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Abstract

Microbial consortium is a complex adaptive system with higher‐order dynamic

characteristics that are not present by individual members. To accurately predict

the social interactions, we formulate a set of unstructured kinetic models to

quantitatively capture the dynamic interactions of multiple microbial species. By

introducing an interaction coefficient, we analytically derived the steady‐state so-

lutions for the interacting species and the substrate‐depleting profile in the che-

mostat. We analyzed the stability of the possible coexisting states defined by

competition, parasitism, amensalism, commensalism, and cooperation. Our model

predicts that only parasitism, commensalism, and cooperation could lead to stable

coexisting states. We also determined the optimal social interaction criteria of mi-

crobial coculture when sequential metabolic reactions are compartmentalized into

two distinct species. Coupled with Luedeking–Piret and Michaelis–Menten equa-

tions, accumulation of metabolic intermediates in one species and formation of end‐
product in another species could be derived and assessed. We discovered that

parasitism consortia disfavor the bioconversion of intermediate to final product; and

commensalism consortia could efficiently convert metabolic intermediates to final

product and maintain metabolic homeostasis with a broad range of operational

conditions (i.e., dilution rates); whereas cooperative consortia leads to highly non-

linear pattern of precursor accumulation and end‐product formation. The underlying

dynamics and emergent properties of microbial consortia may provide critical

knowledge for us to understand ecological coexisting states, engineer efficient

bioconversion process, deliver effective gut therapeutics as well as elucidate

probiotic‐pathogen or tumor‐host interactions in general.
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1 | INTRODUCTION

Microbes in nature form diverse social interactions and dynamically

respond to metabolic and environmental cues at community level.

The interacting species in a microbial community might compete for

the same resource, exchange for beneficial metabolites, commu-

nicate each other via metabolic or genetic signals (Du et al., 2020;

Fredrickson & Stephanopoulos, 1981). The unique interactions in a

microbial community define the collective biological functions that

are robust to harsh conditions when individual cells could hardly

sustain (Brenner et al., 2008; Tsoi et al., 2019). Compared to

monocultures, cocultures exhibit a number of advantages, including

division of labor, compartmentalization of incompatible reactions,

and robustness to perturbations (Jawed et al., 2019; McCarty &

Ledesma‐Amaro, 2018). Recently, microbial coculture or consortia

has been increasingly applied to configurate different sections of

metabolic pathways with improved catalytic performance. The co-

cultivation of various species has led to the production of important

biofuels (Minty et al., 2013), traditional food (Lu et al., 2018) and

nutraceuticals (Arora et al., 2020; Wang et al., 2020; Xu et al., 2020;

Zhang & Wang, 2016). Novel synthetic biology tools, including cell

signaling translator (Marsafari et al., 2020; Stephens et al., 2019) and

transcriptional factor‐based biosensors (Lv et al., 2019, 2020;

Rugbjerg et al., 2018) have been recently developed to autono-

mously regulate culture composition and eliminate metabolic het-

erogeneity. In particular, microbial social interaction could define

unique spatial patterns that are important for us to fabricate ad-

vanced biomaterials (Ben Said et al., 2020; Dai et al., 2019), under-

stand biofilm formation (Beaudoin et al., 2017) and disarm antibiotic‐
resistant superbugs (Davies & Davies, 2010).

Kinetic models have been increasingly important to help us un-

derstand microbial social interactions at the consortia‐level (Kong
et al., 2018; Song et al., 2014; Succurro & Ebenhöh, 2018). Most of

these kinetic equations are developed by correlating cell growth

fitness with the nutrient or environmental conditions of the inter-

acting species. In particular, the canonical Monod equation, which

describes the quantitative relation between cell growth and a limit-

ing nutrient (Monod, 1949), has been expanded to incorporate

multiple inhibitory terms (Han & Levenspiel, 1988; Levenspiel, 1980;

Luong, 1987). For a two‐species coculture system, biochemical en-

gineers have formulated a set of coupled Monod equations to de-

scribe the oscillatory relationship between Dictyostelium discoideum

and Escherichia coli in Chemostat (Tsuchiya et al., 1972). On the other

hand, ecologists preferred to use logistic equation due to the sim-

plicity, existence of analytical solution and the rich dynamics. For

example, the solution of the Lotka–Volterra predator‐prey model

was derived and analyzed to describe the dynamic species interac-

tion in a closed system (Lotka, 1926; Volterra, 1926). A recent hy-

brid Monod and logistic model has been developed and solved to

incorporate both nutrient‐limiting conditions and self‐inhibitory
factors that may accurately describe cell growth (Xu, 2019).

Mathematical models of microbial consortia (Stephanopoulos,

1981) has been studied and analyzed in 1980s, which lay the

foundation for us to understand microbial social interactions.

However, the theoretical development of microbial consortia is not

moving forward, partly due to the complex dynamics arising from

the interacting species (Kong et al., 2018) and the lack of tools to

track the population change of interacting species. Here we de-

veloped a set of unstructured kinetic models to quantitatively

capture the dynamic interactions of multiple microbial species. We

analytically derived the steady‐state solutions for the two inter-

acting species and the substrate‐depleting profile in the chemostat.

By defining an interaction coefficient, we analyzed the stability of

the possible coexisting states on the basis of eight microbial social

interactions: competition, coexisting parasitism, extinctive parasit-

ism, cooperation, bistable amensalism, extinctive amensalism, co-

existing commensalism, and extinctive commensalism. By analyzing

the solutions for microbial consortia with sequential metabolic re-

actions compartmentalized into distinct species, we revealed the

design criteria of microbial coculture engineering in chemostat. We

discovered that commensalism consortia could efficiently convert

metabolic intermediate to final product and maintain metabolic

homeostasis (i.e., constant final product formation) with a broad

range of operational conditions (dilution rates). The simplicity and

the rich dynamics of the consortia model highlight the importance

to incorporate social interaction parameters into the unstructured

kinetic models. The dynamics of microbial competition and co-

operation may facilitate us to assemble diverse microbial species

with defined social interactions for important biotechnological and

biomedical applications.

2 | COMPUTATIONAL METHODS

2.1 | Matlab computational environment

Matlab R2017b was used as the computational platform and in-

stalled on a Windows 7 professional operation system with Intel

Core i3‐6100 CPU processor at speed of 3.70 GHz. The installed

memory (RAM) is 4.0 GHz. Matlab symbolic language package cou-

pled with LaTex makeup language is used to derive and output the

symbolic equations and solutions (Supporting Information files).

Analytical solutions were derived for Figures 2 and 4 with Matlab

Symbolic Language. All trajectories in Figures 2 and 4, and phase

portraits in Figure 3 were computed by numerical ODE45 solvers.

Numerical solutions for the compartmentalized sequential metabolic

reactions in Figures 5 and 6 were computed by numerical ODE45

solver. Matlab code with symbolic functions and m.files has been

compiled into the Supporting Information file.

2.2 | Stability analysis of microbial social
interactions

For the generalized systems ODE equations listed in

Equations (3)–(5) (Table 1), we have computed the parameterized

200 | XU



Jacobian matrix with Matlab symbolic language. This para-

meterized Jacobina matrix represents all the nine social inter-

actions summarized in Figure 1. One can simply substitute

specific numbers (−1, 0, or 1) into the interaction coefficients

γ γ( or )AB BA in this generalized Jacobian matrix to retrieve the

detailed matrix. Then specific eigenvalues cold be computed to

evaluate the stability criteria of each steady states. A complete

long form of the Jacobian Matrix is provided as Supporting In-

formation equations. Some representative eigenvalues for spe-

cific parameter conditions are compiled to the Supporting

Information table. Alternatively, stability analysis could also be

numerically analyzed (Edwards & Xu, 2020; Xu, 2020). Here is the

generalized Jacobian Matrix that corresponds to systems

ODE equations (3)–(5).
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2.3 | Parameter settings

All the solutions were derived either analytically or numerically

with the following parameter settings: μAmax
= 1.6/h; μBmax

= 1.2/h;

KSA= 1.0 g/L; KSB = 0.8 g/L; =S 50 g/L;0 YAS = 0.5 g/g; YBS = 0.8 g/g;

YBA= 0.8 g/g; YPS = 0.4 g/g; α = 0.5 (dimensionless); β = 0.5 (1/h);

γAB= −1, 0, or 1 (dimensionless), depending on the social interac-

tions as specified in Figure 1; γBA = −1, 0, or 1 (dimensionless),

depending on the social interactions as specified in Figure 1;

k= 0.8/h; Km= 1.0 g/L. Dilution rate D could be varied from 0 to

1.8/h. All biophysical parameters were taken from biochemical

parameter database (BioNumbers) or biochemical engineering

textbooks (Shuler et al., 2017) with a physiologically interpretable

range. It should be noted that, we assume that species A has a

larger growth fitness (maximal specific growth rate) than species B

in all our simulations.

3 | RESULTS

3.1 | A unstructured kinetic model to define
microbial social interactions

Based on the beneficial or detrimental relationship between two

species, we can define six social interactions (Figure 1): competition,

amensalism, parasitism, neutralism, commensalism and mutualism

(cooperation). To define the dynamic nature of microbial consortia,

we modified the growth fitness function (Equations 1 and 2) by in-

troducing an interaction coefficient γ γ( or )AB BA to each of the inter-

acting species. An interaction factor γ γ( )orBA
X

S Y AB
X

S Y
B

BS

A

AS0 0
, which is

defined as the product of the interaction coefficient and relative

population of the interacting species, is incorporated to the growth

fitness equation as specified by Equations (1) and (2).

The benefits of introducing this interaction coefficient are mul-

tifold. For example, the growth fitness equation (Equations 1 or 2)

converges to the canonical Monod equation, when the population of

the interacting species is negligible → →X X( 0 or 0)A B . As the po-

pulation of the interacting species approaches to the capacity of the

system → →X S Y X S Y( or )A AS B BS0 0 , the interaction fac-

tor γ γ( )orBA
X

S Y AB
X

S Y
B

BS

A

AS0 0
reaches its maximal or minimal value

γ γ( or )BA AB that corresponds to either beneficial or detrimental ef-

fects, depending on the sign (+1 or −1) of the interaction coefficients

(γ γorAB BA). As the cell grows, the population starts having beneficial

or detrimental effect on the interacting species; and the strength of

this interaction is proportional to the relative ratio of the cell po-

pulations. The sign (negative or positive) of the interaction coeffi-

cient γ γ( or )AB BA determines the nature (detrimental or beneficial) of

the social interactions (Figure 1). Following classical biochemical

F IGURE 1 Categories of microbial social interactions:
competition, amensalism, parasitism, neutralism, commensalism and
cooperation. The interaction coefficient was defined by a
dimensionless factor γ γ( or )AB BA that describe the beneficial or
detrimental interactions between species A and B. A green arrow
indicates beneficial relation, a blunt‐ended orange arrow indicates
harmful relation [Color figure can be viewed at
wileyonlinelibrary.com]
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kinetics, we formulated a set of simplified microbial consortia

models (Equations 1–8). With these equations, we will derive the

analytical solutions and evaluate the stability of the coexisting states.

The insight obtained from the model will be critical for us to un-

derstand the dynamic nature of microbial consortia and provide us

computational guidelines to maintain stable microbial coculture,

which may facilitate us to design efficient microbial process for

biomanufacturing or gut therapeutics with human health benefits.

3.2 | Dynamics of microbial competition,
parasitism, and cooperation with resource limitations

We next sought to understand the dynamics of microbial consortia

with strong interactions, namely competition, parasitism, and co-

operation. One important question we would like to answer is

whether the two interacting species could stably coexist. This is

critical, because there would be no microbial consortia if the two

species could not grow together. With Matlab Symbolic computation

package, we analytically derived the steady‐state solutions

for Equations (1)–(5) (a Supporting Information Matlab code was

provided as Supporting Information file). By varying the interaction

coefficients (γ γorAB BA), we could use the set of parameterized

equations (Equations 1–5) to describe the various social interactions

of the microbial consortia.

When species A and B mutually exclude each other and compete

for the same substrate, this condition γ γ= − = −( 1 and 1)AB BA will

lead to an unstable coexisting state (Figure 2a), as evidenced that

one of the eigenvalues of Jacobian Matrix is positive (Supporting

Information Eigenvalue tables). Indeed, any perturbation from the

coexisting state (light orange line in Figure 2a) will make the system

traverse to a single species survival state (Figure 3a), without the

presence of the other species. The two species mutually exclude each

other; therefore they could not grow together in CSTR. For example,

F IGURE 2 Dynamics of microbial competition, parasitism and cooperation at different dilution rate in chemostat. Green solid line: species B
exist alone; blue solid line: species A exists alone; light orange solid line: unstable coexist solution; dark orange solid line: stable coexist solution;
dash line: trajectory of steady‐state solution due to a small perturbation from any random state with fixed dilution rate. In all the simulation, we
assume that species A has a larger growth fitness (maximal specific growth rate) than species B. (a) Competition. Species A and B mutually
exclude each other, leading to an unstable coexist solution. Any perturbation from the coexist state (light orange line) will result in the survival
of a single species (either A or B). (b) Coexisting parasitism: Species A benefits species B, but species B is harmful to species A. Stable coexisting
is possible at relatively large dilution rate (equivalently to harsh conditions). (c) Extinctive parasitism: Species B benefits species A, but species A
is harmful to species B. Stable coexisting is impossible and B will extinct. (d) Cooperation: Species A and B mutually benefit each other. A stable
coexisting solution (dark orange line) is possible due to the mutualistic interactions between species A and B. Any infinitesimal perturbation
from the unstable coexisting solution (light orange line) will move the system to a washout state (solution falls to the origin) or to the stable
coexisting state (dark orange line) [Color figure can be viewed at wileyonlinelibrary.com]
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as we increase the dilution rate (D = 0.2 for red trajectory, D = 0.6 for

green trajectory and D = 1.0 for blue trajectory in Figure 2a), the

unstable coexisting state will traverse toward either species A or B

existing state (Figures 2a and 3a). The steady‐state solution of spe-

cies A or B decreases as we increase the dilution rate. This trend is

consistent with the population concentration as observed when a

single species is cultivated in the chemostat (Xu, 2019).

When species A benefits species B, but species B harms species

A, this condition γ γ= + = −( 1 and 1)AB BA will lead to a coexisting

parasitism regime (Figure 2b). At a relatively low dilution rate

(D < 1.185 h−1), species B will win and dominate regardless of the

initial concentration of species A (Figures 2b and 3b). For example,

the trajectory of the solution will move to species B alone state, as

we increase the dilution rate (D = 0.6 for green trajectory and D = 1.0

for blue trajectory in Figure 2a). Interestingly, at relatively large di-

lution rate (D ≥ 1.185 h−1), the system will move to a parasitism co-

existing state (dark orange line in Figure 2b). Since this dilution rate

is approaching to the maximal growth rate of species B (μBmax
= 1.2 h‐1),

species B must depend on the existence of species A to gain growth

advantage. For example, species A may produce a public good that

benefits the growth of species B. As a result, we observed an oscilla-

tory trajectory (a limited cycle, Figures 2b and 3b) where species A and

species B eventually lead to a balanced distribution (D = 1.365), as

specified by the dark orange line in Figure 2b. This parasitism coex-

isting state is stable since all the eigenvalues are negative (Supporting

Information Eigenvalue tables). On the contrary, if we flip the sign of

the interaction coefficient γ γ= − = +( 1 and 1)AB BA , the system will

lead to an extinctive parasitism: where species A will always out-

compete the growth of species B (Figures 2c and 3c), due to the fact

that species A has a large growth fitness than species B

(μ μ>A Bmax max
). This analysis indicates that parasitism interaction

could either lead to coexisting or extinction sates. The exploitative

relationship between species A and Bmay reach a coexisting state, only

if the dilution rate is harmful to the exploiter (i.e., species B is an

exploiter in Figure 2b).

When species A and B mutually benefit each other, this

condition γ γ= + = +( 1 and 1)BAAB will lead to a cooperative state

(Figure 2d). A stable coexisting state (dark orange line) is possible

due to the mutualistic interactions between species A and B. In-

terestingly, when the dilution rate is approaching to the maximal

growth rate of species A (μAmax
= 1.6 h−1), the system will move to

a unstable coexisting state (the light orange line in Figure 2d). Any

infinitesimal perturbation from this unstable coexisting solution

(light orange line) will move the system to an extinction state

(i.e., solution falls to the origin, pink trajectory for D = 1.7) or to

the stable coexisting state (i.e., solution falls to the dark orange

line, blue trajectory for D = 1.7). This intriguing bifurcating

behavior is also exemplified in the 2‐D phase portrait as D is above

1.58 (Figure 3d). This bistability at large dilution rate (D > 1.58)

suggests that the relative population of species A and B is critical

to maintain the coexisting state. Obviously, the cooperation allows

the system to operate at a dilution rate that is larger than both

species could sustain, indicating the robust nature of the mutua-

listic interactions.

F IGURE 3 Two‐dimensional phase portrait of
steady‐state solutions of simple microbial
interaction models. Phase portrait for bistable
competition (a), coexisting parasitism (b),
extinctive parasitism (c), and cooperation (d). The
2‐D phase portrait corresponds to the trajectory
of the solution from any random state at a fixed
dilution rate in Figure 2. In all the simulation, we
assume that species A has a larger growth fitness
than species B [Color figure can be viewed at
wileyonlinelibrary.com]
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3.3 | Dynamics of microbial commensalism and
amensalism with resource limitations

We next sought to understand the dynamics of microbial consortia

with weak interactions, namely amensalism and commensalism.

Under these conditions, we are also interested in understanding

whether the two interacting species could coexist stably or not.

Following the same stability criteria, we evaluated the eigenvalues

of Jacobian matrix. According to the system dynamics behavior, we

could categorize the weak interactions into four groups: bistable

amensalism (Figure 4a), extinctive amensalism (Figure 4b), coex-

isting commensalism (Figure 4c) and extinctive commensalism

(Figure 4d).

When species B is harmful to species A, but species A is neutral

to species B, the system γ γ= = −( 0 and 1)AB BA will lead to an un-

stable coexisting state (light orange line of Figure 4a). For example,

any perturbation from this coexisting state will lead to the survival of

a single species (either species A or B). As we increase the dilution

rate (D = 0.2 for red trajectory, D = 0.8 for green trajectory and

D = 1.0 for blue trajectory in Figure 4a), the unstable coexisting state

will traverse toward either species A or B existing state (Figure 4a).

We named this as “Bistable amensalism”. On the contrary, an ex-

tinctive amensalism will arise when species A is harmful to species B,

but species B is neutral to A γ γ= − =( 1 and 0)AB BA . Under any dilu-

tion condition, species A will outcompete species B to exist alone in

the system (Figure 4b), due to the fact that species A has a large

growth fitness than species B (μ μ>A Bmax max
).

When species A benefits species B, but species B is neutral to

species A, the system γ γ= + =( 1 and 0)BAAB will move to a stable

coexisting state (dark orange line of Figure 4c). For example, with a

small perturbation from any initial conditions, the trajectory of the

system solution will traverse toward the coexisting state (the dark

orange line of Figure 4c). Under this condition, the species with

larger growth fitness (i.e., species A) will promote the growth of the

F IGURE 4 Dynamics of microbial amensalism and commensalism at different dilution rates in chemostat. Purple solid line: species B exist
alone; blue solid line: species A exists alone; light orange solid line: unstable coexist solution; Dark orange solid line: stable coexist solution; dash
line: trajectory of steady‐state solution due to a small perturbation from any random state with fixed dilution rate. In all the simulation, we
assume that species A has a larger growth fitness than species B. (a) Bistable amensalism: Species B is harmful to species A, but species A
is neutral to species B. Coexistence is unstable and any perturbation will lead to the survival of a single species (either species A or species B).
(b) Extinctive amensalism: Species A is harmful to species B, but species B is neutral to species A. The system eventually leads to the existence
of species A alone (species B will extinct). (c) Coexisting commensalism: Species A benefits species B, but species B is neutral to species A.

Species A and B will exist together. (d) Extinctive commensalism: species B benefits species A, but species A is neutral to species B. The system
eventually leads to the existence of species A alone (species B will extinct) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 Steady‐state solutions of
microbial coculture with sequential metabolic
reactions compartmentalized in two species.
Red dots: biomass; blue dots: intermediate PA
or product PB. In all the simulation, we assume
that species A has a larger growth fitness than
species B. Intermediate PA secreted from
species A is converted to product PB by
species B. (a) Coexisting parasitism: Species A
benefits species B, but species B is harmful to
species A. (b) Extinctive parasitism: Species B
benefits species A, but species A is harmful to
species B. The system will move to species A
existing state with only intermediate PA
accumulation (no product PB formation). (c)
Coexisting commensalism: Species A benefits
species B, but B is neutral to A. (d).
Cooperation: Species A and B mutually benefit

each other [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Operational conditions of microbial coculture with sequential metabolic reactions compartmentalized in two species. (a)
Coexisting parasitism leads to the inefficient conversion of intermediate PA to product PB, as the dilution rate increases. Optimal dilution rate is
possible to maximize PB production. (b) Extinctive parasitism only leads to the presence of species A and the accumulation of intermediate PA.
Optimal dilution rate is possible to maximize intermediate PA production. (c) Coexisting commensalism leads to the coexistence of species A and
B and the efficient conversion of intermediate PA to product PB. (d) Mutualistic cooperation leads to the accumulation of intermediate PA and

rapid declining of product PB as the dilution rate increases [Color figure can be viewed at wileyonlinelibrary.com]
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species with smaller growth fitness (i.e., species B). On the contrary,

an extinctive commensalism will arise if species A is neutral to spe-

cies B, but species B benefits species A γ γ= = +( 0 and 1)AB BA . Under

any dilution condition, species A will outcompete species B to exist

alone in the system (Figure 4d).

In summary, the social interactions of two species with resource

limitations could result in rich dynamics ranging from bistable com-

petition (Figure 2a), coexisting parasitism (Figure 2b), extinctive

parasitism (Figure 2c), cooperation (Figure 2d), bistable amensalism

(Figure 4a), extinctive amensalism (Figure 4b), coexisting commens-

alism (Figure 4c) and extinctive commensalism (Figure 4d). This

complex interaction was captured by a set of unstructured kinetic

models developed in this study, simply with the introduction of the

interaction coefficients γ γor( )BAAB to the classical Monod equations.

The parameterized system equations (Equations 1–5) provides a

quantitative approach to analyze the system dynamics, which may

help us design more efficient consortia and leverage coculture en-

gineering for biotechnological and biomedical applications. It should

be noted that neutralism (where two species grow independently)

was not explored in this study, but neutralism was also captured in

our model γ γ= =( 0 and 0)AB BA , Figure 1).

3.4 | Implications for microbial coculture
engineering and microbiome engineering

Cocultures or microbial consortia are emerging strategies to improve

metabolic pathway efficiency. They exhibit a number of advantages

over monoculture, including division of labor, compartmentalization of

reaction, and robustness to perturbations (McCarty & Ledesma‐Amaro,

2018; Wang et al., 2020; Zhang & Wang, 2016). Microbial consortia

define the functional assembly and social interaction of multiple species.

To design efficient bioconversion process, one must consider the social

interactions of the individual members in the microbial community. In

this section, we will determine the optimal social interaction criteria for

microbial coculture when a 2‐step sequential metabolic reaction is

compartmentalized into two cocultivating species. Namely, inter-

mediate A (PA) is secreted from species A and was later converted to

final product B (PB) by species B. Two additional equations (Equations 6

and 7) and a modified substrate consumption equation (Equation8)

were introduced to describe the system dynamics. We assume there is

no bottleneck of metabolites transportation/diffusion across the two

species and the consortia is devoid of metabolic burden due to accu-

mulation of intermediate or final product. The formation rate for in-

termediate A (PA) was assumed to follow the Luedeking‐Piret equation
(Robert Luedeking, 1959), and the formation rate for product B (PA)

should follow a Michaelis–Mention type kinetics with the turnover rate

constant proportional to the concentration of species B. With biomass

yield Y Y( and )AS BS , intermediate A yield from substrate (YPS), and pro-

duct B yield from intermediate A (YBA), we can derive the mass balance

equation for substrate consumption as specified by Equation (8).

To simplify the discussion, we focus on the steady‐state solu-

tions of coexisting parasitism (Figures 5a and 6a), extinctive para-

sitism (Figures 5b and 6b), coexisting commensalism (Figures 5c and

6c), and cooperation (Figures 5d and 6d). The distribution of the

steady‐state solution with varying dilution rate at 3‐D space is pre-

sented in Figure 5, and the exact steady‐state solution with varying

dilution rate at a 2‐D panel is presented in Figure 6.

The solution distribution for biomass (XA and XB) and metabolite

(PA and PB) displays highly nonlinear behavior (Figures 5 and 6),

especially for the case when the two species coexist. Consistent

with previous findings (Figure 2b), coexisting parasitism

(γ γ= + = −1 and 1AB BA ) allow species B to exist alone and species A

is suppressed by species B at low dilution rate (D < 1.185 h−1).

Therefore, intermediate A (PA) was produced at minimal value (~0)

and there is no B produced at low dilution rate (Figures 5a and 6a).

When the dilution rate reaches a critical value (D ≥ 1.185 h−1) in

proximate to the maximal growth rate of species B (μ = 1.2Bmax
h−1),

species B must rely on the beneficial effects (public goods or welfare)

of species A to gain growth fitness (Figures 5a and 6a). In other

words, species A will be encouraged to proliferate, and the two

species will coexist with a balanced population distribution. Under

high dilution rate (D ≥ 1.185 h−1), intermediate A (PA) secreted from

species A will be converted to product B (PB) by species B (Figures 5a

and 6a). As predicted in the simulation, we can arrive an optimal

dilution rate to maximize the product B formation (PB), despite the

fact that there is a tipping (discontinuous) point for species A (XA) and

intermediate A (PA) (Figure 6a) as we increase the dilution rate. This

optimal dilution rate could be analytically derived should we have

enough computational power. On the contrary, an extinctive para-

sitism system (γ γ= − = +1 and 1AB BA ) will allow species A exist

alone, hence only the accumulation of the intermediate A (PA) with-

out formation of product B (Figures 5b and 6b). The solution will

eventually fall to the origin (washout state) when we further increase

the dilution rate for all the scenario discussed here (Figures 5 and 6).

This analysis indicates that a parasitism relationship may allow the

compartmentalization of two sequential metabolic reactions in two

distinct species, and there exists an optimal dilution rate to maximize

the metabolite production (PB). In reality, this metabolite PB might be

TABLE 1 A unified mathematical model to describe the mass
balance equations that govern microbial social interactions in
chemostat

Equations Equation no.

μ γ
μ

= +
+ ( )1A

S

K S BA
X

S Y
A

SA

B

BS

max

0
(1)

μ γ
μ

= +
+ ( )1B

S

K S AB
X

S Y
B

SB

A

AS

max

0
(2)

μ= −X t X t DX t( ) ( ) ( )d
dt A A A A (3)

μ= −X t X t DX t( ) ( ) ( )d
dt B B B B (4)

μ μ
= − − −S t D S S t( ) ( ( ))d

dt

X t

Y

X t

Y0
( ) ( )A A

AS

B B

BS
(5)

αμ β= + − −
+

P t X t DP t( ) ( ) ( ) ( )d
dt A A A

kX t P t
Y K P t A

( ) ( )

( ( ))
B A

BA m A
(6)

= −
+

P t DP t( ) ( )d
dt B

kX t P t
K P t B

( ) ( )

( )
B A

m A
(7)

μ μ αμ β
= − − − −

+
S t D S S t( ) ( ( ))d

dt

X t

Y

X t

Y

X t

Y0
( ) ( ) ( ) ( )A A

AS

B B

BS

A A

PS
(8)
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related to some signaling molecules that are associated with anti-

biotic resistance in biofilm formation, secondary metabolite synth-

esis in endophytic fungi or a metabolic intermediate that is

associated with the dysbiosis of gut microbes in living organisms.

The most complicated dynamics are displayed when the two spe-

cies are commensal (Figure 5c) or cooperative (Figure 5d). In both

scenario, coexisting is possible and product B will be formed when the

two species harbor distinct sections of metabolic reactions (Figure 6c,d).

In particular, intermediate A (PA) secreted from species A will be effi-

ciently converted to product B (PB) when the two specie form a com-

mensalism consortium (Figures 5c and 6c). As a result, the intermediate

A (PA) was almost kept at minimal level with a very large window of

operational conditions (i.e., 0.16 <D < 1.32), as evidenced that there is

almost constant product B (PB) formed in the system (Figure 6c). We

can also arrive an optimal dilution rate to maximize biomass for species

B (Figure 6c). In addition, the simulation indicates drastic changes of

species A biomass (XA) and intermediate (PA) at a tipping point when the

dilution rate is about 1.5 h−1. Beyond this tipping point, the system

rapidly falls to the washout states (Figures 5c and 6c). As a comparison,

cooperation between species A and B instead leads to the accumulation

of intermediate A (PA in Figures 5d and 6d), which possibly due to the

mutualistic beneficial interaction between species A and B: increase in

the biomass of species A, which is the source for intermediate PA, will

benefit the growth fitness of species B, which is the sink for inter-

mediate PA. Under this scenario, the activity of the metabolic source

pathway and metabolic sink pathway is proportionally increased. Due to

the intrinsic parameter settings (i.e., species A has a larger fitness than

species B), intermediate A (PA) from the metabolic source strain might

not be efficiently converted to product B by the metabolic sink strain.

This might possibly explain the inefficient conversion of intermediate A

(PA) to product B (PB). Biomass (XA) and intermediate (PA) in species A

will keep increasing before the system reaches the tipping dilution rate

(D ≈ 1.5 h−1) (Figure 6d). Product B will keep decreasing within the

operational dilution window (0 h−1 <D< 1.6 h−1). This analysis indicates

that designing a cooperative consortium will be more challenging than

designing a commensal consortium due to the mutualistic interaction of

the two species. Importantly, commensal consortia allow the stable

existence of two species and the efficient conversion of metabolic in-

termediate (PA) to final product (PB). In particular, metabolite con-

centration (PB) was almost kept constant at a very large dilution

window (i.e., 0.16 <D < 1.32), which may explain the phenomenon why

most of the species in gut microbiota maintain a commensal con-

sortium. Equivalently to say, this commensal consortium is critical to

maintain metabolite homeostasis (i.e., constant PB), which could resist

large perturbations of environmental condition change (i.e., the dilution

rate discussed in this study or food uptake/digestion rate in human gut).

4 | DISCUSSIONS

From a 2‐strain Lotka–Volterra competition model, Ram et al. (2019)

have been able to predict the microbial growth fitness of individual

species from the growth curve data of a mixed cell culture. Their

model contains a number of biological factors that dictate cell

growth fitness, including specific growth rate at low density, max-

imum cell density, deceleration parameter and a frequency‐based
adjustment function. By fitting the monoculture growth data to the

Baranyi–Roberts model, the authors were able to retrieve these

critical parameters. Remarkably, a competition coefficient was found

sufficient to predict the growth behavior of the mixed cell popula-

tions. Later Balsa‐Canto et al. (2020) argued this approach may re-

cover the steady states, but it may fail to reproduce the dynamics of

the subpopulations in the mixed cell culture. Errors of the estimated

competition parameters in the vicinity of the boundaries between

coexistence and exclusion may lead to biased predictions of the in-

dividual cell populations in the mixed cell culture. Later Ram et al.

(2020) reiterated that “our approach was designed to predict growth

in a mixed culture, with resource‐based competition during a single

growth phase, sampled at a high frequency.” Ram's approach, pre-

sumably, may provide a convenient way to predict the growth fitness

of a mixed cell population with resource competition. Our current

work moves beyond resource competition and includes the social

interactions of the mixed cell populations. Depending on the degree

of freedom of the system, it might be possible to predict the

community‐level population dynamics from the biological parameter

obtained in monoculture. Further experimental validation will be

needed to corroborate this hypothesis.

The reported two species model is representative of microbial

social interactions with two interaction coefficients γ γorAB BA. When

we expand the model to include three species A, B and C, we could

simply introduce six interaction coefficients, for example, γ γ,AB AC ,

γ γ,BA BC , γ γandCA CA. The growth fitness of one species (A) will be

determined by two other species (B and C). The prediction of com-

munity behavior will be more complicated, possibly there will be

multiple steady‐state solutions, interesting social structure or stra-

tification may be emerged from multiple species interactions (N ≥ 3).

There are a number of studies that reported compelling cases to

optimize microbial consortia performance by division of labor (Roell

et al., 2019). Division of labor is especially useful to mitigate meta-

bolic burden or metabolic stress when lengthy or incompatible

pathways were expressed. Our current work deals with microbial

social interaction and microbial competition, which are commonly

found in naturally existing microbial species. To validate the reported

experimental results, we need to introduce a stress factor to quantify

the metabolic burden in consortia and correlate the burdensome

effects with the growth fitness function. In addition, metabolite‐host
interactions, such as product or substrate inhibition, will be very

complex, and the solution for such complicated system will inform us

new knowledge and facilitate us to explore the optimal design cri-

teria of synthetic microbial consortia. Our current model considers

the ideal and simplified scenario: the stress factors and

metabolite–host interactions have been lumped into the interaction

coefficients γ γorAB BA, which describes the beneficial or detrimental

interactions between species A and B. Well‐defined stress factors

and metabolite‐host interactions should be integrated to further

expand the scope of this study.
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5 | CONCLUSIONS

Microbial consortium is a complex adaptive system with higher‐order
dynamic characteristics that are not present by individual members. To

accurately predict the social interactions, we formulate a set of un-

structured kinetic models to quantitatively describe the dynamic inter-

actions of multiple microbial species. With the generalized social

interaction model (Equations 1–5), we analytically derived the steady‐
state solutions for the two interacting species and the substrate in the

continuous stirred tank reactor (CSTR or chemostat). By computing the

Jacobian matrix and evaluating the eigenvalues, we analyzed the stability

of the possible coexisting states on the basis of eight social interaction

categories: competition, coexisting parasitism, extinctive parasitism, co-

operation, bistable amensalism, extinctive amensalism, coexisting com-

mensalism and extinctive commensalism. Our model predicts that only

parasitism, commensalism and cooperation could lead to stable coexist-

ing state. We then move forward to understand the dynamics of mi-

crobial consortia with sequential metabolic reactions compartmentalized

into distinct species. Coupled with Luedeking–Piret equation and

Michaelis–Menten equation, accumulation of metabolic intermediate in

one species and formation of final product in another species could be

derived and assessed. We then conclude that there is inefficient con-

version of metabolic intermediate to the final product if the two species

form parasitism consortia. Our simulation indicates that commensalism

consortia could efficiently convert metabolic intermediate to final pro-

duct and maintain metabolic homeostasis (i.e., constant final product

formation) with a broad range of dilution rates. Instead, cooperative

consortia may not maintain this metabolic homeostasis due to the mu-

tualistic relationship between the two species. In this study, we dis-

covered the underlying dynamics and emergent properties of microbial

consortia, which may provide critical knowledge for us to control and

engineer multiple microbial species in a coculture system. In particular,

the simplicity and the rich dynamics of the consortia model highlight the

importance to integrate unstructured kinetic models and social interac-

tion parameters to systematically improve our prediction power.
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NOMENCLATURE

μAmax
maximal specific growth rate for species A (1/h)

μA specific growth rate for species A (1/h)

μBmax
maximal specific growth rate for species B (1/h)

μB specific growth rate for species B (1/h)

KSA substrate saturation constant for species A (g/L)

KSB substrate saturation constant for species B (g/L)

YAS species A biomass yield from substrate S (g/g)

YBS species B biomass yield from substrate S (g/g)

YBA product B (PB) yield from intermediate A (PA) (g/g)

YPS intermediate A (PA) yield from substrate S (g/g)

α growth‐associated intermediate A (PA) formation coeffi-

cient (dimensionless)

β growth‐unassociated intermediate A (PA) formation rate

(1/h)

γAB interaction coefficient of species A imposes on species

B (dimensionless)

γBA interaction coefficient of species B imposes on species

A (dimensionless)

k rate constant of intermediate A (PA) converted to product

B (PB) (1/h)

Km intermediate A saturation constant for species B (g/L)

XA species A biomass in the CSTR (g/L)

XB species B biomass in the CSTR (g/L)

PA intermediate A concentration in the CSTR (g/L)

PB product B concentration in the CSTR (g/L)

S substrate concentration in the CSTR (g/L)

S0 substrate concentration in the feeding stream (g/L)

D dilution rate in the CSTR (1/h)
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