
NEURAL REGENERATION RESEARCH｜Vol 18｜No. 6｜June 2023｜1235

NEURAL REGENERATION RESEARCH
www.nrronline.orgReview

Abstract  
Machine learning represents a growing subfield of artificial intelligence with much promise in the 
diagnosis, treatment, and tracking of complex conditions, including neurodegenerative disorders such 
as Alzheimer’s and Parkinson’s diseases. While no definitive methods of diagnosis or treatment exist 
for either disease, researchers have implemented machine learning algorithms with neuroimaging 
and motion-tracking technology to analyze pathologically relevant symptoms and biomarkers. Deep 
learning algorithms such as neural networks and complex combined architectures have proven 
capable of tracking disease-linked changes in brain structure and physiology as well as patient motor 
and cognitive symptoms and responses to treatment. However, such techniques require further 
development aimed at improving transparency, adaptability, and reproducibility. In this review, we 
provide an overview of existing neuroimaging technologies and supervised and unsupervised machine 
learning techniques with their current applications in the context of Alzheimer’s and Parkinson’s 
diseases.
Key Words: Alzheimer’s disease; clinical detection; deep learning; machine learning; 
neurodegenerative disorders; neuroimaging; Parkinson’s disease

Introduction 
Healthcare represents one of the most prolific fields for the development 
and deployment of artificial intelligence (AI) technologies, medical imaging, 
wearable sensors, augmented and virtual reality, and more (Myszczynska 
et al., 2020). With today’s staggering abundance of big data, AI represents 
a particularly noteworthy emerging field, as it aims to automate human 
intelligence and emulate cognitive functions with the help of a wide range 
of mechanisms (Choi et al., 2020; Emmert-Streib et al., 2020). AI has already 
shown extraordinary promise in several areas, from the development of 
early diagnostic tools to the successful completion of robot-assisted surgery. 
However, the most recent growth and development in AI have come via 
advancements in machine learning (Myszczynska et al., 2020).

Machine learning (ML) is a subfield of AI that consists of algorithms targeted 
toward recognizing patterns and extracting noteworthy features from large 
datasets (Cao et al., 2018). Once these patterns are identified and learned, 
ML algorithms can be used to classify and predict future results. In healthcare, 
ML can be used on data from various sources, assisting in diagnosis as well as 
disease management, tracking, and outcome prediction. For instance, real-
time remote monitoring by ML systems can detect disease severity, record 
symptoms, and register a patient’s response to treatment (Belić et al., 2019). 

As with other medical disciplines, ML has been well integrated into 
the field of neurology, specifically concerning the computer-aided 
identification, monitoring, and management of symptoms associated with 
neurodegenerative movement disorders like Parkinson’s disease (PD). In PD, 
the pathogenic accumulation of alpha-synuclein in Lewy bodies and Lewy 
neurites drives a gradual loss of dopaminergic neurons in a dark-colored 
midbrain region known as the substantia nigra pars compacta (de Miranda 
and Greenamyre, 2017; Mahajani et al., 2019; Raina et al., 2020; Psol et al., 

2021; Garg et al., 2022). This loss of dopaminergic neurons occurs long before 
the clinical characteristics of PD manifest and contributes to a variety of 
motor and non-motor symptoms (Giacomini et al., 2015; Marotta et al., 2016; 
Mahajani et al., 2021; Raina et al., 2021). Motor symptoms of PD range from 
rigidity and bradykinesia, or slow, impaired movement to resting tremors and 
postural instability. Other, non-motor symptoms of PD include constipation, 
olfactory dysfunction, disturbed sleep, cognitive and behavioral changes, 
and depression (de Miranda and Greenamyre, 2017; Kouli et al., 2018; 
MacMahon Copas et al., 2021). Yet, despite being the second most prevalent 
neurogenerative disorder today, currently no definitive method exists for the 
antemortem diagnosis of PD and no viable therapeutic strategy for disease 
treatment (DeMaagd and Phillip, 2015; de Miranda et al., 2017). 

However, ML algorithms coupled with wearable devices have been used to 
address some of the challenges associated with PD. For instance, ML has been 
used to differentiate between PD and other disorders that present themselves 
similarly and to track and manage PD progression. ML-integrated tools 
possess great potential in clinical practice due to their increased accuracy, 
reliability, accessibility, and efficiency in clinical decision-making (Myszczynska 
et al., 2020).

As such, ML has also been used to track disease progression and to provide 
a source of differential diagnosis in the context of Alzheimer’s disease (AD). 
The most common form of dementia, AD is characterized by the abnormal 
accumulation of two proteins: amyloid-beta (Aβ) and tau. Misfolded 
amyloid precursor protein aggregates to form extracellular Aβ plaques, 
and hyper-phosphorylated tau forms intracellular neurofibrillary tangles. 
As neurofibrillary tangles and Aβ plaques form, synaptic degeneration, and 
neuronal death follow, driving a neurodegenerative progression through 
various brain regions (Blennow et al., 2006; eTure and Dickson, 2019; Soria 
Lopez et al., 2019; Wakhloo et al., 2022).
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AD pathogenesis can be divided into stages depending on how far this 
neurodegeneration progresses and where neurofibrillary tangles and Aβ 
plaques are present. Early phase AD brains bear neurodegenerative features 
in the trans-entorhinal cortex. These features spread to the limbic regions 
in mid-phase AD brains and eventually to the iso-cortical regions in the late 
phases of the disease (Braak and Braak, 1991; Otero-Garcia et al., 2022). 
The symptoms accompanying this gradual neurodegenerative spread include 
the progressive impairment of cognitive functions, specifically speech, 
recognition, episodic memory, decision making, and orientation (Colombi et 
al., 2013; Cortelli et al., 2015; Mahajani et al., 2017; Wakhloo et al., 2020). As 
AD progresses, patients also sometimes suffer from apraxia, or the inability to 
perform learned movements despite possessing the desire, understanding, 
and physical ability required to do so (Blennow et al., 2006). Like PD, there 
exists neither a conclusive method for the diagnosis of AD nor an effective 
therapy capable of treating more than the symptoms of the disease (Briejyeh 
and Karaman, 2020). 

Most prominent clinical symptoms develop after the brain has taken 
significant damage. Physicians are unable to diagnose these diseases before 
irreversible damage has been done, due to the lack of efficient diagnostic 
tools. It is, therefore, imperative to develop non-invasive methods of disease 
detection. Currently, neuroimaging can assist clinicians in staging and 
screening for specific identification of diseases. The use of AI, with ML and 
deep learning (DL) algorithms could assist clinicians in preclinical diagnosis 
of such diseases. To this extent, the combination of ML algorithms and 
neuroimaging techniques has granted researcher insights that may lead 
to a method for early AD diagnosis. For instance, recent studies have used 
ML to differentiate between the brains of patients with AD and those with 
mild cognitive impairment (MCI), the precursor to AD (Li et al., 2012; Suk et 
al., 2016; Saboo et al., 2022). Results of these studies allow researchers to 
identify biomarkers capable of predicting disease trajectory (Li et al., 2012; 
Suk et al., 2016) and of explaining individual vulnerability or resilience to 
cognitive decline (Saboo et al., 2022). Most importantly, the methods used in 
ML/neuroimaging studies provide a roadmap for the future identification of 
cognitively vulnerable individuals and the development of new therapeutic 
interventions (Saboo et al., 2022). In this review, we aim to outline the ML/
DL modeling tools available to researchers and highlight certain use case 
scenarios. 

Search Strategy 
The references cited in this review have been obtained from the following 
databases: PubMed, Google Scholar, and Science Direct. We referenced full-
text review articles, randomized control trials, meta-analyses, and textbooks. 
No limits were used.

Neuroimaging
Today’s neuroimaging technologies have proven capable of illustrating 
the brain’s anatomy with a resolution comparable to that achieved with 
high-quality images taken of thin tissue slices in vitro (Shen et al., 2017). 
Technological advancements in medical image processing have led to 
its widespread use and contributed to the development of new areas of 
exploration for the prediction and future diagnosis of neurodegenerative 
diseases (Noor et al., 2019). We discuss the neuroimaging techniques 
capable of identifying functional and anatomical changes related to 
neurodegeneration below.

Magnetic resonance imaging 
Magnetic resonance imaging (MRI) uses a set of powerful magnets to 
generate magnetic waves capable of forming two or three-dimensional 
images of the brain without the need for radioactive tracers. MRI enables the 
imaging and evaluation of functional neural activity in the cortical regions. 
The images generated by MRI allow clinicians and scientists to study both 
functional and structural abnormalities of the brain in neurogenerative 
diseases (Ahmed et al., 2019).

Functional magnetic resonance imaging 
Functional MRI (fMRI) determines the small changes that occur in blood 
flow with certain brain activity. It is used to determine the part of the brain 
responsible for critical functions, assess the effect of stroke, or to guide 
brain treatments (Dijkhuizen et al., 2012). Two most common types of 
fMRI are Quantitative Susceptibility Mapping and Diffusion Tensor Imaging. 
Quantitative Susceptibility Mapping detects the difference in magnetic 
susceptibility between healthy and diseased tissues, whereas Diffusion Tensor 
Imaging exploits the sensitivity of magnetic resonance signal into water 
molecules with small random motion (Liu et al., 2015; Ruetten et al., 2019). 
Quantitative Susceptibility Mapping is generally used to quantitatively assess 
tissue properties, whereas Diffusion Tensor Imaging studies the reorganization 
of the brain in different stroke models. 

Arterial spin labeling 
Arterial spin labeling (ASL) is one of the most widely used MRI techniques 
in clinical diagnosis. This non-invasive method can measure brain perfusion, 
providing a reliable technique to evaluate the cerebral blood flow of an 
individual suspected to have a neurodegenerative disorder (Arevalo-Rodriguez 
et al., 2021). ASL-MRI is also used to augment routine diagnostic procedures 
by providing a source of data for differential diagnosis, particularly in the 
differentiation between AD and frontotemporal dementia (Mas, 2018). 3D 
pseudo-continuous ASL-MRI data and tissue segmentation methods of the 

entire supratentorial cortex and ten gray matter regions are used to quantify 
cerebral blood flow and  gray matter volume (Arevalo-Rodriguez et al., 2021). 
ASL-MRI is generally complemented with other cognitive examinations and/
or questionnaires (De Vis et al., 2018). For instance, to distinguish patients 
suffering from AD from patients with frontotemporal dementia and controls, 
the Mini-Mental State Examination is used. Mini-Mental State Examination is a 
30-question quiz developed by Folstein and McHugh in 1975 to help clinicians 
grade the cognitive state of patients (Upton, 2020). The quiz assesses 
attention, orientation, memory, registration, recall, calculation, language, and 
the ability to draw a complex polygon (Mas, 2018). 

Positron emission tomography
Positron emission tomography (PET) measures radiation to generate two 
or three-dimensional images that record the circulation of bloodborne 
radiotracers throughout the brain (Fleisher et al., 2020). The primary 
benefit of PET is that it provides a visualization of brain activity and function, 
illustrating blood flow, oxygen level, and glucose metabolism in functional 
brain tissues (Bao et al., 2021). Combining PET scans with structural MRI 
could significantly improve the accuracy of neurological disease identification. 
The images obtained after using the radiotracer fluorodeoxyglucose and PET 
have been optimized to illustrate patterns characteristic of neurodegenerative 
diseases (Fleisher et al., 2020; Bao et al., 2021). Fluorodeoxyglucose-PET 
plays a crucial role in the early detection and monitoring of AD, illustrating 
pathophysiological changes in patient brains (Fleisher et al., 2020; Bao et al., 
2021; Ni et al., 2021).

Single-photon emission computed tomography 
Single-photon emission computed tomography (SPECT) is a functional nuclear 
imaging technique reliant upon radioactive tracers, or SPECT agents. SPECT 
is primarily used for the evaluation of regional cerebral blood flow. Regional 
cerebral blood flow is a measure of the rate of delivery of arterial blood 
to the capillary bed in brain tissues per unit time. Its output comes in the 
form of two- or three-dimensional images. SPECT has previously assisted 
in distinguishing between AD and white matter vascular dementia cases by 
analyzing the semi-quantitative circumferential profile (Ahmed et al., 2019). 

Machine Learning Approaches
ML algorithms facilitate the clinical decision-making process by automatically 
classifying and predicting disease progression using computer-aided diagnosis, 
rather than the hands-on interpretation by medical experts (Shen et al., 2017; 
Myszczynska et al., 2020). ML models are trained by multiple techniques, 
including transfer learning using pre-trained weights, ensemble model 
construction, and new model development. Training data can be retrieved 
from multiple open source platforms such as Kaggle, IEEEDataPort, and 
Grand Challenge as well as from specialized neuro data repositories, such as 
NeuroVault, Whole Brain Atlas, Temple EEG database, SchizConnect, The Pain 
Repository, Open Access Series of Imaging Studies (OASIS), Glucose Imaging in 
Parkinsonian Syndromes Project (GLIMPS), Brain-CODE, Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), OpenNeuro, and Collaborative Research in 
Computational Neuroscience (CRCNS).  

Deep learning models
Deep learning (DL) is an emerging soft computing technique in ML that often 
relies on layered algorithmic structures known as neural networks (Ahmed et 
al., 2019; Myszczynska et al., 2020). A DL architecture is referred to as a “hybrid 
model” when combined with a traditional ML architecture, such as a support 
vector machine (SVM), as a classifier. DL and neural networks have been 
implemented in translational studies ranging in focus from sequence binding 
(Alipanahi et al., 2015; Trabelsi et al., 2019) to structural and image analysis 
(Shen et al., 2017; Saboo et al., 2022). Much ongoing research is focused 
on adapting neural network structures for disease detection and treatment 
analysis applications (Ahmed et al., 2019; Figure 1). 

Figure 1 ｜ The evolution of deep learning techniques over time. 
The concept of neural networks originated in the 1940s and expanded with the 
development of shallow neural networks in the 1960s. Several artificial intelligence 
winters stemmed from intellectual roadblocks in the field. Eventually, the supervised and 
unsupervised deep learning methods widely utilized in modern research arose, as deep 
neural networks became a critical component of computing (Emmert-Streib et al., 2020- 
for a more in-depth history, see this review as well as Schmidhuber, 2015). 

The ML mechanisms involved in DL techniques are optimized via a model 
training process, where the computer is provided with a dataset (input) and 
an associated collection of outputs (Gautam and Sharma, 2020). The job 
of the ML model is to adapt its algorithm to fit an identified relationship 
between the two sets of information (Choi et al., 2020). This learning process 
falls into one of four categories, depending on the amount of labeling applied 
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to a training dataset. In supervised learning models, entirely labeled training 
data provide an answer key that a model can use to evaluate and inform 
its accuracy (Segovia et al., 2018). In contrast, unsupervised models draw 
from entirely unlabeled training data and must rely on independently drawn 
conclusions and extracted features. In between these two categories are 
semi-supervised and reinforcement learning (Segovia et al., 2018). Semi-
supervised models use both labeled and unlabeled training data, while 
reinforcement learning models train using an optimization-focused reward 
system (Kang and Jameson, 2018; Choi et al., 2020). This review will focus 
on supervised and unsupervised approaches, as reinforcement learning is 
currently not well-suited for medical analyses (Choi et al., 2020). 

Supervised models
Algorithms that can identify patterns and generate hypotheses by using 
externally provided information to predict future outcomes are known 
as supervised ML algorithms (Choi et al., 2020). Supervised models are 
primarily used for data classification, regression, and to predict desired 
outcomes. Some of the common techniques proposed to solve problems 
using supervised ML algorithms include rule-based techniques, logic-based 
techniques, instance-based techniques, and stochastic techniques (Singh et 
al., 2016). Several commonly used supervised learning methods are described 
below.

Between the input and output, DL neural networks consist of multiple hidden 
layers responsible for data processing and computation. Hidden layers consist 
of a convolutional layer, a pooling layer, and a fully connected layer with an 
activation function. The convolutional layer is the main building block of a 
neural network. It consists of several filters, or kernels, whose parameters 
are learned throughout model training (Zhao et al., 2021). Examples of 
well-characterized and widely used DL models include convolutional neural 
networks (CNN), deep neural networks (DNN), and recurrent neural networks 
(RNN) (Uddin et al., 2019). 

Built to imitate the alternating layers of cells present in the visual cortex of 
the human brain, CNN are composed of three layers: the convolutional layer, 
the pooling layer, and the fully connected layer. CNN implement a one-way 
model, in which information is transmitted from the input layer to the output 
layer only (Zhao et al., 2021). This feed-forward network structure can be 
implemented in both a supervised and an unsupervised manner (Rovini et 
al., 2018). CNN represent the most widely used DL approach for biomedical 
image analysis (Cao et al., 2018) and are designed to handle multiple array 
data, such as signals data two- and three-dimensional images. Some of the 
most widely used CNN include Alxenet, Lenet, R-CNN, Zfnet, GoogleNet, and 
ResNet (Zhao et al., 2021).

DNN are composed of multiple layers for transformation and use artificial 
neural networks as distinct processing layers. RNN are neural networks 
capable of forming internal memory, rendering them optimal for the analysis 
of sequential data (Rovini et al., 2018; Uddin et al., 2019). Bayesian networks 
are a statistical model used to represent the probabilistic relationship 
between a set of variables. Another statistical model is the logistic regression 
model, which deploys an online gradient descent method for improved 
probabilistic interpretation. This model is mainly applied when the dependent 
variables are dichotomous (Singh et al., 2016). 

Decision trees are designed to deal with inseparable information and other 
data that include nominal, numeric, textual, missing, or redundant values. The 
random forest method utilizes an ensemble of decision trees. It is robust to 
noise, scalable, and does not overfit (Singh et al., 2016; Uddin et al., 2019). As 
described previously, neural networks are constructed to emulate the neural 
structures, learning abilities, and processing methods of the human brain. 
These models are deployed to solve non-linear problems (Uddin et al., 2019).

SVM is a complex supervised algorithm currently considered one of the best 
ML algorithms (Uddin et al., 2019). SVM models are deployed when data are 
not linearly separable to prevent overfitting. In contrast, k-nearest neighbor 
(k-NN) models are non-parametric classification algorithms that assign 
unlabeled sample points to the class of the nearest previously labeled sample 
point (Singh et al., 2016). 

As Table 1 illustrates, all complex models underperform due to poor 

parameter choice. However, SVM and k-NN have outperformed all supervised 
ML algorithms as described in Table 1. SVM and k-NN are considered one 
of the best-supervised machine learning algorithms since SVM is robust in 
comparison to linear regression, handles multiple features, does not overfit, 
and performs very well in classifying semi-structured and unstructured data 
such as text and images. Whereas k-NN is a simple algorithm that can classify 
subjects quickly, is capable of handling noise and missing values, and is mainly 
used to solve regression and classification problems (Uddin et al., 2019). Tree-
based algorithms have historically performed better than other algorithms. 
Figure 2 exhibits the different supervised algorithms in use and their modes 
of implementation.

Figure 2 ｜ A relationship map of currently used supervised learning models.  
Yellow circles denote regression algorithms, green circles denote classification 
algorithms, and blue circles mark algorithms that can be implemented for both purposes. 
The neural networks category can be grossly deconstructed into artificial neural networks 
(ANN), convolutional neural networks (CNN), and recurring neural networks (RNN). The 
random forest model represents a collection of individual decision trees. Created with 
BioRender.com.

Figure 3 ｜ A representation of the basic architecture of an unsupervised neural network.   
First, feature maps are made from MRI, CT, or PET images. Next, pooling layers summarize the feature maps. This step is repeated through multiple neural layers. Then, the final 
feature maps are sent to the final fully connected layer, where predictions and masks are made, leading to the eventual model output. Adapted from Gautam and Sharma (2020).

Unsupervised models
Unlike supervised algorithms, unsupervised algorithms learn without an 
answer key, supervisor, or source of external information to fall back on (Kang 
and Jameson, 2018; Choi et al., 2020). Figure 3 demonstrates the general 
architecture of unsupervised neural networks. Unsupervised neural networks 
and other algorithms are mainly used for clustering and feature reduction 
(Noor et al., 2020). 

Unsupervised models are also known as self-supervised algorithms. 
Autoencoders (AE), which are used for compression and other functionalities, 
represent a unique form of self-supervised learning (Singh et al., 2015). AE are 
deployed to implement a feedforward approach to generating output from an 
input (Singh et al., 2015). In this feedforward approach, multiple inputs enter 
a layer and are multiplied by their respective weights. The generated outputs 
are then added together to obtain a sum of all weighted input values (Lu et 
al., 2020). 

Deep autoencoders are unsupervised models with a stacked structure 
composed of three layers: the input (encoder), the output (decoder), and 
the hidden layer (code). Sparse AE are another commonly used unsupervised 
ML model that relies on an axisymmetric single hidden layer for feature 
extraction. Stacked AE are used for the prediction of disease using time-
frequency features of speech signals. Stacked autoencoders are made up of 
three layers: an input layer, hidden layers (which generate learned features), 
and an output layer in the same dimension as the input layer, demonstrating 
the reconstruction of the inputs (Li et al., 2019).  
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Beyond the scope of artificial neural networks, other generative learning 
methods have also been implemented to solve complex problems. Generative 
learning methods include models like the deep belief network (Zhao et al., 
2021). Developed in 2006, the deep belief network is an unsupervised model 
composed of complex layers of the restricted Boltzmann machine algorithm 
with pre-trained weights. This unsupervised generative neural network is 
comprised of two layers: visible and hidden. Generative adversarial networks 
represent another generative learning technique structured based on image-
to-image translation. As a result, this class of model is also known as pix2pix 
(Zhao et al., 2021). Other common unsupervised ML algorithms used in the 
detection of neurodegenerative disorders include K-means and self-organizing 
maps, described in more detail below.

K-means: One of the simplest unsupervised ML algorithms, the K-means 
method represents a popular clustering algorithm used to divide a given 
dataset between a pre-determined number of clusters (k) based on 
recognized similarities and dissimilarities between data points (Raval and 
Jani, 2016; Ahmed et al., 2020). The model operates by randomly selecting 
data points to represent each cluster. These data points, known as centroids, 
center and define the characteristics of each cluster throughout the sorting 
process (Ahmed et al., 2020). However, using the k-means model presents 
several difficulties. For instance, varying k-value selection leads to varying 
convergence results (Ahmed et al., 2020). Similarly, different randomized 
centroid placements can generate different results (Das et al., 2017). To 
optimize the k-center placement, researchers attempt to place them as far as 
possible from one another (Das et al., 2017). 

Self-organizing maps (SOM): SOM are considered one of the most efficient 
unsupervised neural network techniques. The basic architecture of SOM is 
based on competitive learning. SOM are primarily used for the cluster analysis 
of high-dimensional data. This technique aims to reduce the dimensionality 
of complex data, organizing a simplified representation of each datapoint 
spatially within a two-dimensional map (Sarmiento et al., 2017). Datapoints 
on the map are known as neurons. These neurons build a two-dimensional 
lattice that acts as the output layer of the SOM, where high-dimensional input 
space is mapped within the plane. The completed map acts as a spectrum, 
where the discrete features of each simplified datapoint resemble its 
immediate neighbor (Sarmiento et al., 2017). 

Deep Learning Applications
The four essential steps for image processing include acquiring an existing 
dataset, analyzing, and identifying new patterns in the data. This is followed 
by preprocessing the raw data and making predictions. Based on the accuracy 
of the model, it can be then trained on other new datasets (Figure 4). 

However, the primary limitation of DL applications for the analysis of 
biomedical images remains the availability of only a small sample of training 
data in a space where additional images are not easily obtainable (Shen et 
al., 2017). The more complex the DL model, the more parameters it must 
internalize (Ying, 2019). Therefore, to construct and train a sufficiently 
sophisticated DL algorithm without overfitting the model, researchers must 
find creative ways to expand their dataset (Shen et al., 2017). To accomplish 
this, researchers use a range of different techniques. Data augmentation, 
for example, involves the artificial inflation of the existing training dataset 
by transforming existing images (Shorten and Khoshgoftaar, 2019). 
Dimensionality reduction can also be used to reduce the existing number of 
model parameters, or models can be pre-trained with external data (Shen et 
al., 2017). 

Evaluation of Classifier Performance
Evaluation of classifier performance is done in terms of sensitivity or recall. 
Eq (1) is used to calculate the percentage of cases correctly identified as true, 
or specificity. Eq (2) calculates the percentage of cases correctly identified 
as false, or precision. Eq (3) is employed to determine the percentage of 
cases correctly identified as true about all diagnosed as true, otherwise 
labeled accuracy (Uddin et al., 2019). Eq (4) determines the percentage of 
cases that are correctly identified with respect to all subjects, and F-score Eq 
(5) calculates a weighted average of specificity and sensitivity. To obtain all 
the above measurement values, True Positive (TP), False Positive (FP), True 
Negative (TP), and False Negative (FN) are calculated (Uddin et al., 2019).

Eq (1) Recall = TP/(TP+FN)

Eq (2) Specificity = TN/(TN+FP)

Eq (3) Precision = TP/(TP+FP)

Eq (4) Accuracy = (TP+TN)/(TP+TN+FP+FN)

Eq (5) F-score =  2 × (Precision × Recall)/(Precision+Recall)

Machine Learning Classifiers for Alzheimer’s 
Disease
Currently, some of the most common DL techniques used for clinical AD 
prognosis include DNN, restricted Boltzmann machine algorithm, DBM, 
deep belief network, AE, Sparse AE, and Stacked AE (Altinkaya et al., 2020). 
Each architecture has been developed to distinguish between multi-modal 
neuroimaging data from cognitively normal controls and brains with MCI, 
commonly known as the prodromal or pre-symptomatic phase of AD. Once 
trained, these DL models can be used to predict the conversion of MCI to AD 
(Bringas et al., 2019; Altinkaya et al., 2020). AD research using DL algorithms 
is still evolving to achieve higher accuracy, as summarized in Table 2.

Data mining identifies patterns and relationships, classifies complex data, and 
extracts useful information from the recorded data. It is a common technique 
used on K-means datasets for the automatic classification of normal control 
individuals, MCI, and AD (Nabeel et al., 2021). Extracting information from 
real cases helps in the early clinical detection of AD. A recent study by Uddin 
et al. (2019) demonstrates the comparison of supervised ML architectures 
for AD classification. The classification was based on various performance 
metrics, including accuracy, precision, recall, and F1 score, to determine the 
efficiency of each classifying architecture. The study’s results demonstrated 
that the bagging method, which combines several learning models in parallel, 
outperformed all other ML architectures. Other studies have identified XG-
Boost as the most powerful architecture for the classification of MCI subjects 
(Gautam and Sharma, 2020; Noor et al., 2020). 

Additional research coupled with AI-integrated wearable sensors has 
identified CERAD change scores as a valuable tool for the early detection of 
MCI (Gautam and Sharma, 2020; Noor et al., 2020). These studies suggest 
that these architectures and sensors can be implemented in a clinical 
setting as a diagnostic tool (Taeho et al., 2019). Integrating data mining and 
ML algorithms seems to promise more accurate disease predictions and 
classifications of AD and other forms of dementia (Uddin et al., 2019).

Table 1 ｜ The potential applications, advantages, limitations, and varied accuracies of commonly used supervised learning algorithms

Algorithm Potential applications Advantages Limitations

Accuracy

Test Cross-validation

Bayesian 
Network

Classification of documents, 
medical prognosis system

Takes less time to train the model and can 
interpret the relationship among predictors.

Cannot deal handle high dimensional data and 
efficiency of the model decreases with the increase 
of data.

0.73 0.77

Logistic 
Regression

Crash types, and injury severity, 
handle the nonlinearity in data.

The model is capable of handling nonlinear 
data and interprets the output as probability.

Suffer multicollinearity and require large data to 
provide stable results.

0.75 0.79

Random Forests Identifies a cluster of patients, 
object detection, and 
classification of microarray data.

Scalable, fast, robust to noise, does not 
overfit and provides explanation and 
visualization of the output.

As the number of trees increases the algorithm 
slows down.

0.77 0.82

SVM Text classification High accuracy, does not overfit, accuracy and 
performance of the model is independent of 
features, excellent generalizability, and

Slow training speed, highly complex model, and the 
performance of the model highly depends upon the 
selected parameters

0.76 0.82

k-NN Vision and computational 
geometry

Suitable for multi-modal classes, the model 
is independent of the joint distribution of 
sample points

Low efficiency, output depends upon the selection 
of the K value, the model is adversely affected by 
the noise and irrelevant features, and performance 
varies according to the size of the data set.

0.63 0.81

Neural Networks Image classification Deals with the relationship which may be 
either nonlinear or dynamic, independent of 
variables, robust to irrelevant input or noise, 
and used for

Takes time to train, performance is sensitive to the 
chosen parameters and the size of hidden layers.

0.74 0.81

The difference between cross-validation and test accuracy demonstrates the degree of over-fitting implicit in each model (Singh et al., 2016).
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Table 2 ｜ ML algorithms developed for the classification of AD, CN, and MCI over the past ten years and their accuracies

Author Study Method Architecture Accuracy

Suk and Shen, 2013 AD/CN classification; MCI/
CN classification; AD to MCI 
conversion

Feature representation with a stacked autoencoder from MRI 
and PET data

Data processing and training: 
SAE; Classifier: SVM

AD/CN classification: 95.9%
MCI/CN classification: 85.0%
MCI to AD prediction: 75.8%

Ngiam et al., 2011; 
Liu et al., 2015

AD/CN classification Extraction of complementary information from multimodal 
neuroimaging data.

SAE, Softmax logistic 
regressor, and zero-masking 
strategy

91.40%

Liu et al., 2014 AD/CN classification Extraction of complementary information from multimodal 
neuroimaging data

Stacked SAE and Softmax 
regression layer

87%

Li et al., 2014 AD/CN Classification and MCI 
to AD Conversion Prediction

Subjects with MRI and PET scans encode non-linear 
relationship between MRI and PET images. Trained network 
used to estimate PET patterns for subjects with only MRI data.

3D CNN AD/CN classification: 92.87%
MCI to AD prediction: 72.44%

Li et al., 2014; Vu et 
al., 2017; Choi and Jin 
2018

AD/CN classification and MCI 
to AD conversion 

Subjects with MRI and FDG PET scans encode non-linear 
relationship between MRI and PET images. Trained network 
used to estimate PET patterns for subjects with only MRI data.

3D CNN models, SAE and 3D 
CNN

96.00%
91.10%
AD/CN classification: 92.87%
MCI to AD prediction: 72.44%

Li et al., 2014; Vu et 
al., 2017; Choi and Jin, 
2018; Liu et al., 2018b

AD/CN classification and MCI 
to AD conversion prediction 

Subjects with MRI and FDG PET scans encode non-linear 
relationship between MRI and PET images. Trained network 
used to estimate PET patterns for subjects with only MRI data. 
Used three independent data sets (Training: ADNI-1; testing: 
ADNI-2 and MIRIAD)

3D CNN models SAE and 3D 
CNN, 3D CNN

96.00%
91.10%
AD/CN classification: 92.87%
MCI to AD prediction: 72.44%
ADNI-2: 91.09 
MIRIAD: 92.75%

Li et al., 2014; Vu et 
al., 2017

AD/CN classification and MCI 
to AD conversion prediction

Subjects with MRI and PET scans encode non-linear 
relationship between MRI and PET images. Trained network 
used to estimate PET patterns for subjects with only MRI data

SAE and 3D CNN3D CNN 91.10%
AD/CN classification: 92.87%
MCI to AD prediction: 72.44%

Vu et al., 2017 AD/CN Classification MRI and FDG PET scans SAE and 3D CNN 91.10%
Cheng and Liu, 2017; 
Cheng et al., 2017

AD/CN classification Neuroimages from MRI and PET scans. Results combined in 3D 
CNN Feature extraction from MRI images.

Two 3D CNN Two 3D CNN: 89.6%

Single 3D CNN Single 3D CNN: 87.2%
Korolev et al., 2017; 
Cheng and Liu, 2017

AD/CN classification Manual feature extraction. Neuroimages from MRI and PET 
scans. Results combined in 3D CNN

Plain (VoxCNN) 80%

Residual Neural Networks 
(ResNet) Two 3D CNNs

89.60%

Aderghal et al., 2017; 
Korolev et al., 2017

AD/CN classification 2D slices from hippocampal region in axial, sagittal, and 
coronal directions. Manual feature extraction

2D CNN plain (VoxCNN) 85.90%

residual neural networks 
(ResNet)

80%

Cheng et al., 2017; 
Lu et al., 2018

AD/CN classification and MCI 
to AD conversion prediction

Extraction of features from MRI images. Pre-training: SAE; final 
prediction: DNN

Single 3D CNN Single 3D CNN: 87.2%

SAE and DNN AN/CN classification: 84.6%
MCI to AD prediction: 82.93%

Aderghal et al., 2017; 
Liu et al., 2018a

Intra-slice and inter-
slice features for AD/CN 
classification

Decomposed 3D PET images into 2D slices, used 2D slices from 
hippocampal region in axial, sagittal, and coronal directions

Combination of 2D CNN and 
RNN + 2D CNN

91.20%
85.90%

Lu et al., 2018 AD/CN classification and MCI 
to AD conversion prediction

SAE for pre-training, DNN for final step SAE and DNN AN/CN classification: 84.6%
MCI to AD prediction: 82.93%

Liu et al., 2018b; 
Liu et al., 2018a

Intra-slice and inter-
slice features for AD/CN 
classification

Three independent data sets of 3D PET images decomposed 
into 2D slices. (Training: ADNI-1; Testing: ADNI-2, MIRIAD)

3D CNN Combination of 2D 
CNN and RNNs

ADNI-2: 91.09 
MIRIAD: 92.75%, 91.2%

From the available literature, the 3D CNN model developed by Choi and Jin (2018) appears to outperform all ML algorithms with an accuracy of 96.0%.

Machine Learning Classifiers for Parkinson’s 
Disease 
ML analysis of simple drawing tasks and handwriting is widely used in the 
early detection of PD. Several supervised ML algorithms are also increasingly 
utilized for PD symptom tracking. Figure 5 illustrates a general workflow for the 
supervised ML algorithms implemented in clinical practice for the identification 
of PD using motor symptoms (Rovini et al., 2018; Hoq et al., 2021). 

To identify irregular motor characteristics implicated in PD and to differentiate 
between abnormal and normal hand movements, researchers implement 
classifier-based supervised ML algorithms on data derived from patients 
given horizontal drawing tasks (Hoq et al., 2021). Naïve Bayes classification 
has been combined with a set of metrics related to the velocity and 
spatiotemporal tracing of the subject’s pen to accurately differentiate 
between PD patients and normal control participants. Similarly, Archimedean 
spiral tracing performed by individuals with PD can undergo automatic 
analysis by a supervised model (Rovini et al., 2018). The results of algorithm-
scored drawings display striking similarities to drawings independently scored 
by clinical experts (Nair et al., 2020). These tests are performed on patients’ 
personal computers using the relevant supporting software. Therefore, since 
these tests can be performed via smartphones and tablets, they represent 
an accessible and cost-effective approach to the analysis of motor function 
(Woodzinski et al., 2019). 

Two common ML-based hardware systems used in clinical practice for the 
identification of PD are Parkinson’s KinetiGraph and the Kinesia system (Power 
et al., 2019). These systems are designed specifically for the identification of 

dyskinesia and bradykinesia in individuals suffering from PD. The KinetiGraph 
system is worn on the wrist to measure wrist acceleration (Cancela et al., 
2016), whereas Kinesia is worn on either a finger or wrist and detects motion 
via a built-in accelerometer and gyroscope (Belić et al., 2019). 

These system outputs are analyzed using supervised ML algorithms, such as 
SVM. For instance, Kinesia recordings have been used to classify PD tremor 
severity. Gait analysis algorithms have also shown promising results in the 
early identification of motor disorders (Heldman et al., 2017). For instance, 
RNN and long short-term memory have been used to classify gait analysis 
recordings, drawing from a database that includes measures of stride-to-
stride footfall times. These algorithms have proven capable of differentiating 
between healthy controls and individuals suffering from PD, Huntington’s 
disease, and motor neuron disease, with accuracies ranging from 95% to 
100%. However, in SVM, an ensemble of classifiers performs better than 
a single classifier. Existing algorithms can also be improved to optimize 
performance (Heldman et al., 2017; Belić et al., 2019). 

Bayesian multivariate predictive inference platforms have also been applied 
to clinical data to study PD progression. Latourelle and colleagues published 
a study in which they trained a model for assessments of motor progression 
and of the complete molecular and genetic information obtained from a 
group of 117 healthy controls and 312 participants with PD over two years. 
To identify novel predictors of motor progression in the early stages of PD, a 
total of 17,499 features were included in the model. Progression modeling 
identified common factors for faster motor regression, including higher 
baseline motor scores, old age, and male sex. However, it also identified 
new predictors such as genetic variation and biomarkers found in patients’ 
cerebrospinal fluid (Latourelle et al., 2017). 
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Figure 5 ｜ An illustration of the supervised ML algorithms used in comparative motor 
pre-clinical assessments for the classification of PD.  
After motor data is acquired from all groups, the algorithm extracts notable distinguishing 
features, distributing the subjects into three different datasets. The reference dataset 
(2C60, 2C90, 3C90; Rovini et al., 2018). The dimensionality of the dataset is reduced before 
being fed into the supervised learning algorithm itself, where training takes place, then 
model testing. The algorithm output comes in the form of a confusion matrix, which is 
transformed into an evaluation matrix capable of categorizing disease types based on 
their distinguishing features. Created with BioRender.com.

Table 3 ｜ ML algorithms developed for the classification of PD over the past ten years and their accuracies 

Reference Title Method Architecture Accuracy

Mancini et al., 2011 Trunk accelerometry reveals postural 
instability in untreated PD

Posture: (i) EO gazes straight ahead at art poster 6 m 
continuously. (ii) EC, upright standing position; (iii) EC 
cognitive task (ECT).

Linear mixed 
model; ROC

Accuracy for F95: 0.90; FD: 0.82; RMS: 
0.93; for jerk (EO) for untreated PD/HC 
classification.

Sant’Anna et al., 
2011

New measure of movement symmetry 
in early PD patients using symbolic 
processing of inertial sensor data

Walking 30 m hallway at preferred speed (2 minutes) t-test, ROC; ICC Accuracy for PD/HC classification: 0.872; 
ICC: 0.949

Rigas et al., 2012 Assessment of tremor activity in PD using 
set of wearable sensors

Resting task (resting in bed, on a chair, standing with 
hand support); Postural task; kinetic tasks (finger to 
nose, finger to finger, walking, and picking)

HMM (Leaving 
one patient out)

Accuracy for posture and action detection: 
81%; Accuracy for tremor severity 
classification: 87%

Scanlon et al., 2013 Accelerometry-based study of lower and 
upper limb tremors in PD

Resting task, Postural task with distracting task [upper 
and lower limbs, both dexterity dominant and non-
dominant] (each 8.2 seconds)

Mann-Whitney 
U and Wilcoxon 
signed-rank texts

IIVF50 for RT (P = 0.032), (P = 0.017) lower 
in the DD lower limb of PwPD compared to 
HC

Chen et al., 2014 Postural sway in idiopathic rapid eye 
movement sleep behavior disorder as a 
potential marker of prodromal Parkinson’s 
disease

Upright standing position: arms crossed by chest, 
looking ahead (every 30 seconds) (i) eyes open (EO) 
(ii) feet together eyes closed (EC) (iii) feet together EO 
dual-task (EODT) (iv) feet together EC dual-task (ECDT) 
(v) tandem standing EO (TEO)

ANOVA, t-test, 
Pearson chi-
square test

Differences in jerk between PD/HC for 
EODT (P = 0.030), ECDT (P = 0.015), and 
TEO (P = 0.023)

Kostikis et al., 2015 Smartphone-based tool for assessing 
Parkinsonian hand tremor

Resting and Postural task (every 30 seconds) Pearson 
coefficient; Bag 
DT

AUC for PwPD/HC classification: 0.94

Perumal and Sankar, 
2016

Gait and tremor assessment for patients 
with PD using wearable sensors

Gait and Tremor (60 seconds) ANOVA, LDA 
5-fold cross-
validation, ROC

Mean accuracy for Gait: 91.58%, ROC: 0.72
AUC for PD/HC classification: 90%
Features able to differentiate PD tremor 
from atypical PD tremor

Cai et al., 2017 New hybrid intelligent framework for 
predicting PD

Voice recordings of 31 subjects, including 23 PD 
patients (16 males, 7 females) and 8 healthy controls (3 
males, 5 females). Each subject provided an average of 
six 36-second long phonations of vowels (95 samples 
total)

BFO-SVM, KELM Acc of BFO-SVM: 96.84%, sensitivity: 
98.75%, Specificity: 90.83%

Rumman et al., 
2018

Early detection of PD using image 
processing and artificial neural networks

SPECT Image dataset retrieved from PPMI database. 
ANN trained twice: first with ROI area of known 
subjects, then ROI area of unknown subjects

ANN Accuracy: 94%
Sensitivity: 100%
Specificity: 88%

Woodzinski et al., 
2019

Deep learning approach to PD detection 
using voice recordings and convolutional 
neural networks for image classification

100 voice recordings divided into 10 folds 90/10% 
(training and validation data). Included 50 HC and 50 
PD patient recordings. PC-GITA database created to 
evaluate the model

LSTM, ResNet 
with 18 layers

F1-score, Precision, and recall: 0.92
Accuracy: 0.917

Nair et al., 2020 Predicting early-stage drug-induced 
Parkinsonism using unsupervised and 
supervised machine learning

Kinematic walking data Logistic 
regression model

Logistic regression accuracy: 0.94, 
specificity: 0.96, sensitivity: 0.89

Powers et al., 2021 Longitudinal, remote smartwatch 
monitoring of PD motor defects to inform 
treatment decisions

Motor Fluctuations Monitor for Parkinson’s Disease 
(MM4PD) algorithm trained on smartwatch tremor 
data from 3 studies (343 PD, 171 controls), used to 
track symptom changes with activity, medication, etc.

Apple 
Proprietary 
Algorithm

Post-treatment symptom changes 
matching clinical expectations: 94%

Figure 4 ｜ An overview of the step-by-step process by which machine learning and 
computer-aided diagnosis techniques process and analyze clinical and neuroimaging 
data to identify features associated with neurodegenerative diseases. 
First, images and clinical data are processed, and features of interest are identified. Then, 
the identified features are extracted and cross-validated across data types. The machine 
learning model establishes patterns in the training dataset that can be used to classify or 
make predictions based on any comparable future dataset. Created with BioRender.com. 
MMSE: Mini‐Mental State Examination. 

As shown in Table 3, the SVM ML classifier appears to perform best for the 
differentiation of PD patients from control subjects (Cai et al., 2017). SVM 
algorithms report the highest accuracy scores in all performance measures 
except for precision and F-score, in which they rank second. In the existing 
literature, authors have also compared the accuracy of regression models for 
tracking the development of PD using metrics such as the measured error 

between paired predictions, the mean squared error, and the coefficient of 
correlation (Nair et al., 2020). Studies have also reported that least square SVM 
outperforms both multilayer perceptron neural networks and general regression 
neural networks in the differentiation between healthy and PD patients (Cai et 
al., 2017). At this point, SVM remains the most suitable method for modeling 
vocal features for PD prognosis and monitoring (Perumal and Sankar, 2016).
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Conclusion and Outlook
To efficiently implement machine learning and data mining techniques for 
the clinical detection of the neurodegenerative disorders, more training data 
should be made available. More patient information such as postmortem data 
needs to be present to avoid a high error rate. However, a semi-supervised 
algorithm must be implemented using a clustering approach for high accuracy 
results. Literature also reveals that while implementing ML algorithms 
especially neural networks on different neuroimages such as MRI, ASL, PET, 
and SPECT images must be combined with SVM and k-NN for improved results 
since SVM is robust to linear regressions and is best at differentiating PD from 
control subjects whereas k-NN is a simple algorithm, classifies subjects quickly 
and handles noise along with unlabeled data. However, for the classification 
of AD patients in the clinical setting 3D CNN models should be implemented 
since 3D models provide promising results. Moreover, recent research also 
reveals that Kohonen unsupervised self-organizing map and least-squares 
support vector machine when performed on Structural MRI could detect 
structural changes of early PD. Singh and colleagues implemented this 
technique on a large dataset which validates the robustness and value of the 
technique (Singh et al., 2018). In summary, using combined neuroimaging, 
multi-modal, and clinical data could further enhance the diagnosis and early 
detection of neurodegenerative disorders. To implement machine learning 
in clinical settings for diagnosis and other applications, further validation 
and optimization are required to make it reliable and accurate. Despite the 
challenges in deciphering machine learning into clinical settings, it can assist 
clinicians in improving differential diagnosis of Parkinsonism, AD patients and 
early detection of neurodegenerative disorders, which can drastically reduce 
the error rate and help in diagnosing PD at a pre-motor stage so that early 
treatment is started to slow down the progression of neurodegenerative 
diseases like Parkinson’s and Alzheimer’s disease.

Researchers intend to develop DL classification models based on time series 
to learn patients’ temporal patterns. Even though great success has been 
achieved in the diagnosis of brain disorders using functional MRI (fMRI) 
images, these successes remain far from providing an effective clinical 
diagnosis (Yin et al., 2022). To implement fMRI in a clinical setting, researchers 
must first develop reliable and explainable biomarkers. Future DL models 
coupled with neuroimaging should be capable of classifying more than one 
single disorder against healthy controls with high accuracy (Yin et al., 2022). 
Implementing complementary parameters such as electronic medical records, 
EEG, and structural MRI images with fMRI could help yield better results (Yin 
et al., 2022). 

Other fusion methods sti l l  in development include a cross-modal 
representation-based method for fMRI images that show enhanced 
performance over traditional DL models. However, there remains a need for 
more training samples for multimodal fusions (Yan et al., 2022). 

Another important yet relatively new field in neuroimaging is neural 
architecture search (NAS) techniques (Yan et al., 2022). NAS automatically 
selects, composes, and parameterizes DL models to achieve maximum 
accuracy and optimal model performance on provided fMRI or neural images 
(Yan et al., 2022). NAS techniques show additional promise due to their 
optimization of search space, search strategy, and performance estimation 
strategy (Yan et al., 2022). The search space is defined as potential neural 
architectures that can be implemented using the NAS algorithm (Yan et al., 
2022). The search strategy is termed as how this search space is explored. 
And finally, the performance estimation strategy references the performance 
evaluation parameters that evaluate NAS algorithm performance on various 
training datasets (Yan et al., 2022).  

Scientists are working on developing wearable sensors with embedded digital 
signal readout software for the early diagnosis and symptom monitoring of 
neurodegenerative diseases (Asci et al., 2022). For instance, ongoing research 
seeks to develop electrochemical/biocatalytic sensors for the detection 
of L-Dopa, a dopaminergic precursor molecule, in patients at risk for PD. 
These wearable, minimally invasive sensors allow researchers and clinicians 
to correlate plasma levels of L-Dopa and the severity of motor symptoms, 
tailoring the treatment accordingly (Asci et al., 2022). Small inertial sensors 
such as tri-axial accelerometers and gyroscopes can be placed on different 
body parts to examine patient motor activity (Mughal et al., 2022). Capable of 
recording 3D kinematic and spatial-temporal data related to the body’s spatial 
orientation and motion (Avalle et al., 2021), these sensors can be integrated 
with random forest algorithms for signal pattern recognition and classification 
(Asci et al., 2022). Such classifications could be further integrated into clinical 
settings to objectively analyze motor symptoms and quantify PD severity and 
progression (Mughal et al., 2022).

In contrast, infrared ambient sensors can be placed in the home as well as in 
smartphones, tablets, or wristwatches to monitor behavioral symptoms of AD 
(Gillani and Arslan, 2021). These sensors monitor signals related to patients’ 
interest in and interaction with their environment, providing information 
that is processed using ML algorithms to predict the patient’s declining 
cognitive functionality (Perumal and Sankar, 2016). This feature provides 
continuous feedback helping caregivers and health professionals by providing 
autonomous patient support and monitoring disease progression (Gillani and 
Arslan, 2021). 

Other wearable sensors such as Neuroglass are also being developed for 
the early detection of neurodegenerative disorders (Asci et al., 2022). 
Neuroglass seeks to integrate sensors capable of tracking head movement, 

velocity, acceleration, blood pressure, body temperature, blood oxygenation, 
electroencephalography, electro-oculography, and trans-cranium impedance 
(Avalle et al., 2021). However, Neuroglass’ primary technique measures eye 
motion and ocular tremor. Clinicians and scientists believe that eye and head 
movement quantification could represent an effective approach for the early 
detection of neurological disorders, drastically reducing diagnostic error 
(Avalle et al., 2021). 

Whereas the integration of ML and wearable technology could soon emerge 
as a predictive tool for the early diagnosis of neurological diseases, important 
areas for further research still remain. Areas of investigation which require 
work include the detection of pre-symptomatic cognitive decline at the 
cellular level, improvements in GAIT and movement analysis for patients 
using wearable sensors, patient memory recollection using video modeling, 
and understanding the role of telemedicine in the treatment of neurological 
diseases. 
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EC dual-task; EO: eyes open; EODT: EO dual-task; fMRI: functional magnetic 
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