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Changes in cis-regulatory regions are thought to play a major role in the genetic basis of adaptation. However, few studies

have linked cis-regulatory variation with adaptation in natural populations. Here, using a combination of exome and RNA-

seq data, we performed expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses to study

the genetic architecture of regulatory variation in wild house mice (Mus musculus domesticus) using individuals from five pop-

ulations collected along a latitudinal cline in easternNorth America. Mice in this transect showed clinal patterns of variation

in several traits, including body mass. Mice were larger in more northern latitudes, in accordance with Bergmann’s rule. We

identified 17 genes where cis-eQTLs were clinal outliers and for which expression level was correlated with latitude. Among

these clinal outliers, we identified two genes (Adam17 and Bcat2) with cis-eQTLs that were associated with adaptive body mass

variation and for which expression is correlated with body mass both within and between populations. Finally, we per-

formed a weighted gene co-expression network analysis (WGCNA) to identify expressionmodules associated with measures

of body size variation in these mice. These findings demonstrate the power of combining gene expression data with scans for

selection to identify genes involved in adaptive phenotypic evolution, and also provide strong evidence for cis-regulatory
elements as essential loci of environmental adaptation in natural populations.

[Supplemental material is available for this article.]

Understanding the genetic basis of adaptation is a major goal in
evolutionary biology.Cis-regulatorymutations, which can change
the expression of proximal genes, have long been predicted to be
important targets for adaptive phenotypic evolution (King and
Wilson 1975; Wray 2007; Stern and Orgogozo 2008; Wittkopp
and Kalay 2012). One reason for this is that cis-regulatory muta-
tions may have fewer deleterious pleiotropic effects than pro-
tein-coding changes. While protein-coding mutations may affect
protein products across tissues and developmental stages, cis-regu-
latorymutations can affect the expression of genes in spatially and
temporally specific ways. In apparent support of this idea, several
studies have identified positive selection on noncoding regions
(e.g., Jenkins et al. 1995; Crawford et al. 1999; Kohn et al. 2004;
Andolfatto 2005; MacDonald and Long 2005; Holloway et al.
2007; Jeong et al. 2008; Torgerson et al. 2009) and an important
role for noncoding variation in local adaptation (e.g., Jones et al.
2012; Fraser 2013).

Despite the accumulating evidence that regulatory loci play
an important role in adaptive evolution, there are still only a hand-
ful of caseswhere cis-regulatorymutations have been linked to eco-
logically important traits. Among the best examples are adaptive
coat color differences in deer mice (Linnen et al. 2013), the ability
to digest lactose in humans (Tishkoff et al. 2007), and pelvic reduc-
tion in sticklebacks (Chan et al. 2010). Most examples of adaptive
gene expression have been identified through candidate gene ap-
proaches, which typically favor traits for which components of a
pathway are already known and the genetic basis of the trait is rel-
atively simple. However, most traits are influenced bymany loci of
small to modest effect. Thus, identifying genetic variants associat-

ed with adaptation at complex traits is key to understanding the
genetic basis of adaptation.

One avenue for linking adaptive non-coding variation to ei-
ther molecular or organismal phenotypes is through gene expres-
sion. In expression quantitative trait loci (eQTLs) mapping, gene
expression levels are tested for associations with genetic markers
to identify variants that contribute to expression phenotypes.
Expression quantitative trait mapping is an effective method for
identifying regulatory variants because gene expression is fre-
quently influenced by nearby cis-eQTLs (Nica and Dermitzakis
2013). Cis-eQTLs have been successfully detected with small sam-
ple sizes (Montgomery and Dermitzakis 2011; Tung et al. 2015)
and in wild individuals from natural populations (Tung et al.
2015). Combining eQTL mapping with genomic scans for selec-
tion can be a powerful method for identifying the gene targets of
adaptive genetic variation (Fraser 2013; Ye et al. 2013) and poten-
tially linking this variation to adaptive organismal phenotypes.

House mice (Musmusculus domesticus) provide a useful model
for studying the genetic basis of adaptation. Housemice are an im-
portant biomedical model and have a distribution that mirrors
that of human populations (Phifer-Rixey and Nachman 2015).
In the eastern United States, house mice show latitudinal varia-
tion consistent with local adaptation. Mice collected at northern
latitudes are heavier than mice at southern latitudes, and their
progeny also show differences in a common laboratory environ-
ment, indicating that this difference is genetic (Lynch 1992;
Phifer-Rixey et al. 2018). This observation conforms to the classic
ecogeographic observation known as Bergmann’s rule that
animals in colder climates have larger mass to reduce heat loss
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(Bergmann 1847). While Bergmann’s rule has been observed in
many groups, including humans (Ashton et al. 2000; Ruff 2002;
Foster and Collard 2013), no study so far has linked this pattern
to variation at specific genes. Consistent with energetic adaptation
of mice from eastern North America, laboratory strains founded
from northern and southern locations also show differences in as-
pects of blood chemistry, including leptin, glucose, and triglycer-
ide levels (Phifer-Rixey et al. 2018).

Recent work with these populations identified hundreds
of genes with environmental associations in North American
(Phifer-Rixey et al. 2018). Here, we combine a genomic scan for se-
lection with expression quantitative trait mapping to identify reg-
ulatory variants that contribute to gene expression differences and
show signals of selection in these populations, identifying two
strong candidate genes for adaptive phenotypic variation. To our
knowledge, this study represents the first case where genomic
scans have been combined with eQTLmapping to identify regula-
tory variants in natural populations that underlie an adaptive or-
ganismal phenotype.

Results

Cis-regulatory variation in wild house mice

To characterize regulatory variation in wild mice, we sequenced
liver transcriptomes from 50 mice collected from five populations
along a latitudinal transect on the east coast of North America (Fig.
1; Supplemental Table S1; Supplemental File S1). Mice were
collected from 29°N to 44°N latitude. Liver was collected in
RNAlater, and body mass and length were recorded for each indi-
vidual. From these individuals, we produced a total of ∼1.2 billion
RNA-seq reads with an average of 15,473,949 uniquelymapped ex-
onic reads per sample, which were used to quantify gene-wise
mRNA abundance (hereafter, gene expression). We also analyzed
DNA sequence data generated from exome-capture of the same in-
dividuals (Phifer-Rixey et al. 2018). Exome and RNA-seq data were
used to identify variants segregating in M. m. domesticus (see
Methods).

We identified cis-regulatory variation using two complemen-
tary approaches, expression quantitative trait loci mapping and al-
lele-specific expression (ASE). To identify cis-eQTLs, we tested for

associations between variants within 200 kb of a gene and expres-
sion level using a linear mixed model. Variants near a gene are
more likely to act in cis to affect gene expression. Cis-eQTLs typi-
cally have larger effect sizes than trans-eQTLs, making them easier
to detect in small sample sizes (Montgomery and Dermitzakis
2011). After filtering, a total of 406,999 variants were identified us-
ing exome data and tested for associations with expression at
13,080 genes. We identified cis-eQTLs for 849 of these genes
(6.5% of genes surveyed). Reflecting the probe set, the majority
of cis-eQTLs were identified in gene bodies (57%) and introns
(18%) (Supplemental Fig. S1).

Allele-specific expression (i.e., differences in expression be-
tween parental alleles) can also be used to infer epigenetic or genet-
ic variation acting in cis (Cowles et al. 2002). As the two parental
alleles are exposed to the same trans-acting environment within
an individual, differences in expression at heterozygous sites can
be used to infer cis-regulatory variation. A total of 28,234 exonic
heterozygous sites, corresponding to 6738 genes, could be tested
for ASE. Across all individuals, we found evidence for ASE for
442 genes at a false discovery rate of 5% (6.7% of genes surveyed)
(Supplemental Table S2).

In investigating the power to detect cis-regulatory variation,
we found that cis-eQTLs were more likely to be detected when
SNP density is higher near and within the gene of interest
(Mann-Whitney U test, P<2.2 ×10−16) (Supplemental Fig. S2).
Weweremore likely to detect ASE for geneswith higher expression
and higher SNP density (Mann-Whitney U test, P=3.1 ×10−11 and
P<2.2 ×10−16, respectively) (Supplemental Figs. S2, S3). While dif-
ferences in the power to detect ASE and cis-eQTLs can lead to the
identification of different gene sets, we found significant overlap
between the gene sets identified with these analyses (hypergeo-
metric test, P=5×10−6) (Supplemental Table S2).

Evidence for adaptive regulatory variation

To assess whether the regulatory variation documented above un-
derlies adaptive differences among populations, we studied se-
quence and gene expression variation along a latitudinal cline
(Fig. 1A). Clinal patterns of variation can reflect local adaptation
as a response to spatially varying selection (Endler 1977). Regulato-
ry variants with clinal frequencies that mediate clinal patterns of
gene expression would be strong candidates for adaptive regulato-
ry evolution. To identify such variants, we searched for cases where
(1) gene expression is clinal, (2) gene expression is associated with
a cis-eQTL, and (3) allele frequencies of the cis-eQTL vary clinally
(Fig. 2). While geographic clines may alternatively be explained
by isolation by distance, there is no evidence for isolation by dis-
tance for these populations (see Supplemental Methods).

To identify clinal patterns of gene expression, we tested for
correlations between latitude and expression levels in the liver
transcriptomes of the 50 wild individuals. We identified 1488
genes for which expression was significantly correlated with lati-
tude (P< 0.05), 132 of which were associated with a cis-eQTL (Fig.
2). We also tested for differential expression between the most
northern population (New Hampshire/Vermont) and the most
southern population (Florida) and identified 458 geneswith differ-
ential expression between the ends of the cline (Supplemental Fig.
S4), 48 of which were associated with a cis-eQTL (at q<0.1)
(Supplemental Table S3).

To connect these patterns to clinal sequence variation, a ge-
nome scan using the program Latent Factor Mixed Models
(LFMM) was performed to test for correlations between latitude

BA

Figure 1. (A) Sampling locations along the east coast of North America
(climate map obtained from NOAA, National Weather Service).
(B) Consistent with Bergmann’s rule, body mass in mice increases with
increasing latitude (Pearson’s correlation = 0.34, P=0.018) (see Supple-
mental Table S9; Supplemental Methods).
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and genetic variation while accounting for population structure
(see Methods; Frichot et al. 2013). For this study, LFMMhas an ad-
vantage over other methods because it does not assume a specific
demographic model but still accounts for demographic history by
estimating genome-wide covariance among allele frequencies. We
focused on SNPs in the 5% tail of the distribution and considered
these clinal outliers (|z-scores| > 2) (Fig. 2A). Blocks of linkage dise-
quilibrium (LD) (Supplemental Fig. S5; Gabriel et al. 2002) were
then inferred to identify colocalization between outlier SNPs and
cis-eQTLs. Of cis-eQTLs that fell within the same LD block as an
outlier, 17 were associated with genes that also show significant
clinal patterns of gene expression (Table 1; Fig. 2; Supplemental
Table S4). When comparing the latitudinal extremes, average esti-
mates of Fst for these candidate loci were significantly higher than
that of the full list of loci (full list average Fst=0.10, candidate av-

erage Fst=0.34; permutation test, P=0.0014). Eight of these genes
were also significantly differentially expressed between the ends of
the cline (Supplemental Table S5). These 17 genes represent cases
where cis-eQTLs contribute to expression differences between pop-
ulations and show signals of local adaptation,making them strong
candidates for adaptive regulatory variation.

Linking adaptive regulatory variation to specific traits

The liver plays a central role in metabolic processes in the body,
and regulatory changes in this tissue may contribute to latitudinal
variation in traits related to metabolism. Body mass varies clinally
(Fig. 1A), and lab-born progeny from populations at the ends of
the transect also show differences in blood glucose, triglyceride,
adiponectin, and leptin levels (Lynch 1992; Phifer-Rixey et al.

A

C

B

Figure2. Overlap between genomic scans identifies regulatory variants that are candidates for clinal adaptation. (A) The LFMM |z-scores| for each SNP vs.
chromosome position. SNPs with |z-scores| > 2 were considered clinal outliers. (B) Manhattan plot of cis-eQTL. Shown in red are significant SNPs.
(C ) Manhattan plot of gene starting position versus the correlation between gene expression and latitude. Points labeled in orange are genes for which
expression is significantly correlated with latitude (P<0.05). On the outside are ideograms with the location of genes for which these three signals (A–
C) overlap. Figure created with Circos (Krzywinski et al. 2009).
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2018). Four of the 17 candidate genes identified as strong candi-
dates also havemutant phenotypes related to bodyweight andme-
tabolism. Laboratory mutants for Cox7c and Hmgb1 are associated
with changes in glucose levels (Blake et al. 2017), and mutants for
Adam17 and Bcat2 are also associated with changes in body mass
(Wu et al. 2004; She et al. 2007; Gelling et al. 2008; Blake et al.
2017), glucose (Serino et al. 2007; She et al. 2007; Blake et al.
2017), leptin (She et al. 2007; Gelling et al. 2008), and adiponectin
levels (Serino et al. 2007; Blake et al. 2017). Another gene identi-
fied in this analysis, Iah1, transcriptionally regulates genes with
important roles in lipid metabolism and triglyceride synthesis
and falls under a QTL for fatty liver in mice (Kobayashi et al.
2016; Suzuki et al. 2016).

Adam17 and Bcat2 are candidates for adaptive differences
in body mass

While knockoutmodels can provide a link between genotypes and
putative phenotypes, thesemodelsmaynot reflect the phenotypic
consequences ofmutations found in natural populations (Palopoli
and Patel 1996). Changes in body weight are also among the most
common effects of gene knockouts in mice and may often reflect
downstream consequences of other phenotypic changes (Reed
et al. 2008; White et al. 2013). While identifying the genetic basis
of complex adaptive traits is challenging, gene expression provides
an intermediate phenotype that may link sequence variants to or-
ganismal traits. To connect adaptive variation in body mass in
these populations to genetic variation, we asked whether body
mass differences were associated with gene expression differences
in the set of candidate genes (Table 1). Since latitude and body
mass covary in this sample (Fig. 1B), we controlled for latitude
by regressing it out as a variable. We identified two genes, a disin-
tegrin and metallopeptidase domain 17 (Adam17) (Fig. 3A–F) and
branched chain amino acid transaminase 2 (Bcat2), for which ex-
pression was significantly correlated with body mass, after ac-
counting for latitude as a covariable (Pearson’s correlation,
Adam17: P=4.6 ×10−4, R2 = 0.22; Bcat2: P=4.5 ×10−3, R2 = 0.17)

(see also Supplemental Table S6; Supplemental Fig. S6). To further
account for the possible confounding effects of population struc-
ture, we also looked at the correlation between expression level
and body mass within each of the five populations. Replicating
the pattern seen across populations, Adam17 expression was neg-
atively associated with body mass in four of the five populations,
and Bcat2 expression was positively associated with body mass in
four of the five populations (Supplemental Figs. S7, S8). Despite
a lack of power for within-population comparisons, the associa-
tion between Adam17 expression and body mass was significant
in New Hampshire/Vermont (Pearson’s correlation, P=3.5 ×
10−3) and the association between Bcat2 expression and body
mass was significant in Pennsylvania (Pearson’s correlation, P=
0.03) and Georgia (Pearson’s correlation, P=1.8 ×10−3).

The cis-eQTLs for Adam17 and Bcat2 explain 34% and 29.7%
of the variance in expression for these genes, respectively.
Genotypes at these sites were also associated with differences in
body mass (Mann-Whitney U test, Bcat2: TT >CC, P=0.024;
Adam17: CC>TT, P=0.036) (Supplemental Fig. S9). Again, covari-
ation between latitude and bodymass can confound relationships
between body mass and candidate genes. After regressing latitude
from bodymass to control for covariation between these variables,
the Adam17 cis-eQTL was significantly associated with body mass
(Cochran-Armitage trend test, P=0.034) (Fig. 3G), although the
Bcat2 cis-eQTL was not (Cochran-Armitage trend test, P=0.14).
The Adam17 and Bcat2 cis-eQTLs explain an estimated 8.35%
and 1.51% of the variation in body mass, respectively. These esti-
mates should be treated as approximations since they may be in-
fluenced by (1) unmeasured environmental differences between
populations, (2) population structure (even when population
structure is accounted for using principle components, as was
done here) (see Browning and Browning 2011; Dandine-
Roulland et al. 2016), (3) imperfect linkage disequilibrium be-
tween the surveyed SNPs and causal variants (Wray et al. 2013),
and small sample size (Xu 2003). Nonetheless, it is likely that the
effect size for the Adam17 cis-eQTL is large compared to what is
seen in most human GWAS for complex traits (Stranger et al.

Table 1. cis-eQTLs that colocalize or are within the same LD block as a clinal outlier that also show expression changes correlated with latitude

Symbol
Correlation coefficient of
expression with latitude P-value Phenotypesa

Tcea1 0.6 3.66 × 10−6 Cardiovascular, embryo, growth/size/body, hematopoietic, homeostasis, limbs/
digits/tail, liver/biliary, mortality/aging

Iah1 −0.43 0.0018 Cardiovascular, limbs/digits/tail, skeleton
Lnx1 −0.41 0.0035 Hematopoietic, immune
2810402E24Rik 0.38 0.0073
Arl6ip4 0.36 0.0096
Nsa2 −0.36 0.011
Rpl3 0.35 0.014
Bcat2 0.34 0.016 Adipose, behavior, growth/size/body, homeostasis, renal/urinary
1810024B03Rik −0.32 0.023
Rplp0 0.32 0.023 Hematopoietic, immune
Rpap2 −0.32 0.023
F11 0.31 0.027 Hematopoietic, homeostasis, nervous system
Hmgb1 0.31 0.031 Endocrine/exocrine, homeostasis, immune, cellular, hematopoietic, mortality/aging,

behavior, growth/size/body, mortality/aging, respiratory, vision/eye
Adam17 −0.3 0.032 Cardiovascular, cellular, digestive/alimentary, embryo, growth/size/body,

hematopoietic, homeostasis, immune, integument, mortality/aging, muscle,
nervous system, pigmentation, respiratory, vision/eye

Cox7c −0.3 0.035 Homeostasis, mortality/aging
Ccdc137 0.29 0.041
Nsfl1c 0.28 0.0496

aAbnormal phenotypes in targeted gene mutants, collected from Mouse Genome Informatics database (MGI).
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2011). Large-effect mutations may be favored in situations where
populations are initially far from an optimum (Orr 1998;
Dittmar et al. 2016). For example, variation at one gene accounts
for a >2-kg weight difference between Europeans and Inuits
(Fumagalli et al. 2015), and a single IGF1 allele in dogs accounts
for 15% of variance in dog skeletal size (Sutter et al. 2007).
House mice in this transect descended from mice in western
Europe adapted to a Mediterranean climate and thus likely experi-
enced strong selection pressures in a novel environment, poten-
tially favoring some mutations of large effect.

To investigate regulatory variation at Adam17 in western
Europe, we retrieved available liver RNA-seq and genomic data
from European mice (Harr et al. 2016). We found that the
Adam17 cis-eQTL is segregating within European populations
(Supplemental Fig. S10A) and is significantly associated with liver
expression in European individuals (P= 3.2 ×10−6) (Supplemental
Fig. S10B; see Supplemental Methods). This suggests that adap-
tation by the large-effect regulatory variation at Adam17 in the
United States is a product of selection on standing genetic
variation.

CBA

GFE

D

Figure 3. Adam17 is a candidate for adaptive differences in bodymass amongmice in easternNorth America. (A) Expression of Adam17 is correlatedwith
latitude (P=0.032, Pearson’s correlation =−0.30). Sexwas not a significant predictor of Adam17 expression. (B) A SNP at Chr 12: 21,332,631 was identified
as a cis-eQTL for Adam17. (C) Allele frequencies of Chr 12: 21,332,631 in five populations. (D) The LFMM |z-scores| for sites on Chromosome 12 versus
position. Points above the red line were considered clinal outliers in this study. The red box represents the peak in which Chr 12: 21,332,631 is found.
(E) Nearby outlier SNPs in LD with Chr 12: 21,332,631. Correlations (r2, %) are given in each block. The z-scores for each site’s association with latitude
are given in parentheses. (F) Adam17 expression is significantly associated with body mass when controlling for latitude (Pearson’s correlation, P=4.6 ×
10−4, R2 = 0.22). (G) Genotype at Chr 12: 21,332,631, the cis-eQTL for Adam17, significantly trends with body size when latitude is controlled for
(Cochran-Armitage trend test, P=0.034).
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Notably, Adam17 and Bcat2 are the two candidate genes from
Table 1 with known labmousemutants that affect bodymass (Wu
et al. 2004; She et al. 2007; Gelling et al. 2008; Blake et al. 2017).
Bcat2 encodes a protein that catalyzes the first step of branched-
chain amino acid (BCAA) metabolism, which affects metabolism
and body mass in humans and rodents (Newgard et al. 2009).
Adam17 encodes a protein that regulates several signaling
pathways. AdultAdam17heterozygous andnullmutants showdif-
ferences in metabolic phenotypes including body mass, suscepti-
bility to diet-induced obesity, and energy homeostasis (Serino
et al. 2007; Gelling et al. 2008). ADAM17 and its physiological
inhibitor, TIMP3, have also been reported to be involved in glucose
homeostasis and adipose, hepatic, and vascular inflammation in
both genetic and nutritional models of obesity inmice (Fiorentino
et al. 2010;Menghini et al. 2012;Matsui et al. 2014). In addition to
its associationwith bodymass andmetabolism inmice, in humans
variationatADAM17hasbeen linked todifferences inbodyweight,
BMI, waist circumference, and obesity risk (Junyent et al. 2010)
and shows signatures of selection (Pickrell et al. 2009; Parnell
et al. 2010; Fumagalli et al. 2011).

One target of ADAM17 activity is the epidermal growth factor
receptor (EGFR) signaling pathway (Lee et al. 2003). Phenotypes
observed in mice with mutant EGF receptors (including changes
inbodyweight [Blake et al. 2017]) suggest that changes inEGFR sig-
naling as a consequence of deficient ADAM17 activity may con-
tribute to the metabolic phenotypes seen in Adam17 mutants
(Gelling et al. 2008). We tested for an overrepresentation of genes
in the EGFR signaling pathway in the set of genes with clinal ex-
pression by annotating genes to pathways using the PANTHER da-
tabase (Thomas et al. 2003). We saw a 1.57-fold enrichment of
genes in this pathway compared to a background set of genes ex-
pressed in the liver (hypergeometric test, P= 0.018). We also find
that the gene that encodes the only known physiological inhibitor
of Adam17, Timp3 (Le Gall et al. 2010), is differentially expressed
between thenorthernand southernpopulations (q=0.09) (Supple-
mental Fig. S11) and has expression that is correlated with that of
Adam17 (Pearson’s correlation, P=0.02, R2 = 0.09) (Supplemental
Fig. S11). Unlike Adam17, Timp3 expression is not associated
with body mass (Pearson’s correlation, P=0.054), although our
sample size may not be sufficient to detect an association.

The data above clearly suggest that regulatory variation at
Adam17 and Bcat2 underlies adaptive differences in body mass,
but they do not identify the specific causal mutations. To identify
candidate casual mutations, we used annotations from the mouse
ENCODE project (Mouse ENCODE Consortium et al. 2012) to
search for putative regulatory elements near the Adam17 and
Bcat2 cis-eQTLs. The Adam17 cis-eQTL is in LD with SNPs through
a proximal enhancer and in the Adam17 promoter, both of which
are active in the livers of adult mice. Low-coverage whole-genome
data show that there are variants segregating within this enhancer
in these populations (Supplemental Figs. S12, S13; whole genome
data from Phifer-Rixey et al. 2018). Two of the Adam17 promoter
variants are also clinal outliers (Supplemental Fig. S14). The
Bcat2 cis-eQTL is within an intronic region and is not in LD with
annotated regulatory elements that are active in liver tissue.

Expression modules are correlated with body size variation

in natural populations of house mice

Finally, we used a gene co-expressionnetwork approach to identify
biologically related gene sets associated with phenotypic variation
in these populations. Weighted Gene Co-expression Network

Analysis (WGCNA) was used to identify groups of genes with
highly correlated expression, called co-expression modules (see
Methods; Langfelder and Horvath 2008). Expression modules
were assigned for male and female mice separately, and then
male-female consensus modules were created to identify co-ex-
pression patterns shared across sexes.

Co-expressionmodules were then tested for correlations with
measures of body size (Supplemental Figs. S15–S17). Five expres-
sion modules in males and five expression modules in females
were correlated with trait variation (Supplemental Fig. S18).
Trait-associated modules were enriched for a number of Gene
Ontology (GO) categories compared to the background set of
genes expressed in the liver, including growth factor binding (q=
5.3 ×10−8) and lipid metabolic process (q=1.2 ×10−2). None of
the male-female consensus modules were significantly correlated
with organismal traits, indicating that associations between
co-expression modules and traits are sex-specific (Supplemental
Fig. S17).

Focusing on the modules with the highest trait correlations
(royalblue module in females, corr = 0.92, P=2×10−8 and black
module in males, corr = 0.8, P=5× 10−8, for body mass index),
we annotated genes with mutant phenotypes collected from
Mouse Genome Informatics (MGI) (Blake et al. 2017). Supporting
the association between these expressionmodules and phenotypic
variation, we found thatmanyof the geneswith high connectivity
in these modules have mutant phenotypes related to body size or
metabolism (Fig. 4). For example, the most connected gene in the
female royalblue module is Nr2c2. Mutant phenotypes for Nr2c2
include changes in eating behavior, energy homeostasis, body
mass, size, and blood chemistry. Similarly, highly connected genes
in the male black module (e.g., Col3a1, Col1a1, Col1a2, Col5a2,
Sparc, Bcam, Fstl1, Igfbp5, Cpe, Cav1, Lamc1, Ltbp3, Krt7) showmu-
tant phenotypes related to body mass and body size. Four of these
genes (Adamts2, Col1a1, Col1a2, Sparc) were also identified as hub
genes in the module most highly correlated with mouse body
weight in another study utilizing an F2 laboratory cross (Ghazal-
pour et al. 2006).

Finally, we used the co-expression data set to identify regula-
tory variation within modules associated with body size. Within
the body size-associatedmodules (Supplemental Fig. S18), we asso-
ciated 189 genes with a cis-eQTL, including several highly con-
nected genes in the sex-specific modules with the highest trait
correlations (Fig. 4). As in the previous analysis, we then searched
for genes with a cis-eQTL that colocalized with a clinal sequence
variant. We identified 15 genes with clinally varying cis-eQTLs
in the body size-associated modules (Supplemental Table S7). We
found that gene expression for four of these 15 genes was signifi-
cantly correlated with BMI in one sex (females: Ube2q2, P=
0.0002; 3110082I17Rik, P=0.0027; Cep85, P= 0.017; males: Pygb
P=0.035). Cis-eQTLs associated with these genes were not signifi-
cantly associated with BMI; however, our study is also underpow-
ered for identifying sex-specific associations. The correlation
between gene expression and BMI and the presence of clinal cis-
eQTLs make these genes of interest for future study.

Discussion

Identifying loci and genes that underlie adaptive variation within
and between populations is a major goal in evolutionary biology.
Onemethod used to identify such variants is genomic scans for se-
lection. While many genomic scans attempt to link sequence var-
iants to phenotypes through gene annotations and knockout

Gene regulation and adaptation

Genome Research 1641
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238998.118/-/DC1


models, most fail to connect genotypes to phenotypes in natural
populations. Here, we used expression data from natural popula-
tions of house mice collected along an environmental gradient
to link regulatory variation at two genes (Adam17 and Bcat2)
with body mass variation. We have linked these genes to body
mass variation by (1) associating cis-eQTLs with the expression
of Adam17 and Bcat2, (2) associating the Adam17 and Bcat2 cis-
eQTLs with body mass variation, and (3) associating the expres-
sion of these two genes with body mass variation. Supporting
the associationwe see between these genes and bodymass,mutant
alleles for Adam17 and Bcat2 in laboratory mice are associated
with changes in body mass and metabolism (Wu et al. 2004;
Serino et al. 2007; She et al. 2007; Gelling et al. 2008; Blake et al.
2017). These two genes account for a substantial proportion of
phenotypic variation in body mass among the mice studied
here, with large effect sizes compared to those measured in
GWAS for most complex traits. For traits under stabilizing selec-
tion within populations (as in virtually all human GWAS), effect
sizes are expected to be much smaller than in comparisons be-
tween populations experiencing strong divergent selection, as is
the case here. The effect size of mutations underlying traits under
stabilizing selection within populations is expected to be smaller
than the effect sizes of mutations in the early stages of an adaptive
walk (Orr 1998; Remington 2015).

In addition to identifying regulatory variation at specific
genes associated with body mass, we also used a systems biology
approach to identify co-expression patterns associated with body
size variation in wild mice. Gene co-expression networks capture
biologically relevant relationships between genes that can be use-
ful for understanding gene functions and interactions. Here, we
have used this information to characterize co-expression modules
that were associated with body size and identified regulatory vari-

ation within these co-expressed gene sets that may play a role in
body size variation.

The tendency for body size to increase with latitude (i.e.,
Bergmann’s rule) has been documented in many species, includ-
ing humans (Ashton et al. 2000; Ruff 2002; Foster and Collard
2013), and reflects an evolved response to differences in tempera-
ture (Bergmann 1847). In humans, many candidate genes for met-
abolic disorders, such as obesity, also show evidence of climatic
adaptation (Hancock et al. 2008). In humans, both ADAM17 and
BCAT2 have been implicated in metabolic disease (Arribas and
Esselens 2009; Newgard et al. 2009; Junyent et al. 2010; Menghini
et al. 2013), and variation at ADAM17 has been identified in ge-
nome scans for selection (Pickrell et al. 2009; Parnell et al. 2010;
Fumagalli et al. 2011) in addition to its association with body
weight and obesity risk (Junyent et al. 2010).

Finally, this study provides evidence for the role of cis-regula-
tory variation in environmental adaptation in natural popula-
tions. While cis-regulatory variation has long been hypothesized
to play a major role in adaptive phenotypic evolution, connecting
regulatory variation with adaptive organismal phenotypes re-
mains tricky. Combining eQTL mapping with genomic scans, as
was done here, may be a fruitful approach for identifying adaptive
regulatory variation in other natural systems.

Methods

Sampling

Mice used in this studywere collected from five sampling locations
(Supplemental Table S1; Supplemental File S1) along a latitudinal
gradient in the eastern United States. Mice were sacrificed in the
field and measurements (body weight, total body length, tail

BA

Figure 4. Visualization of the most connected genes in the female “royalblue” (A) and themale “black” (B) co-expressionmodules with VisANT (Hu et al.
2008). The royalblue module is associated with BMI (P=2×10−8) and body length variation (P=6×10−6). The blackmodule is associatedwith BMI (P=5×
10−8), body mass (P=0.001), and body length variation (P=3×10−10). Blue circles represent genes for which we identified a cis-eQTL that explains a com-
ponent of expression variation. Circles with black borders are genes with mutant phenotypes related to body size or metabolism. Phenotype information
was collected from MGI (Blake et al. 2017).
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length) were taken at time of collection. Body mass index (BMI)
was calculated as body weight/length2 (g/mm2). Liver tissue was
collected in RNAlater and stored at 4°C overnight and then frozen
to −80°C until RNA extraction with the Qiagen’s RNeasy Mini kit.

mRNA-sequencing and mapping

For each sample, 100-base pair paired-end readswere sequenced on
the Illumina HiSeq 4000 platform. RNA-seq reads were mapped
with TopHat2 (Kim et al. 2013) to personal reference genomes, cre-
ated by inserting variants into themouse reference (GRCm38) and
masking indels (see Supplemental Methods). We removed genes
with fewer than 500 reads across samples (i.e., an average of 10
reads per sample). Gene expression was then quantile normalized
and corrected for hidden factors and known covariates (individual
sex and the first six principle components from genotype data to
account for population structure) using a Bayesian approach
(Supplemental Figs. S19, S20; Stegle et al. 2010, 2012).

Exome capture sequencing and identification of clinal outliers

The exome-sequence data was used to identify clinal outliers
(Phifer-Rixey et al. 2018; see also Supplemental Methods). Librar-
ies were enriched for exonic target regions and subsequently
100-bp paired-end reads were sequenced on the Illumina HiSeq
2000 platform, resulting in 2 GB of raw sequence data per individ-
ual. Forty-one of the 50 individuals for which there is exome-
sequence data have matched RNA-seq libraries (see Supplemental
Table S1). Reads were mapped with Bowtie 2 (Langmead and Salz-
berg 2012), and allele frequencies were estimated with ANGSD
(Korneliussen et al. 2014). LFMM (Frichot et al. 2013) was used
to identify covariance between environmental and genetic varia-
tion (see Supplemental Methods).

Cis-eQTL discovery

Weperformed cis-eQTLmapping using variant calls from RNA-seq
and exome data (see Supplemental Methods). One limitation of
this method is that the genotyping data set is limited to sites rep-
resented by these data (i.e., variant calls are largely limited to exo-
mic regions of the genome). Consequently, many causal sites may
not be typed and variants associated with expression may be tag-
ging causal sites in LD. For the exome data set, depth per site of
the targeted exome was ∼15×. For genes represented in the analy-
sis, on average per individual we had sufficient coverage for ∼32%
of bases within gene boundaries and ∼15% of bases in the 200-kb
boundary used as the cut-off for cis-eQTL mapping (Supplemental
Table S8).

To identify cis-acting eQTLs, we used a linear mixed model
applied in the programGEMMA (Zhou and Stephens 2012) on ex-
pression residuals to associate expression with sequence variants
(see Supplemental Methods). A relatedness matrix was computed
and included as a covariate. We retained the variant with the low-
est p-value for each gene and then performed a Bonferroni’s correc-
tion. Variants with Bonferroni-corrected P-values of <0.05 were
considered significant.

Weighted gene co-expression network analysis

We carried out a weighted gene co-expression network analysis on
expression residuals following WGCNA protocols (Langfelder and
Horvath 2008) to create expression modules. Each module is sum-
marized by a representative eigengene, the first principle compo-
nent of a given module. Each gene’s expression was correlated
with the module eigengene as a measure of the gene’s centrality
to the module, called module membership.

Data access

Illumina sequencing data from this study have been submitted to
the NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject)
under accession number PRJNA407812. Museum accession num-
bers for samples used in this study are available in Supplemental
File S1.
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