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Abstract

Tract-Based Spatial Statistics (TBSS) is a popular software pipeline to coregister sets of diffusion

tensor Fractional Anisotropy (FA) images for performing voxel-wise comparisons. It is primarily

defined by its skeleton projection step intended to reduce effects of local misregistration. A white

matter “skeleton” is computed by morphological thinning of the inter-subject mean FA, and then

all voxels are projected to the nearest location on this skeleton. Here we investigate several

enhancements to the TBSS pipeline based on recent advances in registration for other modalities,

principally based on groupwise registration with the ANTS-SyN algorithm. We validate these

enhancements using simulation experiments with synthetically-modified images. When used with

these enhancements, we discover that TBSS's skeleton projection step actually reduces algorithm

accuracy, as the improved registration leaves fewer errors to warrant correction, and the effects of

this projection's compromises become stronger than those of its benefits. In our experiments, our

proposed pipeline without skeleton projection is more sensitive for detecting true changes and has

© 2014 The Authors. Published by Elsevier Inc.

This an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
* Corresponding author at: Mayo Clinic, Diagnostic Radiology, 200 First Street SW, Rochester, MN 55905, USA. Tel.: 1 507 538
4967. schwarz.christopher@mayo.edu (C.G. Schwarz)..
1Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf .

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.neuroimage.2014.03.026.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 August 19.

Published in final edited form as:
Neuroimage. 2014 July 1; 94: 65–78. doi:10.1016/j.neuroimage.2014.03.026.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.03.026


greater specificity in resisting false positives from misregistration. We also present comparative

results of the proposed and traditional methods, both with and without the skeleton projection step,

on three real-life datasets: two comparing differing populations of Alzheimer's disease patients to

matched controls, and one comparing progressive supranuclear palsy patients to matched controls.

The proposed pipeline produces more plausible results according to each disease's

pathophysiology.
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Introduction

Diffusion Tensor Magnetic Resonance Images (DTI) measure directional water diffusion in

each image voxel (Le Bihan et al., 1986). Because water primarily diffuses along white

matter (WM) bundles, DTI can image WM structure, earning the attention of aging and

dementia researchers (Carmichael and Lockhart, 2012; Stebbins and Murphy, 2009; Sullivan

et al., 2006). Fractional Anisotropy (FA) is an important DTI-derived measure of per-voxel

diffusion directionality strength (Pierpaoli and Basser, 1996), often employed as a proxy

measure of WM integrity (Douaud et al., 2011; Jahanshad et al., 2013; Kohannim et al.,

2012).

The most straightforward approach to calculate local image comparisons across subject

groups is to coregister all subjects and perform statistical tests for groupwise differences in

each coregistered voxel, a method known in analysis of structural MRI as Voxel-Based

Morphometry (VBM). Originally designed to measure longitudinal gray-matter (GM)

changes, VBM-style analysis or Voxel-based analysis (VBA) is highly sensitive to

registration errors and may produce false positives in affected regions (Ashburner and

Friston, 2000; Bookstein, 2001). For the particularly challenging application of coregistering

DTI-FA images, Smith et al. introduced Tract-Based Spatial Statistics (TBSS), which

attempts to reduce the effects of local misregistrations by projecting all FA voxels onto the

nearest location on a “skeleton” approximating WM tract centers (Smith et al., 2006). TBSS

has been widely adopted using the original authors' implementation provided in the FMRIB

Software Library (FSL) (Jenkinson et al., 2012), although several recent studies have

continued to use standard VBA instead of or in addition to TBSS (Chiang et al., 2011;

Douaud et al., 2011; Kohannim et al., 2012).

Several recent publications have evaluated updating the TBSS processing pipeline with

contemporary advancements in registration techniques. De Groot et al. investigated

replacing TBSS's two-step registration-projection approach with a single registration step

where performance metrics were constrained to the skeleton, and they demonstrated

improved coregistration by this approach (De Groot et al., 2013). Keihaninejad et al.

proposed groupwise registration for coregistering FA images to a custom-generated

template, rather than by either coregistering all images to a standard template, or calculating

the most representative subject, both of which are available in the standard TBSS
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implementation. These authors also developed and presented simulation experiments that

evaluate the entire TBSS pipeline, rather than only the coregistration step, and used them to

provide a region-based demonstration of their modifications' improved sensitivity and

specificity of groupwise comparisons (Keihaninejad et al., 2012).

Although TBSS's skeleton projection was designed to compensate for local registration

errors, it has been demonstrated using a series of simulated misregistration experiments that

this process reduces the magnitude of such errors by at most 10% (Zalesky, 2011).

Unfortunately, skeleton projection involves many compromises in return for these limited

benefits. Voxels further from tract centers have decreased weighting in the average of voxels

projected to that location (Smith et al., 2006), and detection of changes in such locations is

consequently reduced. Furthermore, because each voxel is projected to the nearest skeleton

location, regions centered between two skeleton points can be artificially split over multiple

disparate anatomical locations (De Groot et al., 2013; Zalesky, 2011). These projections

make results difficult to interpret because displayed findings may actually be driven by

voxels elsewhere. These and other TBSS limitations are detailed in Zalesky (2011). White

Matter Hyperintensities and other FA-reducing abnormalities, common in elderly subjects,

are also particularly problematic because they can violate TBSS's assumption that local FA

maxima are anatomical WM tract centers (Jones and Cercignani, 2010). TBSS also causes

preferential sensitivity to detecting changes in diagonally-oriented tracts because

skeletonized diagonal tracts are thicker in voxel-space than horizontal or vertical ones

(Edden and Jones, 2011).

Because of these tradeoffs, we hypothesize that it may be desirable to omit skeleton

projection if registration is improved to a point where they outweigh its benefits. While prior

publications have examined limitations of TBSS (De Groot et al., 2013; Edden and Jones,

2011; Jones and Cercignani, 2010; Zalesky, 2011) and improved its coregistration (De Groot

et al., 2013; Keihaninejad et al., 2012), to our knowledge no existing research has

quantitatively evaluated effects of registration improvements on TBSS or tested whether

such improvements remove the benefits of creating a skeleton space.

In this work, we propose substantial changes to multiple components of the popular TBSS

software pipeline that incorporate advancements from other applications of VBA. We

employ simulation experiments to test our proposed pipeline against the original TBSS

pipeline included with FSL and validate its benefits. We then test each pipeline both with

and without TBSS's definitive skeleton-projection step, and we test whether or not the sum

of our proposed improvements renders its use more harmful than helpful. For this

comparison and validation, we use synthetic data experiments from prior work

(Keihaninejad et al., 2012), extended to provide quantitative measurements of sensitivity

and speci-ficity. We also present the proposed pipelines' results for three different datasets:

two comparing patients with clinically-diagnosed Alzheimer's disease (AD) to matched

cognitively normal controls (CN), and one comparing patients with progressive supranuclear

palsy (PSP) to CN.
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Methods

In this section, we describe each difference between the standard TBSS pipeline and our

proposed ANTS-Groupwise pipeline (ANTS-GW), which we compare experimentally in

this work. We provide a flowchart with the steps of the original TBSS in Fig. 1, and in Table

1 we present the differences between tested pipeline variants: FSL TBSS, ANTS-Groupwise

(ANTS-GW) TBSS, FSL VBA, and ANTS-GW VBA. Those pipelines marked TBSS

include the skeleton projection step, where those marked VBA do not. Unless otherwise

specified, our tests of FSL TBSS and its components used FSL version 5.0 with the same

parameters as in its included tbss_* series of scripts.

Preprocessing

Each diffusion image was acquired using 3 T scanners and corrected for subject motion and

residual eddy current distortion by affine-registering each volume to the first (an undiffused)

volume in the acquisition. FSL 4's Brain Extraction Tool (bet) program was used to exclude

voxels outside the braincase, and diffusion tensors were fit for the remaining voxels using

linear least squares optimization. FA images were calculated from the eigenvalues of the

tensors without any modi-fications to reject negative eigenvalues (Jenkinson et al., 2012).

Difference 1: Erosion kernel

FSL TBSS and our proposed pipelines all operate on sets of FA images. For preprocessing,

the standard implementation tbss_1_preproc performs binary erosion with a 3 × 3 × 3 voxel

kernel. We hypothesize that this step was designed to remove the thin “halo” of bright

voxels that typically surround the brain in FA images due to eddy current-induced

distortions in cerebrospinal fluid (CSF) voxels (Bastin, 1999; Jones and Cercignani, 2010),

but we noticed that in our data it commonly removed legitimate WM. The large slice

thickness (2.7 mm) of our DTI acquisitions makes a 3 × 3 × 3 voxel kernel suboptimal, often

removing much of the midbrain, brainstem, and parts of the temporal lobe. Although our

acquisitions are nominally isotropic, because of zero-padding in k-space the voxels 1.35 ×

1.25 × 2.7 mm are smaller in the x and y directions. In our modified pipelines, we replace

this step with a 3 × 3 × 1 voxel intra-slice erosion. For our data, this mostly removes “halo”

voxels while retaining more midbrain and temporal lobe structures. See Fig. 2. This change

is made in the proposed ANTS-GW pipelines, while the FSL pipelines retain their original

erosion step.

Difference 2: Registration algorithm

FSL TBSS uses the FSL's included linear and nonlinear registration algorithms: FLIRT and

FNIRT respectively (Andersson et al., 2008; Jenkinson et al., 2002). Recently an

independent analysis (Klein et al., 2009) compared these algorithms to Advanced

Normalization Tools (ANTS) (Avants et al., 2008) and found the latter to give generally

superior registration performance in a variety of T1-weighted MR registration tasks and

metrics when compared to FNIRT and 13 other algorithms. Others have also found ANTS

superior to FNIRT specifically for FA coregistration, and they presented arguments why the

sum-of-squared-differences (SSD) metric used by FNIRT may introduce a statistical bias

when used before voxel-based analysis (Tustison et al., 2014). Here, we test whether
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replacing the registration components of the TBSS pipeline with ANTS equivalents provides

advantages. We used ANTS version 1.9.y with the cross-correlation cost function for all

registrations in our proposed ANTS-GW pipelines, which we compared to the FSL pipelines

using FLIRT/FNIRT. Both algorithms were used with their default settings and interpolation

schemes unless otherwise specified.

Difference 3: Registration targets

Many strategies exist to coregister image sets to a common space. For example, each image

may be pairwise-warped to a standard template space e.g. MNI, or to a study-specific

template, or to a single chosen image within the set. The standard FSL TBSS pipeline

includes all of these options, automatically choosing as a target in the latter case the image

with the smallest average deformation to all others, i.e. the most representative subject

(MRS).

For our proposed ANTS-GW pipelines, we extend the work of (Keihaninejad et al., 2012)

by using a similar groupwise registration implementation to generate a study-specific

template from all inputs in their native space. Groupwise registration iteratively coregisters

image sets by alternating between registering each image to a shape-based mean of the

inputs and recomputing this target as the mean over the coregistered set. The generated

template has the same resolution and voxel space as the original inputs and can be used as a

registration target for VBA or TBSS, rather than a standard template or MRS target.

Creating a groupwise template also requires less computation than MRS, requiring O(n)

pairwise registrations instead of O(n2).

For groupwise registration we use the buildtemplateparallel.sh script in the ANTS software

package version 1.9.y (Avants and Gee, 2004; Avants et al., 2011) in place of the MRS

algorithm in tbss_2_reg in FSL TBSS. We use the default of four nonlinear registration

iterations, plus one initial iteration with rigid registration, because further iterations did not

empirically provide additional visual clarity of the created templates. We compare this

modified coregistration strategy in our ANTS-GW pipelines to the MRS algorithm in the

traditional FSL pipelines.

Difference 4: Transforming to standard space

In FSL TBSS, the coregistration target is affine-aligned via FLIRT to an included FA

template known as FMRIB58_FA_1mm. All coregistered images are then upsampled to this

standard space for voxel-wise calculations. In our ANTS-GW pipelines, we use the ANTS-

SyN algorithm to nonlinearly warp its groupwise template to FMRIB58_FA_1mm and

similarly perform analyses in this space. We chose nonlinear registration, rather than affine

alignment or simply remaining in the native coregistered voxel space, because it empirically

provided the highest sensitivity and specificity in our simulations (slightly better than

affine). While we hypothesize that improvements by affine alignment to the higher-

resolution standard space are due to upsampling, the further gains by using nonlinear

registration were very small, and so future experiments would be needed to confirm the

significance of this particular choice. For space reasons we present these comparisons only

in supplementary material. In all pipelines, the coregistration and upsampling to standard-
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space transformations for each image are combined before applying to prevent extra

resampling.

Difference 5: Masking of voxels

In any VBA, one must determine a set of voxels to be analyzed. In FSL TBSS, this occurs

during the tbss_3_postreg script, where voxels are only included if nonzero in all

coregistered preprocessed subjects. This strategy is an accepted standard (Ashburner and

Friston, 2000), but it allows a single outlier to exclude a voxel from comparison in all

subjects. Because this step occurs after preprocessing, it strongly exacerbates the issue

addressed in Difference 1, as superfluously-removed voxels in one subject are then removed

from all subjects. As the size of the dataset n increases, the number of outliers tends to

increase proportionally, and so superfluous removals are also proportional to n. In our

experiments, this step frequently removed most of the brainstem and midbrain from

analyses.

Prior VBM literature has described these issues as particularly problematic for atrophied

brains (Ridgway et al., 2009), prevalent in all datasets in this work. Alternative masking

options have been proposed for VBM-style analyses that include voxels if they are nonzero

in at least some chosen proportion of subjects (Ridgway et al., 2009; Vemuri et al., 2008).

We empirically evaluated a range of thresholds and determined that results were

qualitatively identical in a range of 30–70%, and so chose 50% for our implementation. We

employ this strategy in our proposed ANTS-GW pipelines, and we present a comparative

example in Fig. 3. Quantitative analysis of this difference is also provided in supplementary

material.

In tested VBA pipelines (those omitting skeletonization), we follow the standard set by other

studies of additionally removing voxels where the mean FA across subjects is below 0.2, as

this restricts analysis to mostly-WM regions (Chiang et al., 2011; Smith et al., 2006).

Difference 6: Skeleton projection

As we reviewed earlier, TBSS's definitive skeleton projection step requires many

compromises in return for its limited compensation for registration errors. Thus we evaluate

whether this step's cons outweigh its pros, particularly when used within pipelines that offer

improved coregistration and thus have fewer errors to require compensation, by comparing

pipelines that differ only by its inclusion or omission. In our experiments, pipelines that use

skeleton projection are denoted by TBSS, where those that omit it are denoted by VBA, since

without this step TBSS becomes essentially standard VBA. In the VBA pipelines, this

skeletonization step is replaced with a Gaussian blur, which is standard in VBA to increase

the Gaussianity of the data (Ashburner and Friston, 2000). For this we use the fslmaths

program with a sigma of 1 mm. For TBSS pipelines' skeleton projection we use a skeleton

threshold of 0.20 because empirically it produced skeletons that mostly include WM while

mostly omitting GM. This value is also suggested by the original authors (Smith et al.,

2006). We also examined additional variants where skeletonization was applied as a simple

voxel mask without projection; these experiments are presented in the supplementary

material.
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Statistical calculations and correction for multiple comparisons

As in standard FSL TBSS, we use FSL's randomise for per-voxel statistical comparisons.

For consistency with most related literature, we use the threshold-free cluster enhancement

(TFCE) option for all analyses (Smith and Nichols, 2009). We use the defaults suggested in

the standard FSL tbss_4_prestats script for randomise, with the exception of changing the -

T2 parameter to -T in VBA pipelines, optimizing TFCE for 3D rather than 2D data. We

report all results with a significance threshold of p < 0.05. Prior TBSS studies vary in

whether results are reported with or without correction for multiple comparisons via Family-

Wise Error (FWE) (Keihaninejad et al., 2012), so we explore and quantify the effects of this

option by reporting our results in both ways.

Experiments

In this section we describe our experimental datasets and the designs of the simulation

studies that provide the sensitivity and specificity metrics driving our major conclusions and

the real-life data experiments on which we compare results with visual assessment.

Study subjects

Mayo AD–CN dataset—We identified a total of 30 AD subjects and 30 age-/sex-matched

CN controls with DTI scans from the Mayo Clinic Study of Aging (MCSA) and Alzheimer's

Disease Research Center (ADRC) studies (mean ± SD age 80.0 ± 5.1 years). MCSA is an

epidemiological study of incidence, prevalence, and risk factors for Mild Cognitive

Impairment (MCI) and dementia in the age 70–90 population of Rochester, Olmsted County,

Minnesota (Petersen et al., 2010; Roberts et al., 2008). The ADRC study recruits and

follows subjects initially seen as patients at the Mayo Clinic Behavioral Neurology practice.

The criteria for normal subjects were: no cognitive complaints, normal neurological exam,

no active psychiatric or neurological conditions, no psychoactive medications, and prior

resolution of any previous neurological or psychiatric conditions, and the diagnosis of AD

was made according to established criteria.

Scans of these subjects were performed on 3 T scanners manufactured by General Electric

(Discovery MR750 and Signa HDxt models). The DTI acquisitions were a single-shot echo-

planar (EPI) pulse sequence in the axial plane, with repetition time (TR) 8–11 s (depending

on head size); in-plane matrix 128/128; FOV 35 cm; phase FOV 0.66 or 1.00, and 2.7 mm

isotropic resolution. There were 41 diffusion directions with weighting (b) = 1000 s/mm2

and 4–5 non-diffusion weighted T2 (b0) images.

ADNI AD–CN dataset—To cross-validate the experiments on an independent AD–CN

dataset that was never used for tuning algorithm parameters, we also perform experiments

using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a longitudinal

observational study of elderly individuals from 59 institutions with normal cognition,

amnestic MCI, and AD (Jack et al., 2008). For up-to-date information, see www.adni-

info.org. For our ADNI AD–CN dataset we identified 23 subjects with clinically-diagnosed

AD and 23 age-/sex-matched CN (mean ± SD age of 74.5 ± 7.9 years) with usable DTI

scans. These scans were also performed on 3 T scanners manufactured by General Electric
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(Discovery MR750, Signa HDx, and Signa HDxt models) using an axial EPI sequence. The

TR was 9–14 s (depending on head size); the in-plane matrix 128/128; FOV 35 cm, and

phase FOV 0.66 or 1.00. All scans had 41 diffusion directions with weighting (b) = 1000

s/mm2, five non-diffusion weighted T2 (b0) images, and 2.7 mm isotropic resolution.

Mayo PSP–CN dataset—To validate our methodology on an independent group of

patients with a different neurodegenerative disorder, and to compare the methods' abilities to

distinguish these disorders, we identified 20 subjects diagnosed with PSP as part of a

longitudinal imaging PSP study and 20 age-/sex-matched MCSA CN subjects (mean ± SD

age of 68.7 ± 7.0 years). PSP subjects were identified from those recruited by the

Department of Neurology, Mayo Clinic, Rochester, Minnesota who obtained a clinical

diagnosis of probable PSP by a neurodegenerative expert (KAJ) of which 10 (50%) have

now been pathologically confirmed and hence meet the criteria for definite PSP according to

the established criteria (Litvan et al., 1996). Further details of this study are available in

Josephs et al. (2013). The clinical scans of PSP subjects employed the same scanners as the

Mayo AD–CN dataset with nearly the same parameters, but with some variation: the number

of diffusion directions was either 37 or 41, and the resolution isotropically either 2.5 or 2.7

mm.

All studies were approved by their respective institutional review boards and all subjects or

their surrogates provided informed consent compliant with HIPAA regulations. All scans

used in our experiments were validated in-house by experts to confirm acceptable image

quality and lack of significant confounding pathology.

Design of simulation experiments

Sensitivity experimental design—To quantify each method's sensitivity and

specificity, we synthetically modified FA images to provide test cases with known ground

truth. For sensitivity analysis, we employed the DTI scans of the 30 CN subjects from our

Mayo AD–CN dataset. These scans were first preprocessed with a 3 × 3 × 1 erosion kernel

to remove the “halo” artifact described previously, in order to allow registration with atlases

that do not contain such an artifact (redundant further erosion was therefore disabled when

using each pipeline).

Our sensitivity experiments are designed to answer the following hypothetical question: For

a comparison of 30 controls to 30 test subjects, if test subjects are identical to controls

except for a known set of voxels where FA was synthetically reduced by a fixed value, what

percentage of these voxels will be identified by each method as containing statistically

significant group differences? In this way, we quantify each method's minimum detectable

FA difference and compare these methods according to this sensitivity at each reduction

level. We illustrate these experiments' design in Fig. 4.

The design of these experiments is extended for quantitative analysis from prior work

(Keihaninejad et al., 2012). We use the ANTS-SyN algorithm to calculate a nonlinear

registration between the popular JHU_MNI_SS_FA WM atlas (Oishi et al., 2009) and each

subject, resampling this atlas to each subject's native space using nearest-neighbor

interpolation. We then subtract a known fixed value from each subject's FA in the following
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atlas-defined regions: uncinate fasciculus, inferior longitudinal fasciculus, superior

longitudinal fasciculus, cingulum bundle, genu of the corpus callosum, splenium of the

corpus callosum, fornix, posterior thalamic radiation, and inferior fronto-occipital. These

regions were chosen because they frequently contain significant FA differences in TBSS-

based comparisons of AD and control subjects (Keihaninejad et al., 2012). Finally, we use

each pipeline variant (Table 1) to coregister and perform groupwise comparisons between

the set of unmodified controls and their copies with synthetically-reduced FA values.

To quantify sensitivity, we take for each subject their map of voxels that were reduced

according to the atlas, and we project these maps through the same set of deformations that

were calculated to coregister their FA images, interpolating using nearest-neighbor. This

process produces a map of which voxels in coregistered space correspond to those modified

in their native space. We calculate the inter-subject mean of these maps, obtaining for each

voxel the proportion of subjects whose FA was reduced in that location. For TBSS-based

analyses, this changed-voxels map is then transformed by the same skeleton projection that

was calculated for the input subjects. We present example slices of these maps in Fig. 10 in

the Results section. Next, we threshold this map to remove voxels where FA differs in <90%

of subject pairs, encoding the assumption that each method should detect significant FA

reductions in every voxel where FA differs in ≥ 90% of subject pairs. Finally, we calculate

each method's sensitivity: the percentage of these voxels in which significant FA reductions

were detected between the control and the (synthetically-modified) test group.

We repeated these experiments with the chosen set of Regions of Interest (ROIs) reduced in

each subject's FA images by the following amounts: 0.025, 0.05, 0.075, 0.10, 0.15, 0.20,

0.30, because empirically these provided good coverage of the range of sensitivities. Results

are presented in the following section.

Specificity experimental design—Our specificity experiments are designed to answer

the following hypothetical question: For a comparison of 30 control to 30 test subjects that

have the same FA values in all anatomically-corresponding locations but differ only in the

shape and voxel locations of these values due to disease-related atrophy, what fraction of

voxels will be detected by each method as containing significant groupwise differences that

are false-positives due to effects of misregistration and interpolation? For these experiments,

we employ both the AD and CN subjects from our Mayo AD–CN dataset. As in the

sensitivity experiments, these scans were first preprocessed with a 3 × 3 × 1 erosion kernel

to remove the “halo” artifact, in order to allow registration with atlases that do not contain

such an artifact (redundant further erosion was therefore disabled when using each pipeline).

In this section we describe these experiments' design, also illustrated in Fig. 5.

The design of these experiments is also extended for quantitative analysis from prior work

(Keihaninejad et al., 2012). First, we employ the set of AD subjects to generate an AD-

specific shape-averaged template brain via groupwise registration as described previously.

We then calculate the nonlinear registration between each control subject and this AD

template using ANTS-SyN, generating for each control subject a FA image with its same

values projected to anatomical locations corresponding to a mean of our set of AD subjects,

simulating the effect of AD-specific brain atrophy. To avoid the bias of comparing
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unmodified control subjects to corresponding subjects re-interpolated by warping, we

perform the same trilinear interpolation on control subjects isotropically scaled by 0.99 of

their original size. We then continue by running each software pipeline variant to compare

these two groups: 1) 30 re-interpolated control subjects 2) the same 30 control subjects each

nonlinearly coregistered to the mean of a set of shape-averaged age- and sex-matched AD

subjects. Finally, we calculate the specificity value for each method as the percentage of the

final analysis mask where FA values in the control group were statistically significantly

higher than those in the synthetic atrophy group. We present these results in the following

section.

Design of real-data experiments

AD vs. controls experiments—First, to validate and compare pipelines, we performed

groupwise comparisons on our Mayo AD–CN dataset. Next, we use our independent ADNI

AD–CN dataset, which was not used during the proposed method's development, for cross-

validation. We used these datasets as inputs to each software pipeline variant (Table 1) and

present these results in the following section.

PSP vs. controls experiment—To validate the methods on scans of subjects affected by

a very different neurodegenerative pathology, we performed groupwise comparisons on our

Mayo PSP–CN dataset as input to each software pipeline and present these results in the

following section.

Results

Registration quality: Visual comparisons and coefficient of variation

In this section we present examples (Fig. 6) and visual indicators (Fig. 7) of the quality of

inter-subject registration by each pipeline. All examples are from experiments more fully

discussed later.

While lack of contrast in non-WM regions of FA images challenges any registration

algorithm, the original FSL pipeline based on FLIRT and FNIRT occasionally made gross

errors in both affine and nonlinear registration that were avoided by the ANTS-based

pipelines (Fig. 6). Such gross affine registration errors (Fig. 6, top) occurred in two

experiments, and the FSL-based pipelines were altered in these two experiments to use

different flirt parameters to avoid them. More details are given in later sections. FSL-based

pipelines very frequently gave relatively subtle errors in nonlinear registration (Fig. 6,

bottom) in all tested datasets. Although alternative parameters to FNIRT might avoid such

errors, to provide results with the unmodified software package we used those specified by

the original authors in provided scripts designed for automated usage. An inspection of the

subjects that experienced faulty registrations by FLIRT/FNIRT did not find any patterns or

abnormalities to warrant their exclusion.

We present aggregated results of subject coregistration with each pipeline in Fig. 7 by

calculating the mean and coefficient of variation (CV) across subjects. For this figure, we

use CN scans from our Mayo AD–CN dataset to minimize confounding pathology. The

mean FA image is the voxel-wise inter-subject mean of coregistered images, which is also
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used in these algorithms to determine the analysis mask. CV, the inter-subject standard

deviation at each voxel divided by this mean, enables visualization of signal variability

across images. In this figure, the ANTS-GW pipeline has increased visual clarity in the

mean image and lower CV in WM regions with higher anatomical variability, such as the

fornix and U-shaped fibers near the cortical surface, suggesting that its registration

algorithms were more successful in aligning these regions. In the following subsections, we

explore the effects of such registration differences on groupwise comparisons.

Sensitivity and specificity experimental results

Here we present the results of the sensitivity and specificity experiments with synthetically

modified data described in the previous section. Each analysis pipeline was evaluated both

with and without family-wise (FWE) statistical correction for multiple comparisons in order

to simultaneously evaluate the effects of these corrections upon sensitivity and specificity.

We first present the results without this correction (“uncorrected”) in Fig. 8, and with it

enabled in Fig. 9. With FWE-correction applied, specificity is increased at a cost of reduced

sensitivity. In this data, adding such correction had two major effects: specificity was

increased to the ceiling for all methods, and sensitivity was decreased enough that all

methods provided equal and zero sensitivity at ΔFA = 0.025.

Overall comparison of methods

Together, these experiments suggest that the proposed ANTS-GW VBA pipeline, which is

based on groupwise registration using the ANTS registration software and omits the TBSS

namesake skeleton projection step, has the highest sensitivity of all tested methods to

detecting FA reductions across the entire tested range, with the exception of only one

experiment among the fourteen performed. This pipeline also performed best in our

specificity experiments, indicating a higher resistance to making false inferences due to

misregistration errors than the other methods, although all methods' specificities experienced

a ceiling effect under the added specificity of statistical FWE correction.

Testing skeleton projection

Focusing on comparisons between VBA and TBSS, i.e. whether or not TBSS's

skeletonization step is beneficial, we see that when performed after ANTS-groupwise

registration, the step reduced sensitivity in most experiments while providing no significant

benefit to specificity. However, when performed after FSL-based registration as in the

standard FSL TBSS pipeline, skeletonization provided increased specificity, perhaps by

reducing the effects of misregistration. Its relationship to sensitivity depended on the

magnitude of the FA differences: for subtle effects, skeletonization increased detection

sensitivity, but this difference equalized and then reversed as the magnitude of the difference

increased. Together, these experiments suggest that when used with the FSL-based

coregistration pipeline, TBSS's skeletonization step is useful in some instances to reduce

misregistration effects, but when used with the improved registration provided by our

proposed ANTS-based approach, it is primarily detrimental.
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Analyzing registration performance

Some of these results may be further explained using maps of voxel locations where the

sensitivity experiments' synthetically-changed voxels in each subject were located after

undergoing each coregistration pipeline (Fig. 10). In these maps, we see more consistent

coregistration by the ANTS-GW pipelines. This is evidenced by a larger proportion of

voxels with over 90% overlap (displayed in blue) of coregistered subjects' ROIs, especially

in the fornix. These differences in coregistration quality offer one possible explanation for

the higher sensitivity by the proposed methods in these regions. Furthermore, we see

examples of skeletonization projecting voxels into anatomically different brain regions from

where they originated, such as changed-voxels appearing in the thalamus even though no

voxels in the thalamus were actually changed. Because corresponding VBA pipelines did

not show significant differences in the thalamus, these misregistrations must have been

introduced by the skeletonization process. This illustrates one of the TBSS limitations

reviewed earlier in this work.

Additionally, the unmodified FSL-based pipelines experienced a severe affine

misregistration of two synthetically-modified subjects in the ΔFA = 0.100 experiments. It

was necessary to alter these pipelines so that flirt-based affine registration was performed

using the -usesqform option to initialize the transforms from the files' headers, which

prevented these errors. Visual inspection of these subjects showed no exclusionary criteria,

and the unaltered pipeline did not have such errors in other ΔFA values. The ANTS-based

pipelines had no such errors with these subjects. Only the FSL pipelines were altered in such

a way in only the ΔFA = 0.100 experiments. Results for these pipelines without any

modifications, thus including these erroneous registrations but preserving the same

methodology across experiments, are plotted in supplementary material.

Comparing sensitivity in the fornix

In Table 2 we present the results of manually inspecting our sensitivity experiments'

detections to determine whether any occurred in the fornix ROI. Because we synthetically

reduced FA values in the fornix, among other ROIs, fornix detections are true positives and

omissions are false negatives. The fornix is a region of particular interest to AD researchers

because it is a primary WM connection to the hippocampus and has been detected as having

reduced FA in most published DTI comparisons of AD and control patients (Keihaninejad et

al., 2012). However, the fornix is a small, thin region surrounded by ventricles, and thus

particularly prone to misregistration and partial volume averaging effects. Because of these

difficulties, some groups choose to omit it from analysis despite its research importance (Nir

et al., 2013). In Table 2, we see that the VBA pipelines omitting skeleton projection are

more sensitive than their TBSS counterparts. After FWE correction, TBSS pipelines

detected no fornix differences in any experiments, while the VBA pipelines succeed at

detecting stronger FA differences. The fornix, however, remains a challenging ROI for all

methods, and its relative insensitivity could be a target for future methodological

improvement.

Schwarz et al. Page 12

Neuroimage. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



AD vs. controls results

Here we present the results of our real-data experiments with AD–CN comparisons and

show them in Fig. 11 (Mayo AD–CN dataset) and Fig. 12 (ADNI AD–CN dataset). With all

methods, comparisons in the opposite direction (AD–Controls) in both datasets showed few

if any isolated voxels of significance, none of which were significant after FWE correction

(data not shown).

In the Mayo AD–CN dataset (Fig. 11), VBA-based methods detected stronger differences

particularly in the fornix, consistent with many similar studies (Keihaninejad et al., 2012).

This result persists after FWE correction, unlike in TBSS-based methods. Both VBA

methods appear more sensitive than their corresponding TBSS counterparts, with FSL-VBA

appearing more sensitive than ANTS-GW. However, FSL-VBA also appears far less

specific, including many strongly detected differences surrounding ventricle boundaries that

we hypothesize to be a result of misregistration, partial volume averaging effects,

susceptibility inhomogeneities, and/or confounding atrophy that were corrected by the

additional step of skeleton projection in the FSL TBSS results. In the ANTS-GW pipelines,

these regions do not pass FWE-corrected thresholds with or without skeleton projection,

suggesting that their improved coregistration has removed these false positives without the

need for that sensitivity-reducing step. Additionally, several regions of high-FA WM voxels

were removed from consideration in the FSL pipelines that were retained with the proposed

pipelines, although these incorrectly included CSF in the straight sinus/tentorium. These

results particularly illustrate the harshness of FWE correction, which qualitatively changed

the results from detecting significance in most WM regions to detected significance in only

two focal ROIs.

In the ADNI dataset (Fig. 12), large regions of the midbrain and temporal lobe WM omitted

by the FSL pipelines were included by the proposed ANTS-GW pipelines, although these

also incorrectly included CSF in the straight sinus/tentorium. As in the previous dataset, the

reduced capability of the TBSS pipelines to detect changes in the fornix resulted in this

region's not surviving FWE-corrected thresholds. Examining the VBA pipelines' results with

and without skeleton projection suggests that many of the FA differences detected by TBSS

in peripheral WM actually occurred more centrally and these changes were mislead-ingly

projected to these regions by skeletonization. The regions detected by VBA methods are

similar to each other, but their spatial pattern in ANTS-GW VBA is much more symmetric

and more strongly resembles the typical spatial distribution of age-related White Matter

Hyperintensities (WMH) (Yoshita et al., 2006), suggesting a more plausible result because

of the known correlation between WMH and reduced FA (Zhan et al., 2009). Locational

inconsistencies of these regions with TBSS may also be explained by previously reported

skeleton projection inaccuracies in the presence of WMH (Jones and Cercignani, 2010).

Comparing results in the two datasets, all methods generally showed a more aggressive

pathology in the ADNI population than the Mayo Clinic population, agreeing with previous

T1-based imaging comparisons between these groups (Whitwell et al., 2012a). Because our

ADNI dataset contains relatively younger subjects, these results also agree with previous

findings that differences between diagnostic groups decrease with age (Kantarci et al., 2010;
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Savva et al., 2009), possibly due to increased pathologic heterogeneity. These cross-dataset

differences are particularly evident in the proposed ANTS-GW VBA method.

PSP vs. controls results

Here we describe the results of the real-data experiments with PSP vs. CN subjects and

display them in Fig. 13. Like in the ΔFA = 0.100 sensitivity experiment, in these

experiments, the FSL-based pipelines encountered a severe affine-misregistration of one

PSP subject that required altering these pipelines so that flirt-based affine registration was

performed using the -usesqform option, which prevented these errors. Visual inspection of

this subject showed no exclusionary criteria, and the ANTS-based pipelines had no such

errors. Results for these FSL pipelines without any modification, thus including these

erroneous registrations, are presented in supplementary material.

With all methods, comparisons in the opposite direction (PSP– Controls) showed few if any

isolated voxels of significance, none of which were significant after FWE correction (data

not shown). In the presented comparisons, the FSL pipelines removed large portions of the

midbrain and temporal lobes from consideration, which in the FSL TBSS pipeline was

sufficient to prevent detecting significant FA reductions in most of the midbrain after FWE-

correction, a region strongly implicated in this disease (Oba et al., 2005; Whitwell et al.,

2012b). As a result, detections by the FSL TBSS method for CN-PSP subject differences

were less differentiated from the previous comparisons of CN-AD subjects than those of the

proposed methods. All pipelines detected large highly-significant reductions in FA

surrounding the ventricles, particularly in the thalamus, which we hypothesize to be another

instance of effects from misregistrations, susceptibility inhomogeneities, and partial volume

averaging, like those in the FSL VBA pipeline's results in the AD–CN experiments. These

regions have reduced significance in the ANTS-GW pipelines but mostly remain above

thresholds, suggesting that while the ANTS-GW pipeline is an improvement over the FSL

pipelines, future work could further improve DTI coregistration. Most of these regions were

not eliminated by the skeleton projection step in either TBSS pipeline. Like in previous

sections, the ANTS-GW pipelines incorrectly included CSF voxels in the straight sinus/

tentorium that were omitted by the more conservative FSL pipelines.

Discussion and conclusions

Conclusions

In this work we present evidence that applying contemporary image coregistration

improvements to DTI-FA images allows voxel-wise comparisons that are both more

sensitive and more specific than the popular TBSS software pipeline, and that when used in

combination with improved coregistration, TBSS's definitive skeleton projection step

designed to compensate for misregistration errors is primarily detrimental to these metrics.

We also present results of applying each method to three different datasets, on which the

proposed improvements provide more plausible results according to disease

pathophysiology. We suggest that future studies perform voxel-based analyses of DTI using

groupwise registration based on ANTS or other well-performing nonlinear registration

algorithms and omit the skeletonization step.
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Limitations of current study

One limitation of the current study was the ceiling effect in the FWE-corrected specificity

experiments, preventing specificity comparison between methods in this situation. While

more general misregistration simulations could have been used, such as applying simple

global deformations, these would not simulate the effects of atrophy, and such an evaluation

of skeletonization has been previously published (Zalesky, 2011). In one attempt to improve

the ceiling limitation for our experiments, we repeated them with an alternate design where

each control subject was nonlinearly registered to a specific age and sex matched AD

subject, rather than to a groupwise-averaged template of all AD subjects. While these

deformations between individuals were generally much larger than the deformations to an

averaged mean, the experiments experienced the same ceiling effect under FWE-correction.

However, both registration pipelines preventing our simulated misregistrations from

affecting FWE-corrected statistics provides further evidence that additional correction by

skeletonization is not required. For further work, one might explore synthetic experiments

using more sophisticated algorithms for atrophy simulation (Camara-Rey et al., 2006).

Another limitation occurs in our numerical comparisons of TBSS results vs. VBA results

with FWE-correction. Because TBSS methods compute statistics over only skeleton voxels,

fewer statistical comparisons occur in less-relevant voxels, and thus FWE-correction is less

punitive. This potential bias may relatively increase the measured percentage sensitivity of

FWE-corrected TBSS methods vs. VBA methods. However, because TBSS methods were

less sensitive than VBA methods in a majority of our experiments, and the methods'

sensitivities were also relatively similar with uncorrected statistics, we feel that these

experiments support the conclusion that TBSS projection decreases sensitivity in most

situations, although the magnitudes of that difference may be different than measured under

FWE.

Future work

While this work suggests many promising directions for future studies, perhaps the most

impactful would be a comparison of techniques for DTI coregistration. Here, we provide

evidence that groupwise registration of FA images using the ANTS SyN algorithm is

superior to the standard TBSS software pipeline's most-representative-subject-targeted

registration using FLIRT and FNIRT. While our work combines with previous studies to

suggest that groupwise registration is superior to the MRS approach (Keihaninejad et al.,

2012), groupwise registration can be performed with any pairwise registration technique,

and ANTS is only one such possibility. Although our experiments suggest that our proposed

methods are an improvement, they could still be improved further. Of particular interest are

DTI-specific registration algorithms based on pre-thresholded FA (Braskie et al., 2011),

tensors (Keihaninejad et al., 2013; Zhang et al., 2010), Orientation Distribution Functions

(Chiang et al., 2008), or tractography. One might also consider using ANTS or other non-

DTI-specific registration algorithms with multiple channels in addition to FA, such as the

undiffused “b0” volume, Mean Diffusion (MD), or Mode of Anisotropy (MO), similar to

Park et al. (2003). Another option could be calculating inter-subject coregistration

parameters between corresponding T1 volumes rather than DTI volumes directly, as

advocated by Tustison et al. (2014). Registration improvements provided by such
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experiments could potentially increase sensitivity/specificity and improve ability to detect

smaller FA changes particularly in areas with significant partial volume averaging such as

the fornix.

Other possible directions include comparing an ANTS groupwise-registration-based VBM

pipeline for T1 images against more standard implementations, possibly creating a unified

pipeline for both DTI and T1 to allow more direct multimodal models or cross-modal

comparisons. One could also investigate a voxel masking strategy that prevents false

detections in CSF regions such as the straight sinus/tentorium seen in the proposed

pipelines, without superfluously removing WM regions as in the FSL pipelines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Steps of original FSL TBSS Pipeline, with example images.
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Fig. 2.
Left: Original unprocessed image showing “Halo” artifact around outside of brain Center:

Standard FSL TBSS preprocessing applied, leaving “hole” in brain. Right: Proposed

slicewise erosion applied, preserving “hole” location.
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Fig. 3.
Top: Mean FA image of 60 subjects coregistered by the FSL TBSS pipeline and masked in

its standard method of removing all voxels that are zero in at least one subject. Bottom: The

same image, masked in the proposed method of removing only voxels that are zero in more

than half of subjects. Note that “holes” in WM are prevented, and much more of the

midbrain is left intact.
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Fig. 4.
Flowchart of steps in synthetic sensitivity analysis, where control subjects are compared to

copies of themselves with FA synthetically reduced in a set of chosen ROIs, in order to

quantify how well each method is able to detect these known change locations.
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Fig. 5.
Flowchart of steps in synthetic specificity analysis, where control subjects are compared to

copies of themselves warped to resemble AD subjects, in order to quantify how well each

method is able to avoid false positives from misregistrations caused by atrophy.
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Fig. 6.
Two examples of misregistration in real data using the original FSL TBSS pipeline and

corresponding registrations of the same inputs in the proposed ANTS-GW pipeline. The

registration target is the most-representative subject in the original TBSS pipelines, and a

study-specific template made by groupwise registration in the proposed pipelines. Example

1 (top) is taken from the real-data experiments with our Mayo PSP–CN dataset, and

Example 2 (bottom) is from those with our Mayo AD–CN dataset.
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Fig. 7.
Comparison of registration targets (left), and mean (center) and coefficient of variation

(right) of all control subjects in our Mayo AD–CN dataset, with original and proposed

pipeline variants. The proposed pipeline shows more distinct tracts in the mean image,

particularly in smaller tracts toward the cortical surface, and smaller variance in most

locations, suggesting superior coregistration.
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Fig. 8.
Receiver Operating Characteristic (ROC) curve plots of synthetic sensitivity and specificity

experiments for each method using FWE-uncorrected statistics, which are frequently

reported in the TBSS literature. Values near the top-left corner suggest superior results. Y

axis scales vary. The proposed ANTS-GW VBA performs strongest in all tests.
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Fig. 9.
Results of synthetic sensitivity experiments for each method with FWE-corrected statistics.

Because specificity was perfect for all methods, we plot only sensitivity. We also omit the

plot for ΔFA = 0.025 because all methods had zero sensitivity. Axis scales differ between

rows. Higher values suggest superior results. The proposed ANTS-GW VBA pipeline

achieves the highest sensitivity in all but the smallest FA reduction level.
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Fig. 10.
Mean voxel locations where FA was synthetically reduced in selected ROIs by 0.05 in each

subject during our sensitivity experiments, after coregistration transformations by each

method. Sensitivity is calculated in voxels where at least 90% of subjects were changed

(colored blue), as the proportion of these voxels where significant groupwise differences

were observed. Note the more consistent localization of the fornix by ANTS-GW and the

projection of voxels into the thalamus by TBSS skeletonization that were actually in the

fornix or other nearby regions prior to this step.
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Fig. 11.
Results of each analysis pipeline computing significant FA reductions in 30 AD subjects

versus 30 matched controls from Mayo Clinic data. Note reduced sensitivity in TBSS

pipelines, and increased specificity in the ANTS-GW pipelines that prevents ventricle-

boundary effects that appear to be caused by partial volume averaging.
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Fig. 12.
Results of each analysis pipeline computing significant FA reductions in 23 AD subjects

versus 23 matched controls from ADNI data. Note signal locational differences between

TBSS and VBA methods, suggesting projection by TBSS into interpretability-confusing

nearby locations, and increased symmetry in ANTS-GW VBA results.
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Fig. 13.
Results of each analysis pipeline computing significant FA reductions in 20 PSP subjects

versus 20 matched controls from Mayo Clinic data. Note the ANTS-GW pipelines' stronger

detections in the midbrain, a definitive region for PSP, and improved specificity against

detections along ventricle boundaries that appear to be caused by misregistrations and partial

volume averaging.
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Table 2

Fornix ROI detectability by each method in synthetic FA reduction sensitivity experiments. Note increased

detection ability by the VBA-based pipelines.

Detection of synthetic FA reductions in the Fornix: Without FWE correction, p < 0.05

Method/Δ FA 0.025 0.050 0.075 0.100 0.150 0.200 0.300

FSL TBSS No No No No Yes Yes Yes

FSL VBA No No No Yes Yes Yes Yes

ANTS-GW TBSS No No No No No Yes Yes

ANTS-GW VBA No No No Yes Yes Yes Yes

Detection of synthetic FA reductions in the Fornix: With FWE Correction, p < 0.05

Method / Δ FA 0.025 0.050 0.075 0.100 0.150 0.200 0.300

FSL TBSS No No No No No No No

FSL VBA No No No No No Yes Yes

ANTS-GW TBSS No No No No No No No

ANTS-GW VBA No No No No No Yes Yes
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