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Abstract: Patients suffering from Alzheimer’s disease (AD) are still increasing worldwide. The
development of (AD) is related to oxidative stress and genetic factors. This study investigated the
therapeutic effects of ellagic acid (EA) on the entorhinal cortex (ERC), which plays a major role in
episodic memory, in the brains of an AD rat model. AD was induced using AlCl3 (50 mg/kg orally
for 4 weeks). Rats were divided into four groups: control, AD model, EA (treated with 50 mg/kg
EA orally for 4 weeks), and ADEA (AD rats treated with EA after AlCl3 was stopped) groups.
All rats were investigated for episodic memory using the novel object recognition test (NORT),
antioxidant serum biomarkers, lipid peroxidation, histopathology of the ERC, and quantitative
PCR for the superoxide dismutase (SOD) gene. EA therapy in AD rats significantly increased the
discrimination index for NORT and the levels of SOD, glutathione, and total antioxidant capacity.
Lipid peroxidation products were decreased, and the neurofibrillary tangles and neuritic plaques
in the ERC sections were reduced after EA administration. The decrease in ERC thickness in the
AD group, caused by caspase-3-mediated apoptosis and neurotoxicity due to amyloid precursor
protein, was modulated by the increased SOD mRNA expression. Adjustment of the ERC antioxidant
environment and decreased oxidative stress under EA administration enhanced SOD expression,
resulting in the modulation of amyloid precursor protein toxicity and caspase-3-mediated apoptosis,
thereby restoring episodic memory.

Keywords: Alzheimer’s; entorhinal cortex; ellagic acid; superoxide dismutase; caspase3; amyloid
precursor protein

1. Introduction

Dementia causes a continuous decline in cognitive function and is associated with
an increased burden on patients’ families and on society [1]. Alzheimer’s disease (AD),
a common cause of dementia [2], is a neurodegenerative disorder that leads to impaired
memory, a decline in mental functions, behavioral problems, and neuropsychiatric mani-
festations [3]. A World Health Organization report (2001) predicted a three-fold increase in
the number of AD cases in the next 20 years, with a 125% increase in the Middle East and
North Africa by 2050 [4].

AD is correlated with the autosomal dominant or sporadic inheritance of genes associ-
ated with amyloid precursor protein (APP), apolipoprotein E, and presenilin 1 and 2 [5].
An increase in APP levels has been associated with AD neurodegenerative changes and
plaque formation in the brain. Excessive precipitation of amyloid plaques and microglia
activity are associated with deterioration of cognition [6].

Neurodegenerative disorders have also been linked to oxidative stress and reactive
oxygen species (ROS), which cause a decline in mitochondrial defense by altering Ca2+

homeostasis and membrane permeability, with the consequent release of cytochrome C and

Cells 2021, 10, 3511. https://doi.org/10.3390/cells10123511 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-8479-6426
https://doi.org/10.3390/cells10123511
https://doi.org/10.3390/cells10123511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10123511
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10123511?type=check_update&version=1


Cells 2021, 10, 3511 2 of 14

apoptosis [7]. Enhancing ROS provokes mitochondrial dysfunction which has an injurious
effect on the cellular DNA, proteins, and lipids. Deposited Aβ precipitates oxidative
stress, thus increasing ROS levels [8,9]. Hence, the increased level of ROS leads to release
of proapoptotic signaling protein, CytC which enhances the formation of apoptosome,
resulting in neurodegenerative disease [10] Moreover, the extracellular deposits of Aβ can
attack mitochondria, resulting in altered mitochondrial membrane potential, resulting in
loss of adenosine triphosphate (ATP) and increase ROS, leading to cell apoptosis [11,12].

Moreover, ROS and neuronal oxidation stimulate the signaling route that changes APP
or tau processing [13]. Among various antioxidants, superoxide dismutase (SOD) plays a
major role in the protection against ROS-induced neurodegeneration, plaque-dependent
neuritic dystrophy, and APP(hAPP)/Aβ-induced impairment of the hippocampus and
neocortex [14].

The interconnection between the entorhinal cortex (ERC) and hippocampus plays a
pivotal role in episodic memory, and stores spatiotemporal information of past events. The
ERC forms the prime connection between hippocampal formation and the neocortex [15].
The entorhinal cortex was found to be a common focus of pathology and the most affected
cortical area in AD [16]. The early memory loss in AD is thought to be related to the
progressive deterioration of the ERC and the targets of these pathways in the dentate gyrus
and CA3 and CA1 areas in the hippocampus [17]. The hypothesis that AD originates in
the ERC and spreads to other cortical and subcortical areas has been reinforced in both
humans and rodents, and continues to be the predominant model in AD [18].

Despite the availability of several treatment options, AD progression is not easily
controllable. Therefore, herbs and natural extracts are often used in the management of
AD [19,20]. Their bioactive compounds, such as ellagitannins, have gained medical atten-
tion for their antioxidant, antiproliferative, and anticarcinogenic properties [21]. Ellagic
acid, mostly present as ellagitannins, is available in various medicinal plants and fruits.
During digestion ellagitannins are converted to ellagic acid which, when acted upon by
gut microbiota, is transformed to a more active and bioavailable substance, urolithins
(dibenzo[b,d]pyran-6-one derivatives) [22]. Lately, the pharmacological properties of EA
on CNS became the focus for research, since it revealed a potential protective effect on
many neurodegenerative diseases mainly due to its antioxidant and anti-inflammatory
activity [23]. The intrinsic antioxidant capacity of EA was attributed to its radical scav-
enging activity and inhibition of lipid peroxidation properties [24]. Moreover, EA proved
to hinder the pro-oxidative activity of metals as nickel and ferrous ion by chelation and
reduced oxidative DNA damage [25].

The present study aimed to determine how the antioxidant EA modulates SOD and
APP genes to alleviate the pathological features of AD. The ERC was investigated in this
study because it is the main interconnection between the hippocampus and neocortex.

2. Materials and Methods

In total, 55 adult male Wistar rats (200–250 g) were purchased from the Faculty of
Science, King Abdulaziz University, Jeddah, Saudi Arabia. The animals were housed in
wire-mesh cages (5 animals/cage) under standard conditions of humidity, light/darkness
cycle, and temperature in accordance with the Principles of Laboratory Animal Care and
the Declaration of Helsinki (2000) [26]. They were provided food and water ad libitum.

All materials, including aluminum chloride (AlCl3) and EA, were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.1. Experimental Design

The rats were randomly divided into four groups: Group I (control; n = 5) received no
medication; Group II (EA; n = 10) received EA (50 mg/kg), homogenized in water, orally
for 4 weeks; Group III (AD; n = 20) received AlCl3 (50 mg/kg), dissolved in water, orally
for 4 weeks to induce the AD model. This dose was chosen following previous studies
which revealed reduction in cognitive function with least mortality of rats administering
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the same dose [27], and Group IV (ADEA; n = 20) received AlCl3 (50 mg/kg) orally for
4 weeks, followed by EA (50 mg/kg/day) orally for 2 weeks. EA (50 mg/kg) was approved
as the lowest dose to restore the antioxidant defense system [28,29]. Oral medications were
administered through an intragastric tube.

2.2. Novel Object Recognition Test (NORT)

For the NORT, a white, cubic box (60 × 60 × 60 cm3) was used as the open field
arena. Three identical, cylindrical, blue objects were used (O1, O2, and O3). One orange,
square object was used as the novel object (N). A video camera was installed on top of the
apparatus and was connected to EthoVision video tracking software (version xt8; Noldus
Information Technology, Wageningen, The Netherlands) [30].

The test was performed in three stages: habituation, familiarization, and test stages.
The duration of each stage was 10 min, separated by 6 h intervals. The entire procedure
was performed on all rats in the four groups.

In the habituation stage, the animals were allowed to explore the empty box. In the
familiarization stage, two objects (O1 and O2) were placed at two poles of the box, about
5 cm from the walls. The animals were allowed to explore them for 10 min. The procedure
was repeated in the test stage, but O1 and O2 were replaced with O3 and N. Exploration
was considered if the rats touched or sniffed the object with the nose [31]. Rats with normal
memory functions explored N more. The box was cleaned between each stage.

The total exploration time in the test stage was calculated as the total time consumed
exploring both objects using the discrimination index (DI) [32]:

DI =
(N −O3)× 100

(N + O3)

2.3. Antioxidant Biomarkers

At the end of 6 weeks, blood was drawn from the tail veins and allowed to clot.
Serum was prepared via centrifugation at 3000 rpm for 15 min and stored at −20 ◦C for
biochemical analysis. The Activity Colorimetric Assay Kit (R&D Systems, Minneapolis,
MN, USA) was used for the analysis of SOD, glutathione (GSH), and total antioxidant
capacity (TAC) (Abcam, Cambridge, UK), following the manufacturers’ directions. For
SOD, serum was diluted 1:5 with sample buffer. SOD samples and standard were laid
out in duplicate in the well plate. Reaction was initiated by adding 20 µL of xanthine
oxidase. Plates incubated on a shaker for 30 min. Absorbance read at 440–460 nm using
a plate reader. One unit was defined as the amount of enzyme needed to exhibit fifty
percent dismutation of the superoxide radical. SOD activity (U/mL) was standardized
using Cytochrome C and xanthine oxidase coupled assay.

For GSH, 160 µL of the Reaction Mix (NADPH Generating Mix and Glutathione
Reaction Buffer) was incubated in each well plate for 10 min to generate NADPH before
adding 20 µL of the GSH standard or sample solution. Then, 20 µL of substrate solution
was added. Absorbance read at 405–415 nm using a microplate reader. The concentrations
of GSH in the sample solutions using the standard glutathione calibration curve.

For estimating TAC, an amount of 40 µL of sample dilution buffer was mixed with
10 µL of sample and incubated for 30 min at 37 ◦C. Then the wash solution was aspirated
and the washing was repeated 5 times. Horseradish peroxidase (HRP)-conjugated reagent
(50 µL) was added to each well except the blank control well and incubated for 30 min at
37 ◦C. Chromogen solution A (50 µL) and chromogen solution B (50 µL) were added to
each well and mixed with gentle shaking and incubated at 37 ◦C for 15 min. Stop solution
(50 µL) was added to each well to terminate the reaction. The samples were read at 450 nm
using a microtiter plate reader.
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2.4. Lipid Peroxidation

Thiobarbituric acid reactive substances (TBRS) were measured using the Activity
Colorimetric Assay Kit (R&D Systems Inc., MN, Canada) according to the manufacturer’s
instructions. Acid-treated samples and standards, followed by the 2-thiobarbituric acid
(TBA) reagent, were added to the included 96-well microplate. The microplate was then
incubated at 45–50 ◦C for 2–3 h, during which time the MDA in the sample reacts with the
TBA reagent to produce a colored end product. The microplate was read at 532 nm and the
intensity of the color corresponds to the level of lipid peroxidation in the sample.

2.5. Histopathological Study and Tissue Processing

After the completion of the behavioral experiments, sodium pentobarbital was in-
traperitoneally administered to anesthetize the rats. The rats were perfused with hep-
arinized 0.9% NaCl by intracardiac infusion and then with 4% paraformaldehyde (pH = 7.4).
After decapitation, their brains were extracted and half of the right cerebral hemispheres
were incubated in sucrose (20%) for 3 days at 4 ◦C, and then frozen at −40 ◦C. Coronal
sections (50 µm) were cut using a cryostat (at −19 ◦C) and silver stained to reveal neu-
ritic plaques (NPs) and neurofibrillary tangles (NFTs) [33]. The remaining right cerebral
hemispheres were kept in phosphate-buffered formalin for further tissue processing into
paraffin blocks. Sections measuring 4 µm in thickness were stained with hematoxylin
and eosin (H&E). The ERCs dissected from the left cerebral hemispheres were stored in
RNAlater® RNA Stabilization Solution for quantitative polymerase chain reaction (q-PCR)
and preserved at −80 ◦C for further processing.

2.6. ERC Thickness

Coronal sections of the brain measuring 50 µm in thickness were prepared. The ERC
was identified using a low magnification (×10). Measurements (mm) were performed
on seven sections cut at regular intervals (every fifth section). For every section, a series
of eight overlapping images was captured using an Olympus light microscope (BX51TF;
Olympus, Tokyo, Japan). The entire thickness of the ERC was measured. The total ERC was
outlined using Image-Pro Plus software (version 7.0.1; Media Cybernetics Inc., Rockville,
MD, USA) in every image following the criteria in previous research [34]. The mean total
thickness for each animal was calculated.

2.7. Immunohistochemistry

Brain sections cut from paraffin blocks were immunostained with anti-APP (A8717;
Sigma-Aldrich) and anti-caspase 3 (06-735; Sigma-Aldrich). APP- and caspase 3-positive
cells per visual field in the ERC were counted in five nonoverlapping visual fields in
five sections for each animal using the Image-Pro Plus software (version 7.0.1; Media
Cybernetics Inc.).

2.8. q-PCR

ERCs dissected from the left cerebral hemispheres which were stored in RNAlater®

RNA Stabilization Solution (Qiagen, Hilden, Germany) at−80 ◦C, were homogenized using
a TissueLyser LT (Qiagen) in 1.0 mL TRIzol® Reagent (Invitrogen Life Technologies, Paisley,
UK) and total RNA was extracted according to standard procedures. The total extracted
RNA was reverse transcribed into cDNA using the QuantiTect Reverse Transcription kit
(QuantiTect®; Qiagen, Hilden, Germany, # cat no.205311) according to the manufacturer’s
instructions using Thermo Hybaid PCR express (Thermo Scientific, Waltham, MA, USA).

The resultant cDNA was used to perform RT-qPCR by the QuantiTect SYBR-Green
PCR kit (Qiagen, Hilden, Germany# cat no.204143) and the SOD Qiagen Quantitect Primer
Assay (Rn_SOD_1_SG QuantiTect Primer assay, QT00174888) according to the manufac-
turer’s instructions. The reaction was run on the ABI 7500 Real-Time PCR system (Applied
Biosystems; Thermo Fisher Scientific, Inc., Rockford, IL, USA). qPCR was conducted as
follows: an initial polymerase activation at 95 ◦C for 10 min, then the samples were sub-
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jected to 40 cycles of denaturation at 95 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 30 s in
addition to a melting curve analysis at 60–95 ◦C. The 2−∆∆Ct technique was used to measure
the expression of the SOD1 gene using Applied Biosystems 7500 software v2.3 (Applied
Biosystems; Thermo Fisher Scientific, Inc., IL, USA). Reference gene (Hs_GAPDH_1_SG
QuantiTect Primer assay, QT00079247) was used as an internal control to normalize the raw
data of the samples and compare these results to a reference sample (Table 1). In this study,
appropriate standardization strategies were carried out according to MIQE guidelines [35].

Table 1. Primer sequences for GAPDH and SOD genes.

Gene Expressed mRNA Primer Sequence

SOD1 Forward: 5′AATGTGTCCATTGAAGATCGTGTGA3′

Reverse: 5′GCTTCCAGCATTTCCAGTCTTTGTA3′

GAPDH (internal control) Forward: 5′GCACCGTCAAGGCTGAGAAC3′

Reverse: 5′ATGGTGGTGAAGACGCCAGT3′

2.9. Statistical Analysis

The SPSS Statistics software version 20 (IBM Corp., Armonk, NY, USA) was used for
data analysis. One-way analysis of variance (ANOVA) was used, and the least significant
difference (LSD) t-test was employed when equal variance could be assumed. Data are
presented as the means ± standard deviation (SD). Results were considered statistically
significant at p < 0.05.

3. Results
3.1. NORT

In the test stage, there were no significant differences in the exploration times for
the old (O3) and novel (N) objects between the EA and control groups (p = 0.169 and 0.1,
respectively). In the AD group, the exploration time for O3 decreased by 32% compared to
the control and EA groups, while the exploration time for N decreased by 57 and 55.48%
compared to the control and EA groups, respectively. ADEA rats explored N for a mean
of 14.4 ± 0.84 s, which was an increase from 7.3 ± 0.48 s in AD rats. The DI increased
significantly in the ADEA group compared to the AD group (p ≤ 0.05) (Figure 1a–c).

3.2. Antioxidant Biomarkers

SOD and GSH: Serum levels of SOD and GSH decreased significantly in the AD group
compared to the other groups (p ≤ 0.05). The ADEA group had significantly increased
mean serum SOD (518.9 ± 1.59 U/mL) and GSH (395 ± 0.81 U/mL) levels compared
to the AD group (SOD: 440.8 ± 2.25 U/mL; GSH: 321.1 ± 0.99 U/mL) (Figure 2a). The
plasma TAC levels were significantly decreased in the AD group compared to the control
and EA groups (p ≤ 0.05). The ADEA group had significantly increased mean TAC levels
(83.6 ± 1.17) compared to the AD group (47.5 ± 1.84) Figure 2b). Levels of TBRS decreased
significantly (p ≤ 0.05) following EA administration in AD rats, with mean values of
26.8 ± 1.25 µmo/mL and 34.9 ± 6.88 µmol/mL in the ADEA and AD groups, respectively
(Figure 2c).
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3.3. Histological Study

H&E-stained sections revealed normal structural pattern of the ERC in the control and
EA groups, with pale vesicular nuclei in the neurons. In the AD group, the ERC exhibited a
disturbed architecture and the neurons had condensed, deeply stained, pyknotic nuclei. In
the ADEA group, most of the neurons had restored normal features among a few scattered
hyperchromatic condensed nuclei (Figure 3).

In the silver-stained sections, a normal ERC structure in the control and EA groups
was evident. In the sections from the AD group, multiple NFTs with NPs were observed.
EA administration in the ADEA group resulted in an apparent decrease in NFTs, which
appeared scattered among the restored normal neurons (Figure 4).
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nuclei among a few scattered hyperchromatic condensed nuclei (arrows). (H&E, magnification ×40, scale bar 20 µm).

3.4. ERC Thickness

The AD group had a significantly decreased mean ERC thickness (0.83 ± 0.025 mm)
compared to the control (1.06 ± 0.15 mm) and EA (1.06 ± 0.037 mm) groups. The
ERC thickness in the ADEA group responded to EA therapy and increased by 22.89%
(1.02 ± 0.37 mm) compared to the AD group (Figure 5).

3.5. Immunohistochemistry

Immunostaining of ERC sections revealed that EA administration in the ADEA group
significantly downregulated APP and caspase-3 expression (p ≤ 0.05) compared to the AD
group. This was confirmed by the quantitative analysis of the mean number of APP- and
caspase-3-positively immunostained cells per square millimeter (Figure 6a–c).
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3.6. Changes in SOD mRNA Levels via q-PCR

SOD gene expression was significantly upregulated in ADEA rats (p ≤ 0.05) com-
pared to AD rats. This suggested that EA administration mitigated oxidative stress by
upregulating SOD expression (Figure 7).
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4. Discussion

AD is a major cause of dementia. Although oxidative stress is a part of the normal
aging process, it is also an early sign of AD [36]. Several human and experimental studies
have reported ERC atrophy as the earliest sign of AD. A major pathological feature is Aβ

aggregation in the outer ERC layers, which constitutes the major excitatory input to the
hippocampus, and may eventually cause extensive neuronal death [37].

Behavioral tests, such as the Y-maze test, Morris water-maze test, and NORT, have
been used to study memory [38–40]. In the present study, the NORT was used to study
the effects of EA on episodic memory in a rat AD model. The results revealed a significant
decrease in DI in AD rats, with no significant difference between the exploration times
for old and novel objects. EA administration in AD rats increased the DI, as indicated by
longer exploration times for the novel object compared to the familiar object. Similarly,
other researchers reported a positive relationship between neurogenesis rate and NORT
performance in several areas of the brain, including the dentate gyrus and ERC [41].

It is to be noted that biomarkers were evaluated in the present study due to their tight
interconnection with AD hallmarks. SOD was chosen as Aβ was reported to inhibit mito-
chondrial superoxide dismutase (MnSOD), the enzyme most involved in the detoxification
of the anion superoxide and protection from peroxidative damage [42]. Cu, Zn-SOD are
fatally affected by the oxidative damage to the brain in AD and Parkinson’s disease [43].
In addition, GSH was proved to be low in brain tissue and blood in cases of AD and mild
cognitive impairment [44], but higher plasma GSH levels were associated with a decreased
risk of developing AD [45].

This finding was also correlated with the serum antioxidant profile, with significantly
elevated SOD, GSH, and TAC in ADEA rats compared to untreated AD rats, which con-
firms that brain cells are highly sensitive to oxidative stress [46]. Elevated peripheral
inflammatory markers and enhanced ROS generation result in the deterioration of cellular
functions with a consequent degeneration of nervous tissue, which eventually leads to
neurological and mental defects [47].

In the present study, the significant elevation of TBRS in the AD group was considered
as evidence of the involvement of oxidative stress in the pathogenesis of AD, as reported
previously [48,49]. These levels decreased significantly in ADEA rats. It was reported
that plasma levels of oxidation protein products were increased in both mild cognitive
impairment and AD [50]. Moreover, it has been suggested that lipid peroxidation may be
involved in enzyme and signaling-protein malfunction through changes in the membrane
milieu or through its products, such as reactive aldehydes, which are capable of engaging
proteins [51].

Histopathological examination of the ERC revealed diminished thickness in the AD
group compared to the ADEA group. Similar results were reported, where thicknesses
of entorhinal and transentorhinal cortices in subjects with mild cognitive impairment
were decreased by 0.6 mm compared to normal subjects [52]. In their experimental work
on traumatic brain injuries, researchers observed chronic behavioral changes in mice
concomitant with a decrease in the thickness of the contralateral ERC over a maximum
period of 6.5 months, and attributed these to progressive brain degeneration [53]. The
decrease in ERC thickness was also related to decreased TAC and elevated ROS; this can
cause the destruction of proteins, DNA, and membrane fatty acids, and result in apoptosis,
neurodegeneration, and volumetric changes in the brain [54]. Moreover, a decrease in ERC
volume could predict the progression of early cognitive deterioration into AD [55].

Numerous characteristic NFTs and NPs of AD were identified in the silver-stained
sections, while H&E staining demonstrated disturbed architecture and apoptotic neu-
rons. Immunohistochemistry confirmed these results and quantitative analysis of APP
and caspase-3-positive cells per square millimeter revealed that EA downregulated APP
expression and decreased the number of apoptotic neurons.

Previously, the “amyloid stream” postulation has been used to explain that the for-
mation of Aβ from APP is the first step in the pathological stream leading to toxic Aβ
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aggregation, decreased synapse plasticity, NFT formation, and eventually neuronal cell
death [56,57]. Furthermore, ROS can trigger a lack of oxygen in the nervous tissue and
Aβ toxicity, leading to neurodegeneration [58]. It has been reported that the amount and
distribution of NFTs is directly related to the severity and duration of dementia [59].

Based on the initial strength and the period of pathologic exciter, neuronal death may
be due to apoptosis or necrosis. While necrosis is a rapid process that cannot be terminated
once started, apoptotic cell death can be delayed by the activation of neuroprotective and
antiapoptotic mechanisms [60].

Caspase-3, an executioner caspase, is activated by initiator caspases and triggers the
apoptotic cascade [61]. Caspase-3 can split APP and form a neurotoxic peptide (C31)
that triggers the cytotoxic Aβ, leaving Tau in the C-terminal region, and causes NFT
formation [62]. This results in the failure of synaptic suppleness and normal learning
activity. Therefore, the neuronal cell death in AD was attributed to apoptosis and its
synergistic action with ROS [63].

In the present study, EA administration enhanced SOD gene expression, which
markedly diminished APP and caspase-3 expression, and consequently attenuated the
pathological features of AD in ERC tissue. Other studies have reported that increased SOD
gene expression reduces lipid peroxidation [64] and plaque formation, leading to decreased
memory deterioration [65]. Principally, SOD supplementation showed improvement in
mice model of AD in a previous experiment [66]. It was also reported that EA not only elim-
inated superoxide and hydroxy anions, but its effect was stronger than that of α-tocopherol
and it was as potent as SOD [67]. Other researchers concluded that the neuroprotective
effect of EA against methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) neurotoxicity was
through inhibiting oxidative stress, increasing the antioxidant enzymes/peptide, and pre-
venting the activation of inflammatory cytokines and their mediators [68]. Moreover, the
effect of EA on a parkinsonism rat model was evaluated and it was revealed that EA can
improve the disturbed motor function and increase the cerebral antioxidant defense [69].

5. Conclusions

In conclusion, besides the antioxidant properties of EA, it also contributed to SOD gene
modulation, changes in the ERC antioxidant milieu, and a reduction in the oxidative stress,
which mitigated APP toxicity and caspase-3-mediated apoptosis. Consequently, it restored
episodic memory and serum antioxidant biomarkers, and curtailed the histopathological
AD hallmarks, such as NFTs and NPs, in an AD rat model. Ellagic acid proved to be a
powerful modulator of oxidative stress by enhancing antioxidant biomarkers in serum
and SOD gene expression in the brain, thus it can be considered a promising therapeutic
measure for AD.
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