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Perspective

Regulation of Osteogenesis-Angiogenesis Coupling
by HIFs and VEGF
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ABSTRACT: Bone is a highly vascularized tissue, but the function of angiogenesis in bone modeling and
remodeling is still poorly defined, and the molecular mechanisms that regulate angiogenesis in bone are only
partially elucidated. Genetic manipulations in mice have recently highlighted the critical role of the hypoxia-
inducible-factor/vascular endothelial growth factor pathway in coupling angiogenesis and osteogenesis. In
this brief perspective, we review the current understanding of the mechanisms responsible for this coupling.
Elucidation of such mechanisms will expand our knowledge of bone development and homeostasis, and it
may aid in the design of new therapies for accelerating bone regeneration and repair.
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INTRODUCTION

BONE IS A highly vascularized and heterogeneous tissue
that forms through at least two independent mecha-

nisms: intramembranous and endochondral ossification.(1)

The first, in which mesenchymal cells develop directly into
osteoblasts, is involved in the formation of the flat bones
of the skull. The second, accounting for the development
of most other bones, involves a two-stage mechanism,
whereby chondrocytes form a matrix template, the growth
plate, which is replaced by bone. During endochondral
bone development, growth plate chondrocytes undergo
well-ordered and controlled phases of cell proliferation,
maturation, and death. This unique differentiation process
is followed by blood vessel invasion and replacement of the
cartilaginous matrix with bone.(2–5)

Osteoblasts or bone-forming cells are thought to origi-
nate from undifferentiated mesenchymal cells whose
commitment to osteoblasts is regulated by at least two
transcription factors: Runx2 and Osterix.(6,7) According to
the current model, committed osteoprogenitors proliferate,
differentiate into postmitotic osteoblasts that synthesize
and mineralize bone matrix, and finally become either
terminally differentiated osteocytes encased into the bony
matrix or bone-lining cells. The identification of cells that
are osteoprogenitors has been difficult, but their presence
in the bone marrow stroma can be confirmed by their

functional capacity to divide and differentiate in vitro into
bone nodule–forming osteoblasts.(8)

Blood vessel invasion is a critical event in the replace-
ment of cartilage by bone and in the formation of the bone
marrow cavity. Vascular endothelial growth factor
(VEGF)-A is one of the critical mediators of blood vessel
invasion of the cartilaginous mold. Five VEGF-A isoforms
have been identified in humans, whereas there are three
major isoforms in the mouse (VEGF120, VEGF164, and
VEGF188). VEGF-A binds to and activates two tyrosine
kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/
Flk-1), which regulate both physiological and pathological
angiogenesis.(9) In the embryo, VEGF signaling is essential
for angiogenesis, because the deletion of even a single copy
of the VEGF-A gene results in embryonic lethality because
of defective vascular development.(10,11) During endo-
chondral bone development, VEGF-A is produced by both
chondrocytes, particularly in their later stages of terminal
differentiation, and by osteoblasts.(12–14) Altering the ex-
pression or the levels of VEGF has a profound impact on
vascular invasion of the cartilaginous mold. Mice express-
ing only the soluble form of VEGF, VEGF120, but lacking
VEGF188 and VEGF164 exhibit delayed blood vessel in-
vasion during endochondral bone development.(15,16)

Similarly, administration of the VEGF inhibitor mFlt(1–
3)–IgG completely blocked neoangiogenesis in the growth
plates of 24-day-old mice.(17)

Whereas cartilage is an avascular and hypoxic mesen-
chymal tissue,(18–22) bone is highly vascularized, although
the bone marrow is relatively hypoxic compared with other
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adult organs (see below).(23) It is obvious to assume that
blood vessels are critical in the biology of bone as providers
of nutrients. However, it is also becoming progressively
evident that the biological role of blood vessels in bone
goes beyond being a mere source of nutrients. For exam-
ple, progenitors of osteoblasts have been reported to be
present in the wall of human bone marrow blood ves-
sels.(24) All in all, the function of angiogenesis in bone
modeling and remodeling is still poorly defined, and the
molecular mechanisms that regulate angiogenesis in bone
are only partially elucidated.

In recent years, it has been shown that hypoxia is a major
driving force for angiogenesis and VEGF-A expression by
stabilizing the hypoxia inducible factors (HIFs) protein.(25)

Hypoxia is not an absolute concept, but it is rather a rel-
ative decrease of O2 availability. The definition of ‘‘phys-
iologically’’ normoxic conditions for either embryonic or
adult cells varies significantly. Before the circulatory sys-
tem is established, mammalian development proceeds in a
relatively low O2 environment of ;3%.(26,27) Moreover,
studies that have used small-molecule hypoxia markers
have shown the existence of specific regions of moderate
to severe hypoxia in the developing embryos.(28,29) In the
majority of normal adult tissues, oxygen (O2) levels vary
between 2% and 9% (compared with ambient air that
contains 21% O2).(23) In contrast, O2 concentrations in
regions of the bone marrow, cartilage, kidney medulla, and
thymus are <1% O2.(23) Hypoxia is not only a critical factor
in fetal development and differentiation but is also a
pathophysiological component of many human disorders,
including cancer and ischemic diseases.(20,28–30)

HIF-1, a ubiquitously expressed transcription factor, is
a major regulator of cellular adaptation to hypoxia.(31–35) It
is a heterodimeric DNA-binding complex that consists of
two basic helix-loop-helix (bHLH) proteins of the PER/
ARNT/SIM (PAS) subfamily: HIF-1a and HiF-1b.(36)

HIF-1a and HIF-1 b mRNAs are ubiquitously expressed.(37)

In general, a-class members of the PAS subfamily respond
to environmental signals, whereas b-class molecules aid in
targeting the heterodimer to their nuclear targets.(38) In
the HIF-1 system, HIF-1a levels increase exponentially as
O2 levels drop below 5%.(39–44) On the other hand, HIF-
1b (also known as aryl hydrocarbon nuclear translocator or
ARNT) is non–oxygen responsive. On heterodimerization
with HIF-1a, the HIF-1a:HIF-1b complex binds to a specific
sequence 59-RCGTG-39 (where R denotes a purine residue)
termed hypoxia response elements (HREs) and trans-
activates target genes containing HREs.(45) HIF-1a does
not directly sense variations of O2 tension(46); a class of 2-
oxoglutarate–dependent and Fe2+-dependent dioxygenases
are the O2 sensors.(39) Two types of O2 sensors are involved
in HIF-1a action: prolyl-hydroxylase domain proteins (PHDs)
and an asparaginyl hydroxylase, respectively. PHDs hy-
droxylate two prolyl residues (P402 and P564) in the HIF-
1a region referred to as the O2-dependent degradation
domain (ODDD).(47) This modification occurs in normoxic
conditions and mediates the binding of the von Hippel-
Lindau tumor suppressor protein (pVHL), which is an E3
ubiquitin ligase, to HIF-1a. HIF-1a is marked with poly-
ubiquitin chains and targeted for degradation by the

proteasome. In well-oxygenated tissues, where O2 tension
is >5%, HIF-1a displays one of the shortest half-lives (<5
min) among cellular proteins. Conversely, under hypoxic
conditions, the activity of the PHDs is largely impaired,
and proline hydroxylation cannot occur. As a result,
HIF-1a protein accumulates, and this initiates a multistep
pathway that includes nuclear translocation of HIF-1a, di-
merization with its partner HIF-1b, recruitment of tran-
scriptional co-activators, and binding to HREs within the
promoters of hypoxia-responsive genes.(48) The second type
of O2 sensor is an asparaginyl hydroxylase called factor in-
hibiting HIF-1 (FIH-1).(49,50) This enzyme hydroxylates an
asparagine residue (N803) in the carboxy-terminal tran-
scriptional activation domain (C-TAD) of HIF-1a. This
covalent modification blocks C-TAD interaction with tran-
scriptional co-activators, such as p300 and CBP. Thus, the
two O2 sensors, PHD and FIH, by regulating the destruction
and activity of HIF-1a, respectively, ensure the repression of
the HIF-1 pathway in well-oxygenated cells.

To date, >100 putative HIF-1 target genes have been
identified.(51–54) They are involved in a wide variety of bi-
ological processes including energy metabolism, angio-
genesis, erythropoiesis, cell survival, apoptosis, redox, and
pH regulation.(53,55) Mouse embryos lacking HIF-1a ex-
hibit multiple morphological defects as early as embryonic
day E8.5 and die in utero by E10.5.(56–58) Many malignant
cancers contain regions of severe hypoxia, resulting in high
levels of HIF-1a that drive tumor progression,(32,35) and
inhibition of HIF-1a has been proposed as a potentially
powerful approach.(59)

pVHL is expressed in most tissues and cells.(60) Heter-
ozygous germline missense mutations of the VHL gene are
the cause of von Hippel Lindau syndrome,(61,62) a disease
characterized by a dominant predisposition to develop
pheochromocytomas and highly vascular tumors of the
kidney, central nervous system, and retina.(61,62) Tumori-
genesis results from the loss or inactivation of the wildtype
allele.(61,62) The importance of pVHL for proteolysis of
HIF-1a is underscored by the finding that cells lacking
functional pVHL have dramatically reduced ability to de-
grade this transcription factor, resulting in accumulation of
high levels of HIF-1a under normoxic conditions.(61,62)

Stimuli other than hypoxia also cause HIF-1a to accu-
mulate in normoxic cells. For example, growth factors such
as IGF-1 can induce HIF-1a synthesis through activation
of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR
signal transduction pathway.(63–66)

Besides HIF-1a, two proteins with sequence similarity to
HIF-1a have been characterized: HIF-2a and HIF-3a.(67)

HIF-1a and HIF-2a have a similar protein structure and
undergo the same oxygen-dependent proteolysis. This may
indicate that they are functionally redundant, at least in
some settings.(68) However, the pattern of expression of
HIF-2a is largely restricted to blood vessels, neural crest,
and distinct cell populations in the brain, heart, lung, kid-
ney, liver, pancreas, and intestine,(69) whereas HIF-1a is
expressed in all cells. Moreover, mice that are null for HIF-
1a die at early stages of embryonic development, but mice
deficient in HIF-2a survive until mid-to-late gestation or,
depending on the strain, until birth.(56–58,70–74) The two
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isoforms therefore seem to have distinct developmental
functions. Last, some genes are activated by either HIF-
1a or HIF-2a, whereas others are only activated by one or
the other.(23,75–77) HIF-3a is not closely related to HIF-
1a and HIF-2a.(78) Alternative splicing of the HIF-3a

primary RNA transcript produces mRNAs that encode at
least six different protein isoforms,(79) one of which is an
inhibitory protein that contains the N-terminal bHLH and
PAS domains but lacks the C-TAD.(80) This protein acts as
a negative regulator of HIF-mediated gene expression.

The next two sections of this brief perspective will
summarize our current knowledge about the role of the
transcription factor HIF-1a as an essential modulator of
osteoblast-angiogenic coupling, particularly in the trabec-
ular compartment of the long bones.

HIFS AND ANGIOGENESIS/OSTEOGENESIS
COUPLING IN BONE DEVELOPMENT

Hypoxia is likely one of the major drivers of the tight
coupling between angiogenesis and bone formation. Os-
teoblasts, like all other nucleated metazoan cells, express
components of the HIF-1 pathway. Studies in the late 1990s
have shown that hypoxia is a potent stimulator of VEGF-A
mRNA expression in osteoblastic cells.(81) More recently,
manipulation of the HIF-1a pathway in osteoblasts has led
to altered VEGF-A levels and dramatic changes in bone
mass.(82) Indeed, mutant mice that lack VHL in fully dif-
ferentiated osteoblasts (DVHL) and thus overexpress HIFs
have a strikingly increased bone volume, which was sec-
ondary, at least at early stages, to an increase of osteoblast
number and of bone formation rate in absence of detect-
able changes in osteoclast number and/or activity. Con-
versely, lack of HIF-1a in osteoblasts (DHIF-1a) nega-
tively impacts bone volume. The amount of bone in both
DVHL and DHIF-1a mice is directly proportional to the
degree of skeletal vascularization. This suggests that the
regulation of bone mass in these mutants may be secondary
to changes in VEGF-A levels and angiogenesis. Consistent
with this idea, VEGF-A mRNA expression is upregulated
in trabecular bone of DVHL mice. In addition, in an ex vivo
assay, DVHL metatarsals exhibit a dramatic increase in
endothelial sprouting, which is entirely reversed by pre-
incubation with an anti-VEGF neutralizing antibody.
However, the putative mechanisms responsible for cou-
pling angiogenesis to osteogenesis physiologically, as well
as in both DVHL and DHIF-1a mice, remain to be deter-
mined. It has been proposed that the bone marrow vascular
setting provides a true niche for pericytic mesenchymal
stem cell (MSC)-like cells and could be a source of osteo-
progenitors or of MSCs with osteogenic potential.(24,83)

Thus, the VEGF-dependent increase in angiogenesis ob-
served in DVHL mice may lead to more bone volume by
providing a larger pool of MSCs. Not mutually exclusive,
HIF stabilization or inactivation may also affect osteoblasts
directly and independently of angiogenesis. Although cell
autonomous effects were not detected by in vitro assays of
proliferation, differentiation, and apoptosis, prolonged al-
terations in HIF activity in vivo may modulate cellular

metabolism, matrix formation, or autophagy as proposed
for other cell types.(20) Moreover, VEGF-A itself has
also been reported to have a direct action on osteoblast
differentiation. In particular, mice that express only the
VEGF120 isoform exhibit both delayed invasion of vessels
into the primary ossification center and altered osteoblastic
differentiation in vitro.(16) Interestingly, however, transient
hypoxia has been shown to be an inhibitor of osteoblast
differentiation in vitro,(84) which further suggests that the
dramatic increase in bone volume in mice lacking pVHL in
osteoblasts is not a cell autonomous effect but rather re-
sults from the increase in blood vessels mediated by the
increased VEGF levels.

Numerous factors other than hypoxia increase HIF pro-
tein levels in osteoblasts, which consequently leads to
increased VEGF-A expression; an example is IGF-1. In
human osteoblast-like cells, IGF-1 induces a rapid, 3-fold
increase in VEGF-A mRNA.(85) This is accompanied by an
increase in HIF-2a protein without a corresponding change
in HIF-2a mRNA expression.(85) IGF-I also stimulates the
phosphorylation of Akt, an effect that is abolished by
pretreating the cells with the phosphatidylinositol-3 kinase
(PI3K) inhibitor LY294002. Treatment with this inhibitor
also significantly reduced HIF-2 a accumulation and the
induction of VEGF mRNA expression by IGF-1. Thus,
IGF-1 seems to induce VEGF-A expression in osteoblasts
by increasing accumulation of HIF-2a protein levels in a
PI3K-dependent fashion.(85) These findings highlight a
potential role for HIF-2a in osteoblasts, a finding that
needs to be verified in vivo.

Interestingly, manipulation of HIF levels in mature os-
teoblasts does not noticeably influence the formation of the
flat bones of the skull.(82) The calvarial bones are formed
through an intramembranous process in which mesenchy-
mal cells differentiate directly into osteoblasts without an
intermediate avascular cartilaginous template. It is possible
that signals from cranial sutures and/or from the dura
induce the angiogenic response necessary for intramem-
branous ossification or that VEGF is regulated by other
factors than HIF in calvarial osteoblasts. This would ex-
plain the lack of both blood vessel and bone phenotypes in
the skull of DVHL and DHIF-1a mutant mice.

HIFS AND ANGIOGENESIS/OSTEOGENESIS
COUPLING IN REGENERATION AND REPAIR

Angiogenesis is essential for bone repair. It has been
proposed that, at fracture sites, mechanical stimuli and
inflammatory signals, along with hypoxia, which results
when the vascular and nutrient supply is interrupted,
initiate the events that lead to bone repair.(86) When an-
giogenesis is delayed, chondrocytic cells rather than oste-
oblasts make up the healing tissue. This suggests that
Hifs play a role in allocating mesenchymal lineage during
repair.(87)

Distraction osteogenesis (DO) is a valuable model for
examining the cellular mechanisms that couple angiogen-
esis and bone formation during repair and regeneration. In
DO, intramembranous bone formation is induced by the
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application of an external fixation device that applies
gradual mechanical distraction across an osteotomy.(88)

This procedure leads to a close temporal and spatial
relationship between bone formation and angiogenesis.(86)

DO has also been used to investigate the role of HIF-1a in
bone healing. In DVHL mice, DO is characterized by in-
creases in HIF-1a protein, in VEGF-A mRNA and pro-
tein, and in a number of endothelial cells, leading to more
blood vessels and more dense woven bone.(89) At DO sites
in DHIF-1a mice, the opposite takes place, namely defi-
cient angiogenesis and delayed bone consolidation.(89)

Additionally, the mRNA and protein expressions of
VEGF-A and of osteoblast markers (Runx2, alkaline
phosphatase, and osteocalcin) are decreased in this animal
model, and, conversely, increased in DVHL mice.(90) Per-
haps not surprisingly, desferrioxamine, a small molecule
that when administered directly into the distraction gap
blocks PHD activity and thus elevates HIF-1a can improve
healing in a manner virtually identical with that seen when
HIF-1a is activated.(89) These studies provide proof of
principle that a therapeutical approach that modulates the
HIF pathway may speed bone healing.

Numerous studies have highlighted the role of VEGF-A
receptor signaling in bone repair and regeneration. Both
receptors, which have different affinities for the VEGF-A
ligands as well as different downstream effects,(91) are ex-
pressed by osteoblasts.(92,93) During normal DO, both
VEGFR1 and VEGFR2 and all three VEGF-A isoform
mRNAs are induced. Moreover, inhibition of VEGF-A

activity in the distraction gap by antibody blockade of
VEGFR1 and VEGFR2 leads to a dramatic decrease of
bone formation and a smaller number of blood vessels.(94) Of
note, the VEGF-A homolog placental growth factor (PlGF),
which binds VEGFR1 as well, probably contributes, because
fracture healing is impaired in mice lacking PlGF.(95)

CONCLUSION

A growing body of evidence shows that angiogenesis
plays a critical role in skeletal development and repair. It
has been suggested that increasing numbers of blood ves-
sels introduce more osteoblast progenitors that mature and
increase bone formation (Fig. 1). It is also possible that
signals emanating from vascular cells hasten osteogenesis
(Fig. 1). Further elucidation of the mechanisms that are
responsible for the osteoblast-angiogenesis coupling will
deepen our understanding of bone development and ho-
meostasis, and it may also aid in the design of new thera-
pies for accelerating bone regeneration and repair.
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