls below one.

We are interested in biological systems in which extinction hap-
pens on short time scales, that is, on the order of days to weeks, 
as this time scale is most relevant for mutagenic drug treatments. 
Extinction happens on short time scales if the mutation–selection 
balance, as derived in Haigh (1978), is unstable, which results in the 
following condition on the model parameters

(1)w(k) = w0(1−s)k ,

(2)K exp

(
− 𝜇

1 − s

s

)
< 1.
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More details on the instability of the mutation–selection balance will 
be given in Section 3.1.

We simulate the above-described population dynamics and mu-
tation accumulation in an individual-based and stochastic model. 
In our simulations, we consider the following parameter regime: 
1 < w0 ≤ 10, 10

2 ≤ K ≤ 104, 10−1 ≤ � ≤ 1, and 10−3 ≤ s ≤ 10−1.5. Smaller 
selection coefficients were not considered, as they yield very large 
extinction times.

In the following, we present results from a mathematical anal-
ysis of the above-described model, complemented by stochastic 
individual-based simulations. A short description of the computa-
tional analyses of this paper can be found in Appendix S2. The com-
plete annotated documentation is archived on Zenodo, https://doi.
org/10.5281/zenodo.6617361.

3  |  RESULTS

Our goal is to compute the time to extinction under the above-
described model. It is determined by three successive phases of the 
evolutionary dynamics, previously described by Lynch et al. (1993), 
see Figure 1. Initially, the population experiences rapid population 
size expansion and mutation accumulation (which we call the pre-
ratchet phase). This is followed by a phase in which the fittest class 
of individuals is lost successively and at a constant rate while main-
taining a constant population size (the ratchet phase). In the final 
phase (the meltdown phase), the population size collapses, resulting 
in the extinction of the population. In the following, we quantify the 
three phases separately, using different mathematical methods, and 
calculate the duration of each phase. The total time to extinction is 
given by the sum of the three time periods.

3.1  |  Pre-ratchet phase

Starting from a monomorphic population without mutation load, the 
first phase of the evolutionary dynamics consists of rapid expansion 
of the population size and accumulation of deleterious mutations. We 
assume that the founder population size N0 is sufficiently large such 
that the population size reaches the carrying capacity quickly and the 
probability of both an early stochastic extinction and an early loss 
of the wild type can be neglected. If the population size is large, the 
mean and variance of the number of mutations in the population are 
sufficient to describe the mutation distribution. Since both the num-
ber of newly accumulated mutations and the number of offspring per 
individual are Poisson distributed, the mutation distribution is also 
a Poisson distribution. At time t = 0, all individuals have zero muta-
tions, which corresponds to the mutation distribution being ~ Poi(0). 
The mutation step shifts the distribution to the right by adding +� to 
its parameter, whereas the reproduction step shifts it back to the left 
by multiplying with (1 − s); see Haigh (1978) for a detailed derivation. 
Population size control leaves the mutation distribution unchanged 
since individuals in excess are eliminated uniformly at random.

Successively repeating mutation and reproduction yields the 
mutation distribution as a function of time in generations

The mutation distribution approaches mutation–selection balance 
with parameter � 1− s

s
. This deviates from the classical result derived 

in Haigh  (1978) (mutation–selection balance with parameter �
s
) be-

cause we follow the distribution after reproduction instead of after 
mutation. The frequency of individuals with zero mutations is then

(3)Poi

(
�
1−s

s

(
1−(1−s)t

))
→

t→∞
Poi

(
�
1−s

s

)
.

F I G U R E  1 The mutational meltdown process consists of three phases, here indicated by regions shaded in different colors: Initial rapid 
population growth and mutation accumulation toward the mutation–selection balance (left, green), followed by the ratchet phase with on 
average linear accumulation of mutations at the carrying capacity (middle, red), and, finally, the meltdown phase during which the population 
size rapidly decreases and mutations accumulate randomly (right, blue). Black dots represent the population size of one simulated population 
with founder population size N0 = 20, wild-type reproduction rate w0 = 2, mutation rate � = 1.0, selection coefficient s = 0.005, and carrying 
capacity K = 1000. The black triangles represent the corresponding mean number of mutations in the population. The green line indicates 
the mean number of mutations according to Equation (3). The red line shows the linear accumulation of mutations during the ratchet phase 
according to Equation (6). The blue line indicates the decrease in population size according to Equation (10)

https://doi.org/10.5281/zenodo.6617361
https://doi.org/10.5281/zenodo.6617361
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Consequently, the expected number of individuals with zero muta-
tions in a population of size K is n0(t) = K f0(t). Due to condition (2), this 
implies that, as the mutation distribution approaches the mutation–
selection balance, the zero-mutation class is likely to be lost, leading to 
the first click of the ratchet. This occurs at a time TR when the size of 
the zero-mutation class drops below one:

The mean number of mutations in the population at that time is 
m (TR) = �[m|t = TR] = ln(K).

3.2  |  Ratchet phase

Time TR heralds the ratchet phase that consists of repeated stochas-
tic and successive loss of the fittest haplotype class. Consequently, 
the mean number of mutations in the population increases steadily. 
How fast the respective fittest class is lost on average, that is, the 
speed of the ratchet, has been calculated in various ways and for 
different parameter regimes, see for example Haigh (1978); Pamilo 
et al. (1987); Lynch et al. (1993); Gabriel et al. (1993); Gessler (1995); 
Gordo and Charlesworth  (2000a, 2000b); Jain  (2008); Rouzine 
et al. (2008); Metzger and Eule (2013). The calculation of the ratchet 
speed is nontrivial as it depends on mutation, selection, and genetic 
drift in an intertwined way. Moreover, the validity of the various 
derivations is strongly dependent on the parameter regime that is 
considered. We evaluated various proposed solutions and found 
that the expression derived by Gessler (1995) fitted our simulation 
data best, see Figure 2. However, Gessler's formula exhibits a non-
monotonic dependence on various parameters, which results from 
the discrete nature of its calculations. The speed of the ratchet de-
pends on the selection coefficient and the difference between the 
number of mutations of the fittest class and the mean number of 
mutations in the population (the distance between the fittest class 
and the mean). Gessler calculated the fittest class and the mean of 
the mutation distribution (which Gessler determined to be a shifted 
negative binomial distribution) as integers, which depend on the 
model parameters N, s, and �. Varying the model parameters leads to 
discrete changes in the fittest class and the mean that occur at dif-
ferent parameter values for the fittest class and mean, respectively. 
Therefore, the distance between the fittest class and the mean 
exhibits a non-monotonic behavior. The fittest class is an integer, 
whereas the mean number of mutations in the population, in gen-
eral, is a non-integer. The non-monotonicity of the ratchet speed is 
an artifact of this discrete approximation. In Appendix S1, we derive 
a continuous extension of Gessler's ratchet speed vR, (23) (see also 
Figure 2).

Knowing the speed of the ratchet allows us to estimate the mean 
number of mutations in the population during the ratchet phase,

3.3  |  Meltdown phase

When the mean number of mutations in the population exceeds the 
critical threshold

where w(c) = w0(1 − s)
c = 1, the average fitness in the population drops 

below one. This is a tipping point at which the meltdown phase begins. 
This happens at time Tc, which we obtain from (6) as

Tc is given by the sum of two terms: the first, given in (5), is the 
time at which the ratchet starts, whereas the second represents the 
time until a population with a mean number of mutations m = ��(K) 
at t = TR reaches the critical value m = c, subject to a ratchet speed 
vR  , given in (23).

During the meltdown phase, we assume selection to be ineffi-
cient. Hence, to get an estimate of the time length of this phase, 
we consider all individuals to obtain the same number of mutations 
and to have the same number of offspring each generation. In other 
words, we neglect genetic variation and describe the whole popula-
tion by its mean number of mutations,

The population size as a function of time in generations can then 
be calculated recursively, N(t  + 1) =  w(t)N(t), starting at N(Tc)  =  K, 
which yields

We assume that extinction occurs when the population size 
drops below one,

3.4  |  Extinction

Combining the three phases mentioned above yields the extinction 
time depending on the mutation rate µ, selection coefficient −s, 
wild-type reproduction rate w0, and carrying capacity K

(4)

f0(t)=ℙ
[
m=0 |t

]
=exp

(
−�

1−s

s

(
1−(1−s)t

))
→

t→∞
exp

(
−�

1−s

s

)
.

(5)
n0
(
TR

)
= 1 ⇒ TR =

ln
(
1 −

sln(K)

�(1− s)

)

ln(1 − s)
.

(6)m(t) = ln(K) + vR
(
t − TR

)
.

(7)c =
ln
(
w0

)

∣ ln(1 − s) ∣
,

(8)m
(
Tc
)
= c ⇒ Tc = TR +

c − ln(K)

vR
.

(9)m(t) = c + �
(
t − Tc

)
.

(10)N(t) = K(1−s)�(t−Tc)(t−Tc)∕2, t ≥ Tc.

(11)N
(
TE

)
= 1 ⇒ TE = Tc +

√
2ln(K)

� ∣ ln(1 − s) ∣
+

1

4
+

1

2
.
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where the ratchet speed vR also depends on �, −s, and K. Note that 
the extinction time is independent of the initial population size N0 
since we assume that the population size reaches the carrying ca-
pacity quickly.

The extinction time TE, given in (12), increases logarithmically 
with increasing wild-type reproduction rate w0, see Figure 3a. This is 
because a higher w0 increases the critical number of mutations (see 
Equation (7)) which effectively shifts the process in time.

Plotting the extinction time as a function of the carrying capacity K 
on a log-scale shows that TE increases logarithmically also with respect 
to K, see Figure 3b. These results are consistent with previous results 
on mutational meltdown in asexual populations (Lynch et al., 1993)

In contrast, the extinction time decreases rapidly with increasing 
mutation rate �, see Figure  3c. This dependence arises because a 
higher mutation rate decreases the length of all three phases: it in-
creases the speed toward the mutation–selection balance, the speed 
of the ratchet, and the speed of the meltdown process. Plotting the 
extinction time as a function of the mutation rate in a log–log scale 
results in an approximately linear decay see Figure 3d. This suggests 
that the extinction time decays as a power law of the mutation rate, 
that is, TE ≈ α�

−β, for certain α, β > 0. We confirmed this relationship 
for different parameter sets, which showed variation in the expo-
nent β as a function of the other three parameters, see Figure S2 
in Appendix S3. For example, for the parameters shown in Figure 3 
(N0 = 20, w0 = 2, s = 10−2.3 ≈ 0.005 and K = 1000), the power-law ex-
ponent is given by β = 1.11 ± 0.01. Unfortunately, our analysis of the 
relationship between extinction time and mutation rate as well as 
carrying capacity was limited to numerical solutions because there 
exists no closed form of Gessler's speed of the ratchet, vR, see equa-
tion (23) in Appendix S1.

We found that the extinction time is minimal for an intermedi-
ate selection coefficient s*, see Figures 3e,f and 4a. A minimum at 
intermediate s* is expected because extinction is a combination of 
different processes: When selection coefficients are small, many 
mutations can be accumulated without a large loss of fitness. When 
selection coefficients are large, the selection is efficient at purging 
deleterious mutations. In contrast, for intermediate selection coeffi-
cients, the selection is less effective, yet every ratchet click leads to 
a significant fitness decrease. At higher mutation rates, this minimum 
is attained at higher selection coefficients, compare Figure 3e,f. Our 
quantitative results confirm the relationship between mean extinc-
tion time and selection coefficient previously described qualitatively 
by Lynch et al. (1993).

3.5  |  Contributions of the three phases to the 
extinction time

Across the whole parameter range studied, the ratchet phase makes 
the largest contribution to the extinction time. When the parameters 

approach the boundaries of the parameter regime set by condition 
(2) (which happens for small mutation rates, large selection coeffi-
cients, and large carrying capacities) the ratchet begins to click late, 
see Equation (5), and the speed of the ratchet goes to zero. In con-
trast, the meltdown phase stays comparably short. Our simulations 
show that the ratchet phase remains the dominating phase also in 
this limit, see Figures 1 and 3.

In the case of small selection coefficients, the critical number of 
mutations becomes large, see Equation (7), and so does the duration 
of the meltdown phase. Again, the ratchet phase remains the domi-
nating phase, see Figure 3e,f.

3.6  |  Comparison with stochastic simulations

Comparing our analytical results with stochastic simulations shows 
that our expression is in good agreement with the extinction time 
of simulated populations at high mutation rates, see Figure  4 and 
Figures S3, S4 in Appendix S4. It accurately predicts the start of the 
ratchet, tends to overestimate the duration of the ratchet phase, 
and slightly underestimates the duration of the meltdown phase, see 
Figure 3. In total, our analytical expression, therefore, slightly over-
estimates the extinction time for most parameter combinations, see 
Figure 4c. In general, our estimate is the better the smaller the zero-
mutation class under mutation–selection balance (left side of condi-
tion (2)). For example, for the parameters shown in Figure 3 (N0 = 20, 
w0 = 2, s = 10−2.3 ≈ 0.005 and K = 1000), the relative error ranges 
from ≈12.5% for intermediate mutation rates (�  =  10−0.55 ≈ 0.28) 
to ≈0.3% for high mutation rates (�  =  1.0) and given an accepted 
accuracy of <5% relative error our analytical results hold for mu-
tation rates between 10−0.4 ≈ 0.40 ≤ �. Note that our analytical ap-
proximation tends to predict a smaller optimal selection coefficient 
s* than obtained from the simulations, see Figures  3e,f and 4a,b. 
This is because the analytical expression is valid only in the param-
eter regime given by condition (2). At the boundaries of this regime, 
the mutation–selection balance becomes stable, implying that the 
ratchet speed vR goes to zero and, therefore, the extinction time be-
comes infinite. For fixed carrying capacity and mutation rate, this 
happens when the selection coefficient becomes large (for example 
for K = 1000 and intermediate mutation rates, � = 10−0.55 ≈ 0.28, at 
s ≈ 0.04 and for high mutation rates, � = 1.0, at s ≈ 0.17). This explains 
the discrepancy between the predicted and simulated optimal selec-
tion coefficient.

Interestingly, our simulations show that the variation in the ex-
tinction time is comparably small and correlates with the selection 
coefficient, see Figure 4d. For small selection coefficients, the vari-
ation is small as the mutation accumulation happens in many small 
steps, which averages out stochastic fluctuations. In contrast, for 
large selection coefficients, mutation accumulation is determined by 
rare and, hence, stochastic events, leading to a larger variation in the 
extinction times.

Figure 4 shows data with a carrying capacity of K = 1000; for 
data with K = 100 and K = 10,000 see Figures S3, S4 in Appendix S4.

(12)

TE =
ln
(
1 −

sln(K)

�(1− s)

)

ln(1 − s)
+

ln(w0)
∣ ln(1− s) ∣

− ln(K)

vR
+

√
2ln(K)

� ∣ ln(1 − s) ∣
+

1

4
+

1

2
,
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4  |  DISCUSSION

As a potential treatment option for SARS-CoV-2 infections, the use 
of mutagenic drugs against RNA virus infections has recently gained 
a lot of attention (Jensen et al., 2020; Jensen & Lynch, 2020; Malone 

& Campbell, 2021; Nelson & Otto, 2021; Tao et al., 2021). The mode 
of action of such drugs is deeply rooted in evolutionary theory; 
most new mutations are deleterious and, therefore, an increase in 
the mutation rate can push a virus population to extinction because 
natural selection is not efficient enough to weed out the deleterious 

F I G U R E  2 Estimation of the ratchet speed depending on the mutation rate, selection coefficient, and carrying capacity. The ratchet 
speed decreases with increasing carrying capacity (a), increases with increasing mutation rate (b), and decreases with increasing selection 
coefficient (c). The expression for the ratchet speed derived in Gessler (1995) (blue solid line) is a good approximation. However, it is non-
monotonic with respect to the relevant parameters. Our smooth approximation of Gessler's ratchet speed (black dashed line) overcomes this 
limitation. Parameter values: Founder population size N0 = 20, wild-type reproduction rate w0 = 2, selection coefficient s = 0.005, mutation 
rate  µ = 0.27, carrying capacity K = 1000, and n = 50 simulation runs

F I G U R E  3 Duration of the three phases – pre-ratchet, ratchet, and meltdown phase – depending on the wild-type reproduction rate, 
carrying capacity, mutation rate, and selection coefficient. The phases are depicted by colored ribbons that are stacked on top of each 
other. The pre-ratchet phase is given by the lowest ribbon in green, the ratchet phase in the middle in red, and the meltdown phase on 
top in blue. Dots with error bars represent the mean ± standard deviation obtained from stochastic simulations. The dashed lines are our 
analytical results, Equations (5), (8), and (12). (a, b) The extinction time increases logarithmically with increasing wild-type reproduction rate 
and carrying capacity. Parameter values: N0 = 20, s = 0.005, μ = 0.27, K = 1000, or w0 = 2, respectively, and n = 50 simulation runs. (c, d) The 
extinction time decreases rapidly (according to a power law) with an increasing mutation rate. Parameter values: Founder population size 
N0 = 20, wild-type reproduction rate w0 = 2, selection coefficient s = 10−2.3 ≈ 0.005, carrying capacity K = 1000, and n = 50 simulation runs. 
(e, f) The extinction time is minimal for an intermediate selection coefficient. This optimal selection coefficient is higher for higher mutation 
rates and our predicted value (black dashed line) tends to underestimate the minimum value observed in simulations (black solid line). 
Parameter values: N0 = 20, w0 = 2, K = 1000, μ = 10−0.55 ≈ 0.28, or μ = 10−0.75 ≈ 0.18, respectively, and n = 50 simulation runs
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variants. Importantly, unlike other drugs that attack virions individu-
ally, mutational meltdown is a population process that requires a 
strong and reliable action of the mutagenic drug. Specifically, extinc-
tion must occur as quickly as possible. This is because as the virus 
survives under the mutagenic pressure, it may accumulate not only 
deleterious mutations but also beneficial ones. Such mutations could 
help it survive in the presence of the drug (i.e., evolution of drug 
resistance or tolerance; Bank et al.  (2022)), or they might be more 
general adaptations that make the virus more dangerous when it is 
transmitted to other hosts. Because of this danger that is specific to 
mutagenic drug treatments, it is important to theoretically know/
predict and empirically minimize the expected time to population 
extinction under mutagenic treatment.

In this paper, we derive and analyze the mean extinction time of 
a population facing mutational meltdown under a simple model of 
population dynamics in a high mutation rate regime. As described 
in the Model and Results sections, several simplifying assumptions 
underlie the mathematical analysis and the implementation of the 
stochastic simulations. We derive an analytical expression for the 
extinction time, Equation  (12), which allows us to determine how 
the extinction time depends on the model parameters: the mutation 
rate, the carrying capacity, the wild-type reproduction rate, and the 
selection coefficient of mutations.

4.1  |  The mutation rate has the strongest effect 
on the extinction time

The extinction time decreases logarithmically with decreasing wild-
type reproduction rate (Figure 3a) and with decreasing carrying ca-
pacity (Figure 3b). In contrast, the extinction time decreases much 
more rapidly (power-law dependence) with an increasing mutation 
rate (Figure 3c,d).

The detected major effect of the mutation rate on the extinc-
tion time can be interpreted as an encouraging sign for the potential 
treatment of virus infections with mutagenic drugs. It indicates that 
the population dynamics and general initial fitness of the virus play 
a much weaker role than the mutation rate at determining whether 
and when the population will collapse under mutagenic drug treat-
ment. This is important because we do not know the population dy-
namics inside the host and the reproductive rate of the virus when 
it enters the host, but we can possibly control the mutation rate of 
the virus by tuning the dosage of the mutagenic drug. Moreover, the 
power-law relationship between the mutation rate and the extinc-
tion time indicates that a small increase in dosage can result in a 
large decrease in the extinction time. Notably, this also applies in the 
reverse: if the dosage is only slightly too low, or if it does not suffi-
ciently reach all body compartments in which the virus propagates, 
mutational meltdown may fail. Mutation rates vary widely across vi-
ruses, and an important question is whether our studied parameter 
range of 10−1 ≤ � ≤ 1 is relevant for the mutagenic treatment of virus 
infections. DNA viruses are affected by around 10−3 mutations per 

genome per replication, whereas mutation rates in RNA viruses can 
be 104-fold higher (Milo & Phillips,  2015), which is why they may 
be well targeted by mutagenic drugs. For instance, it was estimated 
that Influenza A acquires an average of two to three mutations per 
replicated genome (Pauly et al., 2017). Recent work reporting SARS-
CoV-2 data suggested that its genome might acquire an average of 
0.03 mutations per replication cycle Bar-On et al. (2020). Moreover, 
mutagenic drugs such as favipiravir were shown to increase the 
mutation rate (G→A transitions in the case of favipiravir) by five- to 
ninefold (Baranovich et al.,  2013). In our model, we only consider 
deleterious mutations. The total mutation rate in the genome (con-
sidering also beneficial and neutral mutations) is expected to be 
higher (but not much higher) than the deleterious mutation rate con-
sidered in the model. Thus, our considered parameter regime lies 
within the range of mutation rates expected for RNA viruses but 
does not cover its whole variation.

4.2  |  An intermediate selection coefficient 
minimizes the extinction time

Consistent with the previous literature (Lynch et al., 1993), we find 
that the extinction time is minimal for intermediate selection coef-
ficients (Figure 3e,f). This minimum arises because larger selection 
coefficients lead to mutations with more severe negative effects 
on fitness, which speeds up the meltdown process. At the same 
time, larger selection coefficients make selection more efficient, 
which slows down the mutation accumulation. These two oppos-
ing effects result in an intermediate maximum of the rate of fitness 
decline under Muller's ratchet (as found also for example in Gabriel 
et al., 1993) that, in turn, minimizes the extinction time. This re-
sult points to an important limitation of our model; we assumed 
that the selection coefficient is constant, that is, every mutation 
has the same deleterious effect size. Further work should evalu-
ate whether the non-monotonicity of the extinction time with the 
selection coefficient holds when there is a distribution of selection 
coefficients.

The shown effectiveness of mutagenic drug treatments in ex-
periments (Bank et al.,  2016; Baranovich et al.,  2013; Goldhill 
et al., 2019) suggests that the true distribution of selection coeffi-
cients of the virus is in a range that is indeed affected by Muller's 
ratchet. This is consistent with experimental estimates of this distri-
bution (Jiang et al., 2016; Sanjuan et al., 2004), which indicate that 
a large proportion of mutations have intermediately deleterious ef-
fects. Interestingly, the shifting minimum of the extinction time sug-
gests that under different mutation rates, mutations with different 
selection coefficients could be the main contributors to the ratchet. 
It will be interesting to explore in future studies how the shift in the 
class of mutations that are most vulnerable to the ratchet can affect 
the observed mutation spectra during evolution in the presence and 
the absence of the drug, for example, in laboratory evolution studies 
(Bank et al., 2016; Ormond et al., 2017).



8 of 10  |     LANSCH-JUSTEN et al.

4.3  |  The ratchet phase is the dominant contributor 
to the extinction time

Analyzing Equation  (12) allows us to determine how much the 
three different phases—pre-ratchet, ratchet, and meltdown phase—
contribute to the extinction time. We find that the ratchet phase 
is the dominating phase throughout the whole tested parameter 
range, see Figure 3. However, the duration of the ratchet phase is 
also the hardest to approximate because the ratchet speed depends 
on mutation, selection, and genetic drift in a complex fashion. The 
ratchet speed is especially difficult to estimate in between regimes 
of a fast- and slow-clicking ratchet, and no general theory that com-
bines these regimes exists to date.

In the application of the theory to the case of mutagenic drug 
treatment, we are likely in a regime of a fast-clicking ratchet. 
Moreover, experimental measurements of the fitness effects of new 
mutations in this virus have shown that many mutations are of inter-
mediate deleterious effect, which is important to keep the ratchet 
clicking (Jiang et al.,  2016; Sanjuan et al.,  2004). In this regime, 
Gessler's approximation seems to be the currently best existing for-
mula to compute the ratchet speed. Nevertheless, it is important to 
note that our results (and the approximation of Gessler, 1995) rely on 

the assumption of non-recombining populations. Interestingly, in light 
of the current SARS-CoV-2 pandemic, Santiago and Caballero (2020) 
recently discussed the importance of studying treatments targeting 
viral recombination processes that, coupled with mutagenic treat-
ments, would speed up the viral extinction. Therefore, our work 
can be seen as the optimal scenario with an idealistic fully effective 
recombination-inhibitor treatment. Moreover, in other RNA viruses 
such as influenza A, recombination within viral segments is thought 
rare and also reassortments between segments require multiple in-
fections of the same cell (Pérez-Losada et al., 2015).

4.4  |  Stochastic simulations indicate a small 
variation in extinction time

We performed stochastic simulations in order to test the validity 
of our analytical result and to quantify the variation in the extinc-
tion time under our model. We found that across a large range of 
the tested parameter regime, analytical expression and stochastic 
simulation are in good agreement, see Figure 4c. In our simulations, 
we observed mean extinction times ranging from around 65 gen-
erations for large mutation rates and large selection coefficients to 

F I G U R E  4 Comparing the analytically predicted mean extinction time with results from stochastic simulations for a range of mutation 
rates and selection coefficients. (a, b) The contour lines give parameter combinations with equal mean extinction time. Our analytical 
estimation is not applicable and returns an infinite extinction time if the mutation–selection balance is stable, which is indicated by the blue 
line in panel a. This is not observed in stochastic simulations shown in panel b. The predicted optimal selection coefficient for which the 
extinction time is minimal (green line panel a) is smaller than the one observed in stochastic simulations (green dots, panel b) because the 
boundary of the parameter regime for which our calculations hold is approached. (c) the relative error of our analytical estimation is small 
in general but becomes large as the boundary of our parameter regime is approached. (d) the coefficient of variation of the extinction time 
in the simulations is comparably small and positively correlated with the selection coefficient (other parameters: Founder population size 
N0 = 20, wild-type reproduction rate w0 = 2, carrying capacity K = 1000, and n = 50 simulation runs)
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10000 generations for small mutation rates and small selection co-
efficients. The variation in the extinction time was surprisingly small, 
see Figure 4d. This suggests that the deterministic quantity of the 
mean extinction time, which we derived in this paper, is a good pre-
dictor of the expected extinction time in simulations or experiments.

The observed small variation in extinction times is interesting 
to interpret in the context of application to mutagenic treatments. 
It suggests that when an experiment is repeated several times, or 
when many hosts are treated with the same dosage and under sim-
ilar conditions, a prolonged extinction time may be an early, and 
easy-to-screen, signal of adaptation of the virus to the mutagenic 
drug treatment, and not just an expression of the stochasticity of 
the process. Future work should address in more detail how this ob-
servation holds in the presence of variable fitness effects and more 
complex demographic scenarios. However, we expect good robust-
ness to these factors given that we found the ratchet phase to domi-
nate the process and that the carrying capacity and the initial fitness 
contributed less to the extinction time than the mutation rate.
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