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Corneal neuromediator profiles following laser 
refractive surgery
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Abstract  
Laser refractive surgery is one of the most commonly performed procedures worldwide. 
In laser refractive surgery, Femtosecond Laser in Situ Keratomileusis and Refractive 
Lenticule Extraction have emerged as promising alternatives to microkeratome Laser in 
Situ Keratomileusis and Photorefractive Keratectomy. Following laser refractive surgery, 
the corneal nerves, epithelial and stromal cells release neuromediators, including 
neurotrophins, neuropeptides and neurotransmitters. Notably, nerve growth factor, 
substance P, calcitonin gene-related peptide and various cytokines are important 
mediators of neurogenic inflammation and corneal nerve regeneration. Alterations in 
neuromediator profiles and ocular surface parameters following laser refractive surgery 
are attributed to the surgical techniques and the severity of tissue insult induced. In this 
review, we will discuss the (1) Functions of neuromediators and their physiological and 
clinical significance; (2) Changes in the neuromediators following various laser refractive 
surgeries; (3) Correlation between neuromediators, ocular surface health and corneal 
nerve status; and (4) Future directions, including the use of neuromediators as potential 
biomarkers for ocular surface health following laser refractive surgery, and as adjuncts to 
aid in corneal regeneration after laser refractive surgery.
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Laser Refractive Surgery
Refractive error is a leading cause of reversible visual 
impairment worldwide (Lou et al., 2016). For the correction of 
refractive errors, laser refractive surgery remains a mainstay 
treatment in achieving spectacle independence, and is one 
of the most commonly performed ophthalmic surgeries 
globally (Kim et al., 2019). Laser refractive surgery has been 
established as a safe and effective procedure associated with 
excellent visual outcomes, improvement in the quality of 
life, and high patient satisfaction (Sandoval et al., 2016). The 
number of laser refractive surgeries has seen a burgeoning 
increase since its introduction in ophthalmology, with more 
than 16 million refractive surgeries performed worldwide 
(Bandeira et al., 2019).

The femtosecond laser (FSL) represents a significant milestone 
in ophthalmic surgery, including refractive surgery (Liu et 
al., 2018; Han et al., 2020), keratoplasty (Liu et al., 2019), 
conjunctival and cataract surgery (Fuest et al., 2017; Liu 
et al., 2017). The FSL utilizes ultrashort pulses of near-
infrared wavelength light to make tissue incisions (Liu et 
al., 2015). Reducing the pulse duration to a femtosecond 
(10–15) level produces smaller microcavitation bubbles 
(Figure 1A) and shock waves, thereby reducing the degree of 
collateral damage (Figure 1B), which is often associated with 
conventional lasers such as the argon fluoride excimer laser 
for photoablation (Liu et al., 2015; Fuest et al., 2017). With an 
accuracy of 5 µm, the FSL’s ability to photodisrupt tissue with 
high precision is ideal for surgeries wherein precision is crucial 
to achieving good outcomes (Liu et al., 2016b).

Femtosecond Laser in Situ Keratomileusis (FSL-LASIK) has 
emerged as an alternative to conventional mechanical 
microkeratomes for flap creation. It has been increasingly 
preferred due to its better precision, greater surgeon flexibility 
in flap characteristics, ability to produce thinner flaps, and 
reduced flap-related complications, attributable to the 
uniform flap morphology that enhances adhesion strength 
(Salomão and Wilson, 2010). Whilst FSL-LASIK involves two 
lasers, that is, the FSL for flap creation and excimer laser 
for stromal ablation, Refractive Lenticule Extraction (ReLEx) 
requires only a single FSL. Since the first study of Femtosecond 
Lenticule Extraction (FLEx) published in 2008 by Sekundo et 
al., ReLEx procedures have gained increasing popularity as a 
comparable, if not better, alternative to FSL-LASIK. A variant 
of ReLEx, Small Incision Lenticule Extraction (SMILE), is the 
most advanced form of ReLEx. Even though FLEx is performed 
without the need for an excimer laser, a corneal flap similar to 
the LASIK flap is created prior to lenticule extraction. On the 
other hand, SMILE involves a small corneal incision created by 
the FSL, through which the lenticule is dissected and extracted 
(Liu, 2016). While SMILE has been shown to have similar 
safety, efficacy and predictability profiles to FSL-LASIK, it 
provides better outcomes regarding the impact on the ocular 
surface, as well as with respect to corneal wound healing and 
inflammatory responses postoperatively (Liu et al., 2016b).

Following laser refractive surgery, the corneal nerves, 
epithelial and stromal cells release neuromediators that play 
an important role in postoperative neurogenic inflammation, 
wound healing and corneal nerve regeneration. In this review, 
we will discuss the functions of neuromediators, the changes 
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in neuromediators following various laser refractive surgeries, 
and their clinical implications. The authors searched the 
electronic database PudMed for relevant articles relating to 
corneal neuromediators following laser refractive surgery. 
Keywords including “nerve regeneration”, “corneal healing”, 
“neurogenic inflammation”, “neurotrophic factors”, “nerve 
growth factor”, “substance P”, “calcitonin gene-related 
peptide”, “femtosecond laser”, “neurotrophic keratitis”, 
“neurotrophic keratopathy”, “ocular surface”, “corneal nerve” 
and “corneal biomarker” were used. Only articles published 
in English were used. The date of publication was restricted 
to the last five years as best as possible. Additional relevant 
articles were identified from the references of these included 
articles. The latest search date was September 14, 2020. After 
removing duplicates, we independently screened the articles 
to ensure fulfilment of the inclusion criteria, and subsequently 
assessed the full-text version of all included articles. Of 401 
articles identified through database searching, 329 articles 
were screened, and 85 articles were eventually included in the 
final manuscript.  

Corneal Neuromediators
Corneal neuromediators refer to the chemical substances 
released by corneal nerves and they include neurotrophins, 
neuropeptides and neurotransmitters (Al-Aqaba et al., 
2019). They play a significant role not only in physiological 
homeostatic processes, but also in corneal wound healing 
following injurious stimuli (Chao et al., 2016). The release of 
neuromediators is vital in corneal nerve regeneration and 
return of normal neuronal function after refractive surgery. 
Moreover, the presence and levels of specific neuromediators 
have been shown to influence the occurrence of adverse 
effects following laser refractive surgery, such as postoperative 
dry eye, as will be discussed subsequently.

The cornea is densely innervated with an average of 351 
± 53.5 bundles per human cornea (Mansoor et al., 2020). 
Corneal innervation is maintained by a homeostatic and 
neurochemical milieu of neurotrophins, neuropeptides and 
neurotransmitters, a group of biologically active chemicals 
collectively known as neuromediators. These neuromodulating 
chemicals are produced by, and exert effects on a myriad of 
cells in the cornea, in a complex neurobiological interplay. 

The cornea is innervated predominantly by sensory 
nerves, which confer both afferent and efferent functions, 
receiving touch and pain sensation, as well as producing 
neuromediators. Most sensory nerves produce neuropeptides 
and neurotrophins. Autonomic innervation of the cornea 
arises from sympathetic and parasympathetic fibers. The 
corneal sympathetic innervation, although scarce, is a source 
of important neurotransmitters such as catecholamines 
(Müller et al., 2003). On the other hand, parasympathetic 
nerves of the cornea produce acetylcholine. Other corneal 
cells apart from neurons contribute to the diversity of 
neuromediators in the cornea. Corneal epithelial cells are a 
source of acetylcholine, cholinergic synthetic and degradative 
enzymes, as well as neurotrophins. Neurotrophins are also 
derived from corneal endothelial cells and stromal cells 
(Lambiase et al., 2000).

Neurotrophins belong to a class of growth factors that regulate 
neuronal development, survival, death and plasticity (Al-Aqaba 
et al., 2019). They are synthesized as inactive precursors, then 
cleaved by extracellular proteinases to mature neurotrophins, 
which then activate the p75 neurotrophin receptor and 
tropomyosin-related tyrosine kinase receptor to affect 
downstream biological functions (Müller et al., 2003). Nerve 
growth factor (NGF) is the best-characterized neurotrophin, 
which is important in sustaining normal corneal nerve 
density and corneal sensation (Liu, 2010). NGF has garnered 
considerable attention for its potential in corneal nerve 
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regeneration. Its recombinant form, cenegermin, has recently 
been used in patients with non-healing corneal epithelial 
defects in neurotrophic keratopathy (NK) to enhance the rate 
of corneal healing (Bonini et al., 2018). It has been postulated 
that NGF serves as a pleiotropic factor for an injured cornea 
via several mechanisms. Through in vitro studies, Aloe et 
al. (2015) demonstrated the role of NGF in the stimulation 
of corneal nerve regeneration, modulation of corneal stem 
cells through the induction of fibroblastic differentiation into 
myofibroblasts, and migration of wounded fibroblasts. NGF 
is also thought to play an instrumental role in the migration, 
colony formation and proliferation of epithelial cells, through 
the activation of tropomyosin receptor kinase A, a high-
affinity receptor for NGF located on corneal epithelial cells 
(Al-Aqaba et al., 2019). Other neurotrophins, including glial-
derived neurotrophic factor, brain-derived neurotrophic 
factor, ciliary neurotrophic factor (CNTF) and neurotrophin-3 
(NT-3) have also been described in the cornea. In vitro studies 
of the corneal epithelium have demonstrated that glial-
derived neurotrophic factor parallels the functions of NGF in 
cell migration, colony formation and proliferation (You et al., 
2001), whereas brain-derived neurotrophic factor promotes 
colony formation (You et al., 2000). CNTF exerts trophic 
effects through the activation of corneal epithelial progenitor 
cells. Exogenous CNTF has been shown to accelerate healing 
and nerve regeneration of the wounded corneal epithelium 
in a mouse model (Zhou et al., 2015). Lastly, mouse corneal 
studies have demonstrated NT-3 as a survival factor of both 
sensory and sympathetic nerves, as well as a modulator of 
neuronal branching (Bennett et al., 2002).

Neuropeptides and neurotransmitters function as important 
messengers, transmitting nervous impulses from the 
presynaptic to the postsynaptic neuron, through the synaptic 
cleft. Neuropeptides are released slowly, act over an extended 
duration on many receptors, and exert paracrine effects aside 
from their neurotransmission function. Substance P (SP) and 
calcitonin gene-related peptide (CGRP) are the most common 
neuropeptides in mouse cornea (He and Bazan, 2016). SP, 
much like NGF, exerts a trophic effect on the rabbit corneal 
epithelium by modulating cell proliferation, migration and 
adhesion (Garcia-Hirschfeld et al., 1994). SP is constitutively 
expressed in tears. Its effects are important in both the 
maintenance of normal corneal epithelium, and healing of 
cornea after injurious stimuli (Al-Aqaba et al., 2019). SP exerts 
physiological roles in rabbit corneal homeostasis (Yamada 
et al., 2003), serving as an important mediator of reflex tear 
production, protector of corneal epithelial barrier function, 
and inhibitor of epithelial cell apoptosis. Interestingly, in 
diseased rabbit corneas, Nishida et al. (1996) established 
the synergistic interaction of SP with other trophic factors, 
such as insulin-like growth factor-1 (IGF-1), in stimulating 
corneal epithelial healing. Nishida et al. (2007) subsequently 
demonstrated the use of eye drops comprising an SP-derived 
peptide and IGF-1, to successfully treat epithelial defects 
in NK. The SP/IGF-1 complex upregulates integrin alpha-5, 
a fibronectin receptor, hence promoting cell adhesion to a 
fibronectin complex which plays a key role in epithelial cell 
migration and regeneration in a rabbit model (Nakamura 
et al., 1998). In clinical cross-sectional studies (Chao et 
al., 2016), tear SP levels have been shown to be positively 
correlated with the severity of dry eye symptoms, and 
negatively correlated with corneal sensitivity following LASIK. 
SP is also associated with corneal nerve degeneration in 
diabetes mellitus. Tummanapalli et al. (2019) demonstrated 
a significant correlation between the tear SP concentrations 
and corneal nerve fiber density (CNFD), as well as the Total 
Neuropathy Score of the severity of diabetic peripheral 
neuropathy. As a result, SP may serve as a useful biomarker 
for assessing post-laser refractive surgery dry eye and diabetic 
peripheral neuropathy. 
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CGRP is another neuropeptide expressed constitutively in 
tears for corneal epithelial maintenance, whose secretion 
increases after corneal wounding (Al-Aqaba et al., 2019). 
An earlier study has postulated that CGRP exerts vasoactive 
effects and increases blood flow in the eye after corneal 
epithelial injury (Uusitalo et al., 1989). CGRP has further 
been shown to enhance corneal re-epithelialization via the 
facilitation of epithelial cell migration in dog cornea, as well 
as cell differentiation in rabbit cornea (Garcia-Hirschfeld 
et al., 1994). CGRP also modulates innate immunity by 
upregulating cyclic adenosine monophosphate and interleukin 
(IL)-8 expression, thereby promoting neutrophil chemotaxis 
to areas of acute inflammation in the cornea (Tran et al., 
2000). Diminished CGRP levels have been correlated with 
dry eye severity (Lambiase et al., 2001), and as such, have 
been suggested by many researchers (Di Zazzo et al., 2019; 
Tamhane et al., 2019) as useful biomarkers of dry eye disease 
in tandem with SP. Moreover, CGRP serves vital functions in 
nociception of the central and peripheral nervous system 
(Schou et al., 2017), with the cornea being no exception. CGRP 
stimulates the release of nitric oxide from trigeminal ganglia 
in rat cornea (Vause and Durham, 2009) and algogenic factors 
such as bradykinin from satellite glial cells in mouse cornea 
(Ceruti et al., 2011). These effects help produce a favorable 
neurochemical environment that enhances neural activity. In 
addition, increased CGRP levels have been associated with 
increased corneal hyperalgesia following corneal injury in a rat 
model (Hegarty et al., 2018). 

Another neuropeptide, vasoactive intestinal peptide (VIP), 
is expressed in limited quantities in the corneal nerves (Al-
Aqaba et al., 2019), but nonetheless plays important roles 
in wound healing in the corneal epithelium. Zhang et al. 
(2020) demonstrated the role of VIP in modulating corneal 
epithelial healing and nerve regeneration, as well as exerting 
anti-inflammatory effects in a signaling pathway-dependent 
manner. Moreover, in their animal diabetic corneal model, 
exogenous VIP improved the epithelial healing, upregulated 
the wound-induced production of neurotrophic factors, and 
dampened the inflammatory response (Zhang et al., 2020). 
As an autocrine trophic factor in the corneal endothelium, 
VIP has also been shown to promote the survival of corneal 
endothelial cells under oxidative stress (Koh and Waschek, 
2000), postulated to be via the upregulation of the anti-
apoptotic factor Bcl-2 and differentiation marker N-cadherin in 
a kinase A inhibitor-dependent mechanism (Koh et al., 2009). 
Like VIP, neuropeptide Y (NPY) confers anti-inflammatory 
properties as well. It is the most abundant peptide in the 
central and peripheral nervous systems (Medeiros and Turner, 
1996). It has been shown to serve bimodal functions, as 
both a strong negative regulator of T cells, and an activator 
of antigen-presenting cells in a mouse model (Wheway et 
al., 2005). The distribution of NPY in the human cornea was 
shown to be closely related to vascular distribution (Stone, 
1986), and subsequently in a mouse model, its role as a 
stimulator of angiogenesis and angiogenesis-dependent 
wound healing was discovered (Ekstrand et al., 2003).

Neurotransmitters, in contrast to neuropeptides, are released 
rapidly at the synaptic junction, exerting short-term effects 
on a limited number of receptors. The catecholamines, 
norepinephrine and epinephrine, have been found to 
exert neurotrophic functions, aiding corneal wound 
healing through epithelial cell proliferation, migration and 
transcellular transport processes (Al-Aqaba et al., 2019). 
The neurotransmitter acetylcholine is present in high 
concentrations in the cornea, helping to maintain the ionic 
gradient during propagation of nerve impulses along an axon 
(Al-Aqaba et al., 2019). Acetylcholine stimulates corneal 
epithelial cell DNA synthesis, epithelial cell migration and 
keratocyte proliferation (Słoniecka et al., 2015). Acetylcholine 
also reduces apoptotic activity and corneal fibrosis by 

inhibiting the formation of myofibroblasts and dampening the 
excessive production of extracellular matrix (Słoniecka and 
Danielson, 2020). Corneal trigeminal axons also contain the 
enzyme acetylcholinesterase (AChE) (Al-Aqaba et al., 2019), 
which has been used as a technique for corneal nerve staining 
(Liu et al., 2021). This enzyme has been postulated to confer 
neurotrophic effects on the cornea, evidenced by the loss of 
corneal sensation when AChE production is repressed, and 
the absence of AChE and acetylcholine in denervated corneas 
(Al-Aqaba et al., 2019).

These neuromediators serve vital physiological roles in 
homeostatic processes of the cornea (Table 1). In corneas with 
normal physiological conditions, they help maintain essential 
cellular processes, including normal proliferation, apoptosis 
and neurotransmission. In corneas that have pathological 
changes or surgical insults including laser refractive surgery, 
they provide additional stimuli for healing and nerve 
regeneration, as well as the modulation of inflammatory 
processes (Gao et al., 2014; Zhang et al., 2016).

Changes in Neuromediators Following Laser 
Refractive Surgery
Corneal wound healing is associated with the postoperative 
refractive stability, predictability, visual outcomes and 
resultant patient satisfaction following refractive surgery (Liu 
et al., 2015). The healing process is complex, involving various 
interactions between cells, neuromediators, cytokines and 
chemokines on the cornea and ocular surface (Lim et al., 
2016; Yawata et al. 2019). In response to stimuli such as FSL 
ablation or surgical incision, corneal sensory nerves of rats 
are stimulated to release the neuropeptides SP and CGRP, 
the principle mediators of neurogenic inflammation (Liu et 
al., 2020a). In rabbit cornea, SP interacts synergistically with 
IGF-1 to promote the migration of epithelial cells to the site 
of tissue injury (Al-Aqaba et al., 2019). Furthermore, through 
the activation of calmodulin-dependent protein kinase II in 
rabbit corneal epithelial cells, SP enhances cell migration via 
the induction of fibronectin and interleukin (IL)-6 (Yamada et 
al., 2005). Another neuropeptide, CGRP, modulates the innate 
immune response through the activation of cyclic adenosine 
monophosphate and IL-8, hence promoting the migration of 
inflammatory cells such as neutrophils to the wounded site. 
The epithelium also produces cytokines and growth factors, 
including IL-1, tumor necrosis factor-α, epidermal growth 
factor, and platelet-derived growth factor (Mohan et al., 2000). 
These inflammatory and trophic factors function to regulate 
apoptosis, proliferation and the migration of keratocytes after 
laser refractive surgery (Figure 2). 

Changes in various neuromediators have been observed 
following LASIK, photorefractive keratectomy, FLEx or SMILE. 
Mertaniemi et al. (1995) examined the effects of PRK on 
CGRP in a prospective study of 14 patients. Compared to the 
preoperative values, the release of CGRP in tears increased 
and peaked on postoperative day 2, and thereafter declined 
on day 7. It was postulated that the significant elevation 
of CGRP release on days 1–2 may be attributed to the 
secretion from damaged stromal nerves. Notably, despite 
the hypersecretion of tears postoperatively, there was no 
significant decrease in tear CGRP concentrations, signifying a 
simultaneous increased production of CGRP in tears possibly 
by the corneal sensory nerves. Similarly, in a longitudinal study 
comparing PRK and microkeratome LASIK, Lee et al. (2005) 
demonstrated that tear NGF/total tear protein (NGF/tP) ratio 
had the greatest increase in the immediate postoperative 
period following PRK, peaking at day 1, before decreasing 
from week 1 to month 6. LASIK resulted in a lower NGF/
tP ratio as compared to the PRK procedure up to 1 month 
postoperatively, but there were no significant differences 
observed between both groups thereafter. At 6 months, the 
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Table 1 ｜ Summary of the physiological roles and translational applications of neuromediators in corneas

Neuromediator Functions Translational applications

Neurotrophin Nerve growth factor Epithelial cell migration, colony formation and proliferation 
in vivo
Corneal nociception in vitro
Maintenance of corneal nerve density in vivo
Induction of fibroblastic differentiation into myofibroblasts 
in vitro

Nerve growth factor eye drops for 
neurotrophic keratopathy and post-
refractive surgery regeneration (Nishida et 
al., 2007; Joo, 2014; Ma et al., 2014) 
Biomarker for dry eye disease (Tamhane 
et al., 2019) 

Glial-derived neurotrophic factor Epithelial cell migration, colony formation and proliferation 
in vitro

Brain-derived neurotrophic factor Epithelial cell colony formation in vitro
Ciliary neurotrophic factor Epithelial progenitor cells activation in vitro
Neurotrophin-3 Corneal sensory and sympathetic nerve survival in vivo

Modulator of corneal nerve branching in vivo
Neuropeptide Substance P Epithelial cell migration, proliferation and adhesion in vivo

Mediator of reflex tear production in vivo
Protection of corneal epithelial barrier in vitro
Inhibition of epithelial cell apoptosis in vitro

Substance P and insulin-like growth 
factor-1 eye drops for neurotrophic 
keratopathy (Bonini et al., 2018)
Biomarker for dry eye disease and diabetic 
peripheral neuropathy (Chao et al., 2016; 
Tummanapalli et al., 2019)

Calcitonin gene-related peptide Epithelial cell migration and differentiation in vivo
Innate immunity and neutrophil chemotaxis in vitro
Vasoactive effects in vivo
Corneal nociception in vitro

Biomarker for dry eye disease (Di Zazzo et 
al., 2019; Tamhane et al., 2019)

Vasoactive intestinal peptide Corneal nerve regeneration in vivo
Upregulation of neurotrophin production in vivo
Anti-inflammatory effects in vitro
Corneal endothelial survival in vitro

Neuropeptide Y Anti-inflammatory effects in vivo
Angiogenesis and angiogenesis-dependent wound healing 
in vivo

Neurotransmitter Epinephrine and norepinephrine Epithelial cell migration, proliferation and transcellular 
transport in vitro

Acetylcholine Epithelial cell DNA synthesis and migration 
Keratocyte proliferation in vitro
Reduces corneal apoptosis and fibrosis in vitro
Maintains ionic gradient during propagation of nerve 
impulse in vitro

Corneal nerve staining to visualize corneal 
nerves distribution (Liu, 2020)

Figure 2 ｜ The neurogenic inflammation process following injury to the cornea.
The neurogenic inflammation process following injury to the cornea. Damage of corneal nerves triggers 
inflammatory, neuroinflammatory and wound healing cascades in the cornea. cAMP: Cyclic adenosine 
monophosphate; CaM-PK II: calmodulin-dependent protein kinase II; CGRP: calcitonin gene-related peptide; EGF: 
epidermal growth factor; IGF-1: insulin-like growth factor-1; IL: interleukin; ITGA: integrin alpha; NGF: nerve growth 
factor; PDGF: platelet-derived growth factor; SP: substance P; TNF-α: tumor necrosis factor-α; TrkA: tropomyosin 
receptor kinase A. 

Figure 1 ｜ Scanning electron 
microscopy picture and corneal 
histologic section with hematoxylin 
and eosin staining showing 
the photodisruption process of 
femtosecond laser.
Bubbles cavities left after bubble 
expansion (arrows) are generated 
during the laser firing process, 
cleaving the tissue (A). The 
histological section shows no thermal 
damage, coagulative necrosis or 
obvious inflammatory response 
observed along the laser path (B; 
arrow). Sourced from unpublished 
data of the authors’ laboratory. 

B

A
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NGF/tP ratio returned to preoperative levels for both PRK and 
LASIK. In a similar study, Pérez-Santonja et al. (1999) showed 
that LASIK-treated eyes had significantly lower tear NGF 
levels compared to PRK during the first 3 months, and these 
differences became insignificant only after 6 months.

It has been hypothesized that the early postoperative 
differences in the tear NGF levels between PRK and LASIK 
are attributed to differences in the corneal wound healing 
processes. In PRK, the epithelium is removed, and the anterior 
stroma is ablated. On the other hand, LASIK relatively spares 
the epithelium, superficial stroma and Bowman’s layer, and 
only the anterior stroma is ablated fully. As a result, PRK 
stimulates a more enhanced inflammatory response, with 
the presence of cytokines such as IL-1β acting to upregulate 
NGF and tropomyosin receptor kinase A production (You et 
al., 2000). Similarly, the relative lack of an NGF surge in the 
immediate postoperative period in LASIK, as compared to epi-
LASIK, which has greater damage to the corneal epithelium, 
has been reported in a rabbit model. This low NGF level might 
partially explain the slower corneal sensory recovery in LASIK 
than epi-LASIK (Wu et al., 2009). In a clinical study by Erie 
et al. (2005) on the evaluation of corneal nerve plexus, the 
subbasal nerve density did not recover to preoperative levels 
until 5 years after LASIK as compared with 2 years after PRK. 
As a consequence, exogenous NGF has been proposed as a 
potential treatment to improve corneal neural healing post-
LASIK (Joo, 2004; Ma et al., 2014). Besides the neurotrophic 
effects reported in clinical trials of patients with NK, topical 
NGF has been demonstrated to enhance the regeneration of 
the subbasal nerve plexus, as well as corneal sensitivity after 
LASIK in rabbits (Joo, 2004; Ma et al., 2014). Moreover, NGF 
is involved in nociception in the cornea, with topical NGF 
shown to stimulate thermal and mechanical hyperalgesia in 
rats (Lewin et al., 1993). As a result, the lower NGF secretion 
after LASIK might therefore account for a diminished corneal 
sensitivity, compared to after PRK.

Several studies have also demonstrated increased tear 
IL-6 and SP levels in the early post-LASIK period of up to 3 
months (Gao et al., 2014; Chao et al., 2015), and Gao et al., 
(2014) found the SP tear concentrations inversely associated 
with CNFD. Studies on the changes of CGRP level following 
LASIK have shown inconsistent results; Chao et al. (2015) 
reported that there were no significant elevations of CGRP in 
the postoperative period of up to 3 months, while another 
cross-sectional study by Chao et al., (2016) showed that the 
tear CGRP concentrations at postoperative 12 months were 
significantly higher than those of normal subjects.  

Following SMILE, there are different tear neuromediator 
profiles, as well as ocular surface changes compared to 
LASIK. NGF and IL-6 concentrations in tears are increased in 
both SMILE and FSL-LASIK, and the levels return to baseline 
more rapidly in SMILE at 3 months (Gao et al., 2014). Several 
reasons underlie the differences in the neuromediator 
profiles in these two procedures. In LASIK, the stromal 
nerve fibers that run across the circumferential flap cut are 
truncated and resected, and the excimer laser ablation on 
the stromal bed further vaporizes deeper stromal nerves. 
On the contrary, in SMILE, only the nerves near the small 
incision and inside the refractive lenticule are interrupted, 
but the nerve bundles located outside the cap/lenticule area 
remained untouched (Mastropasqua, 2015). Our group has 
previously demonstrated that at 4 years postoperatively, 
SMILE patients had significant higher corneal nerve fiber 
length and fiber density as well as total corneal nerve 
branch density compared to LASIK patients, indicating better 
preservation and faster recovery of corneal nerves following 
SMILE (Liu et al., 2020a). Furthermore, LASIK has been proven 
to invoke a greater inflammatory response, extracellular 
matrix deposition and stromal interface reaction as compared 
to SMILE, hence resulting in a greater trigger of NGF release 

through neurogenic inflammation (Liu et al., 2016a). 

As for FLEx and SMILE, the tear NGF levels are significantly 
higher at 1 day, 1 week and 1 month following FLEx, in 
comparison to SMILE. Transforming growth factor-β1 (TGF-β1) 
levels are also significantly higher in FLEx compared to SMILE, 
at 1 day and 1 week postoperatively. Zhang et al. (2016) 
postulated that the flap creation following FLEx stimulates 
a more extensive inflammatory reaction, and therefore a 
greater resultant secretion of NGF and cytokines. FLEx involves 
a 330° flap creation, while SMILE requires just a 30° incision. 
Furthermore, the authors also showed that the tear NGF, 
TGF-β1 and IL-1α levels were moderately and significantly 
correlated with the ocular surface disease index scores, 
corneal fluorescein staining and non-invasive TBUT values in 
both FLEx and SMILE groups. Table 2 summarizes the changes 
of tear neuromediators following laser refractive surgery.

Correlation of Neuromediators with Clinical Dry 
Eye Parameters
T h e  c o n s e q u e n c e s  o f  c o r n e a l  d e n e r v a t i o n  a n d 
neuroinflammation following refractive surgery are seen 
clinically on the ocular surface (Liu et al., 2020b). Refractive 
surgery results in a decrease in tear production, tear 
film quality, and blinking reflex, which are involved in the 
pathogenesis of dry eye disease. Tear inflammatory cytokines 
and neuromediators have been shown to be associated with 
the clinical evaluation of dry eye such as ocular surface or 
corneal staining, Schirmer test, TBUT, tear osmolarity, corneal 
sensitivity and ocular surface disease index scores, not only in 
post-laser refractive surgery patients but also in other ocular 
surface conditions. Studies in contact lens wearers have found 
that tear NGF correlated significantly and moderately with 
clinical grading of dry eye severity, ocular surface fluorescein 
staining and conjunctival hyperemia. Results on the CGRP 
levels showed opposite changes compared to those of NGF, 
whereby the CGRP concentration was correlated inversely 
with the severity of clinical dry eye (Lambiase et al., 2011). 
The decreased tear CGRP levels resulted from decreased 
mucin production by goblet cells, which is itself a feature of 
dry eye disease (Mantelli and Argüeso, 2008). Another study 
by Golebiowski et al. (2017) on contact lens wearers showed 
that the tear CGRP level was correlated with CNFD.

Increased tear interferon-γ concentrations are also correlated 
with ocular surface staining, Schirmer test scores and tear 
hyperosmolarity (Jackson et al., 2016), whereas elevated IL-6 
levels are related to TBUT and disease severity in patients with 
dry eye (Yoon et al., 2007).

G iven  the  corre lat ion  estab l i shed  between these 
neuromediators as well as inflammatory mediators and 
clinical parameters, these mediators may serve as useful 
biomarkers for ocular surface and corneal nerves status 
following laser refractive surgery. Moreover, by targeting 
these neuromediators, it may open a new avenue to enhance 
the corneal wound healing and nerve regeneration processes, 
as well as to alleviate complications such as dry eye following 
laser refractive surgery.

Conclusion
Neuromediators represent the complex interplay between 
corneal nerves, epithelial, stromal and endothelial cells, 
whose mutual release of neurotrophins, neuropeptides and 
neurotransmitters are vital to corneal homeostasis. Alterations 
in neuromediator profiles following laser refractive surgery are 
closely related to the surgical techniques and the severity of 
the corneal tissue insult induced. The growing understanding 
of neuromediators, as well as advancements in corneal nerve 
assessment, have inspired the use of tear neuromediators as 
potential biomarkers for ocular surface health and corneal 
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nerve status following laser refractive surgery. Future 
directions include the validation of neuromediators as 
potential biomarkers, and the exploration of neuromediators 
as adjuncts to aid corneal regeneration after laser refractive 
surgery, or other ocular surface diseases such as neurotrophic 
keratopathy and dry eye.
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