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Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and
differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide.
CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic
cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance
to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that
immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment
strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.

1. Introduction

Pancreatic ductal adenocarcinoma, referred to in this review
as pancreatic cancer, is one of the most lethal malignancies
around the world. In 2012, an estimated 338,000 new cases
were diagnosed and 330,000 deaths occurred worldwide [1].
Despite advances in the diagnosis and treatment of pancre-
atic cancer, there has been little improvement in the survival
of the patients over the past two decades [2, 3]. The 5-year
survival for all stages of pancreatic cancer diagnosed from
2007 to 2013 is 8.2% in the USA [4]. Pancreatic cancer
continues to be a challenging disease. Radical resection
remains the only potentially curative treatment. However,
more than 50% of patients are diagnosed locally advanced
or metastatic and only 15–20% of patients have resectable
disease at the time of diagnosis [5]. Nevertheless, a signifi-
cant proportion of patients who undergo surgical resection
followed by adjuvant therapy will experience recurrence
[6]. To date, chemotherapy is the main treatment option
for patients with advanced pancreatic cancer [7, 8]. Several

clinical trials have shown a modest survival benefit, such
as FOLFIRINOX (oxaliplatin, irinotecan, leucovorin, and
fluorouracil) and nab-paclitaxel plus gemcitabine [9, 10].
Improved understanding of the interactions between pan-
creatic cancer cells and the tumor microenvironment
(TME) provides valuable therapeutic targets for pancreatic
cancer [11]. For instance, targeting tumor-associated mac-
rophages (TAMs) with CCR2 inhibition in combination
with FOLFIRINOX in patients with borderline resectable
and locally advanced pancreatic cancer has shown encour-
aging results with moderate toxicity in a phase Ib trial
[12]. However, the clinical efficacy of systemic chemother-
apy and molecular-targeted therapies, such as EGFR and
VEGFR inhibition, in the management of pancreatic can-
cer is still considered unsatisfactory [13–15]. Therefore,
exploring mechanisms involved in pancreatic cancer evolu-
tion is urgently required. Increasing evidence supports the
idea that a subpopulation of pancreatic cancer cells, called
pancreatic cancer stem cells (CSCs), plays a significant role
in the process of tumor initiation, local invasion, distant

Hindawi
Stem Cells International
Volume 2017, Article ID 6012810, 9 pages
https://doi.org/10.1155/2017/6012810

https://doi.org/10.1155/2017/6012810


metastasis, chemoresistance, and relapse in pancreatic can-
cer [16, 17]. Therapeutic approaches to target CSCs are
expected to have widespread clinical implications for
pancreatic cancer treatment.

2. Overview of Pancreatic CSCs

The existence of CSCs and their role remained obscure largely
due to technological challenges for a long time [18, 19].
During the past two decades, numerous studies have provided
support for this concept. In 1997, Bonnet and Dick first iden-
tified CD34++CD38− cells as CSCs in human acute myeloid
leukemia [20]. Since then, CSCs have been identified in
various solid tumors including breast cancer, brain tumor,
pancreatic cancer, melanoma, head and neck cancer, and
colorectal cancer [21–27]. All these findings reveal that CSCs,
a subpopulation of cancer cells with the ability to self-renew
and the capacity to proliferate and differentiate, are the
driving force for cancer initiation, progression, metastasis,
and chemoresistance [28–30].

Pancreatic CSCs were first identified in 2007. Li et al.
established human pancreatic cancer xenografts in NOD/
SCID mice. After 16 weeks, xenografts were digested and
sorted for the markers of CD44, CD24, and epithelial-
specific antigen (ESA)/epithelial cell adhesion molecule
(EpCAM). Sorted cells were then injected into NOD/SCID
mice. They identified a subpopulation of pancreatic cancer
cells with the specific cell surface markers CD44+CD24+ESA+

as pancreatic CSCs, which showed stem-cell-like properties
of self-renewal, the ability to produce differentiated progeny,
and upregulation of developmental signaling molecule sonic
hedgehog [24]. Then, Hermann et al. demonstrated CD133
as a cell surface marker of pancreatic CSCs. CD133+ pancre-
atic cancer cells were highly tumorigenic and resistant to
gemcitabine. As few as 500 CD133+ pancreatic cancer cells
were capable of forming orthotopic tumors in athymic mice,
but 106 CD133− cells did not result in any tumor formation.
Elimination of CD133+CXCR4+ pancreatic cancer cells sig-
nificantly reduced the metastatic potential of pancreatic
cancer [31]. In 2010, Rasheed et al. identified aldehyde
dehydrogenase (ALDH) expression as a marker for pancre-
atic CSCs. ADLH-positive pancreatic cancer cells showed
enhanced clonogenic growth and high migratory ability,
which had a negative impact on the overall survival of
patients with pancreatic cancer [32]. In 2011, Li et al. identi-
fied c-Met as a new marker for pancreatic CSCs. c-Methigh

pancreatic cancer cells could form spheres and c-Met inhib-
itor or knockdown of c-Met significantly inhibited tumor
sphere formation in vitro. c-Methigh cells had increased
tumorigenic potential in mice. They established human pan-
creatic cancer xenografts in NOD/SCID mice and found that
administration of c-Met inhibitors could inhibit tumor
growth, reduce the population of pancreatic CSCs, and pre-
vent metastases when given alone or in combination with
gemcitabine [33]. In 2014, Bailey et al. described microtubule
regulator, doublecortin and Ca2+/calmodulin-dependent
kinase-like 1 (DCLK1) as a morphologically and function-
ally distinct population of pancreatic CSCs. Pancreatic
cancer cells expressing DCLK1 displayed high clonogenic

potential. Inhibition of γ-secretase activity reduced the
abundance of these cells in murine pancreatic intrae-
pithelial neoplasia (PanIN) and prevented PanIN progres-
sion [34]. Fujiwara et al. identified CD166 expression as
another important characteristic of tumorigenicity and
invasive and migratory activities of pancreatic cancer cells.
CD166+ pancreatic cancer cells were more tumorigenic,
while CD166− cells exhibited stronger invasive and migratory
activities [35].

In addition to the identification of specific phenotypes,
several studies aim to characterize of pancreatic CSCs based
on gene expression analysis. Bao et al. reported that pancre-
atic CSCs (CD44+/CD133+/EpCAM+) exhibited differential
expression of more than 1600 mRNAs, including BMP4,
FoxQ1, Sox4, and Wnt3a, compared with CD44−/CD133−/
EpCAM− cells. The knockdown of FoxQ1 in pancreatic CSCs
resulted in the inhibition of aggressive behaviour [36]. Skoda
et al. identified 602 differentially expressed genes in pancre-
atic CSCs (CD24+/CD44+/EpCAM+/CD133+), including
upregulated Wnt signaling (WNT2, WNT2B, FZD6, and
FZD7), upregulation of LYN expression, and downregulation
of FYN expression [37]. These differentially expressed genes
are supposed to be essential for regulating functions and
phenotypes of pancreatic CSCs. Recently, a study using a
combined approach with high-sensitivity mutation detec-
tion and whole-transcriptome analysis of the same single
cell to characterize CSCs in patients with chronic myeloid
leukemia during treatment with tyrosine kinase inhibitors
provides insights into disease evolution and points to
new therapeutic targets [38]. This method which exem-
plifies how single-cell analysis can identify CSCs might
be applied to other cancers, including pancreatic cancer.

According to the two most common models, intratu-
moral heterogeneity arises hierarchically and stochastically.
These models explain CSCs from different perspectives
and are not mutually exclusive [39]. Here, we mainly dis-
cuss the hierarchical model (Figure 1). According to this
model, carcinogenesis occurs when stem cells, progenitor
cells, or differentiated cells give rise to CSCs. Even though
much effort has been made to identify and characterize
pancreatic CSCs, the origin of pancreatic CSCs is still
widely unknown [40]. One hypothesis is that pancreatic
CSCs may originate from stem cells or progenitor cells
that reside in normal tissues with accumulating mutations,
which ultimately trigger a malignant transformation [41].
Pancreatic islets are formed by self-duplication of adult
cells, and their formation does not rely on stem cells
[42]. However, this does not preclude the existence of
stem cells in the pancreas. On the other hand, it is also
possible that mature cells may transform into CSCs. The
pancreas is composed of endocrine cells (α-cells, β-cells,
etc.), acinar cells, and ductal cells, which all derive from
a common progenitor expressing Pdx1 [43]. Both ductal
cells and acinar cells have been proposed as cellular ori-
gins for the development of pancreatic cancer [44, 45].
Under certain conditions, pancreatic ductal cells or acinar
cells acquire genetic alterations and dedifferentiate into
pancreatic CSCs. Finally, pancreatic CSCs and their differ-
entiated progeny contribute to tumor heterogeneity.
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3. The Pancreatic CSC Niche

As is the case for normal stem cells, pancreatic CSCs require
nutrients and signals from the surrounding microenviron-
ment, also called pancreatic CSC niche, to achieve a dynamic
balance between self-renewal and differentiation. As an ana-
tomically distinct region within the TME, the pancreatic CSC
niche is comprised of different types of cells and noncellular
components, such as non-CSC cancer cells, cancer-associated
fibroblasts (CAFs), pancreatic stellate cells (PSCs), immune
cells, blood and lymphatic vessels, extracellular matrix
(ECM), cytokines, chemokines, and growth factors [46].

Direct cell-cell interactions between pancreatic CSCs and
stromal cells, as well as signaling pathways mediated through
the expression and secretion of a range of growth factors
and cytokines, play a key role in the regulation of pancre-
atic CSCs. PSCs can form a niche for CSCs to promote
in vitro sphere formation and invasiveness by paracrine
Nodal/Activin signaling [47]. TGF-β treatment significantly
increases the proportion of pancreatic CSCs, which exhibit
a high degree of epithelial-mesenchymal transition (EMT)
and great invasion and migration activity in vitro [48].
Depletion of TAMs and inflammatory monocytes by inhibit-
ing either the myeloid cell receptor colony-stimulating
factor-1 receptor (CSF1R) or chemokine (C-C motif) recep-
tor 2 (CCR2) decreases the number of pancreatic CSCs
[49]. Another important contributor to the pancreatic CSC
niche is CAFs. CAF-derived CXCL12 attracts CXCR4
expressing CSCs, and fibronectin secreted by fibroblasts pro-
motes CSC attachment [50]. CAFs can stimulate stemness
via activation of WNT and NOTCH pathways [51]. Pan-
creatic cancer is characterized by remarkable desmoplasia
[52, 53]. CAF activation leads to the ECM remodelling
[54, 55]. In normal tissues, the ECM has an effect on cell pro-
liferation, differentiation, and migration [56]. Receptors
expressed within the ECM allow stem cells to anchor to
specific locations and communicate with surrounding cells

within the niche. Loss of the ECM results in a decrease of
stem cell numbers [57, 58]. The accumulation of the ECM
in pancreatic cancer destroys the normal pancreatic architec-
ture, promotes EMT, enhances CSC marker expression, and
forms a barrier blocking therapeutics [59]. All these cellular
and noncellular components establish a supportive niche to
maintain the properties of CSCs and regulate their fate.

Targeting pancreatic cancer stroma is a promising new
therapeutic option, but recent studies have spurred some
controversy. Rhim et al. discovered that sonic hedgehog-
deficient tumors had reduced fibroblast-rich desmoplastic
stroma, aggressive behaviour, undifferentiated histology,
increased vascularity, and heightened proliferation [60].
Ozdemir et al. found that depletion of CAFs and fibrosis
led to enhanced numbers of pancreatic CSCs, immunosup-
pression, and reduced survival [61]. Saridegib is a small
molecule targeting smoothened in the sonic hedgehog path-
way. The inhibition of the hedgehog pathway depleted the
tumor stroma, enhanced delivery of gemcitabine, and
improved survival in a mouse model of pancreatic cancer
[62]. However, a phase I/IIb trial of saridegib plus gemcita-
bine in patients with metastatic pancreatic cancer was
stopped in 2012 because interim data showed that patients
receiving the combination therapy had higher rates of pro-
gressive disease and lower overall survival than patients
receiving placebo plus gemcitabine [63]. These findings
suggest that some stromal elements might actually restrain
tumor growth. Thus, the complex cross-talk between pancre-
atic cancer cells, including CSCs, and the stroma should be
evaluated by further studies.

4. Resistance of Pancreatic CSCs to
Chemotherapy

One key attribute of pancreatic CSCs is chemotherapy resis-
tance, which may initially reduce the tumor bulk but fail to
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Figure 1: The origin of pancreatic CSC hypothesis. Normal stem cells give rise to progenitor cells that proliferate and differentiate into
various types of mature cells, including α-cells, β-cells, acinar cells, and ductal cells. Pancreatic CSCs may originate from the
transformation of normal stem cells or progenitor cells through the accumulation of mutations. On the other hand, under certain
conditions, pancreatic ductal cells and acinar cells may acquire genetic alterations and dedifferentiate into pancreatic CSCs.
Pancreatic CSCs have the ability of self-renewal and differentiation. Finally, pancreatic CSCs and their differentiated progeny
contribute to tumor heterogeneity.
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eradicate CSCs, resulting in recurrence of pancreatic cancer.
Notably, resistance of pancreatic CSCs to chemotherapy is
mediated by both intrinsic factors of CSCs and extrinsic
factors of the CSC niche.

Cioffi et al. found that miR-17-92, targeting NODAL/
ACTIVIN/TGF-β1/p21 signaling, was suppressed in
gemcitabine-resistant pancreatic CSCs. Overexpression of
miR-17-92 cluster or knockdown of p21 could inhibit che-
moresistance of pancreatic CSCs [64]. The ATP-binding
cassette (ABC) transporter, ABCG2, is an important source
of drug resistance in cancer [65]. However, Bhagwandin
et al. found that in pancreatic cancer, ABCG2 did not efflux
gemcitabine and inhibition of ABCG2 did not sensitize
pancreatic CSCs to gemcitabine [66]. Family with sequence
similarity 83 member A (FAM83A) could promote pancre-
atic CSC-like traits by activating the Wnt/β-catenin and
TGF-β signaling pathways and chemoresistance in pancre-
atic cancer. Inhibition of FAM83A significantly enhanced
the sensitivity of pancreatic cancer to gemcitabine [67]. Our
previous study also defined a distinguished group called side
population (SP) cells from a metastatic human pancreatic
cancer cell line with highly tumorigenic and metastatic char-
acteristics after orthotopic injection. In particular, these SP
cells showed properties of pancreatic CSCs. Wnt, NOTCH,
and EGFR signaling pathways associated with CSCs were
altered in SP cells. The proportion of SP cells was signifi-
cantly enriched when cultured with increasing concentra-
tions of gemcitabine [68]. In addition, as a part of the TME,
the pancreatic CSC niche also contributes to chemoresis-
tance. Extensive fibrosis produced by PSCs results in signifi-
cant hypoxia in the pancreatic CSC niche. In turn, hypoxia
stimulates PSCs to induce fibrosis and angiogenesis [69].
This impairs drug delivery and stimulates EMT, promoting
chemoresistance of pancreatic cancer cells [70]. In addition,
aberrant accumulation of ECM in the pancreatic CSC niche
can reduce the penetration of chemotherapeutic agents [71].

5. The Potential Role of Pancreatic CSCs in
Cancer Immunoediting

Evading immune destruction is considered as a hallmark of
cancer, but the mechanisms are not yet fully understood
[72, 73]. The concept of cancer immunoediting describes
the dynamic interaction between cancer and immune cells
during cancer progression. Cancer immunoediting con-
sists of three stages: elimination, equilibrium, and escape
[74–76]. New mechanisms of immune escape are continu-
ously discovered and translated to preclinical and clinical
studies. Increasing studies have focused on the cross-talk
between CSCs and immune cells, and recent findings raise
the possibility that CSCs might get involved in the process
of cancer immunoediting [75, 76]. Here, we speculate the
potential role of pancreatic CSCs in different stages of cancer
immunoediting (Figure 2).

In the elimination process, both innate and adaptive
immune cells play a critical role in cancer immunosurveil-
lance [77]. Several driver genes have been identified in pan-
creatic cancer, including tumor suppressor genes CDKN2A,
SMAD4, and TP53 and the oncogene KRAS [78–80].

Although immune response has been described to some of
these antigens, the majority of T-cell antigens are located
outside of classical driver mutations [81]. During pancreatic
cancer initiation, malignant cells with these genetic muta-
tions can upregulate activating NK cell receptor ligands and
downregulate inhibitory ligands. For example, major histo-
compatibility complex class I-related chains A and B
(MICA/B) are frequently expressed on the surface of pancre-
atic cancer cells. Such ligands bind to NKG2D on NK cells
and other immune cells, activating NK cell cytotoxicity and
leading to the release of proinflammatory cytokines, which
facilitate the anticancer immune response [82]. Tumor-
specific CD8+ T-cells can recognize and eliminate pancreatic
cancer cells expressing tumor-associated antigens [83].
However, pancreatic CSCs exhibit a quiescent behaviour
and low immunogenicity, which probably makes them the
right candidate to escape immune surveillance [84, 85].

In the equilibrium process, immune response and pan-
creatic cancer progression are balanced [86]. The quiescent
behaviour and longevity of pancreatic CSCs makes it easy
to accumulate genetic and epigenetic alterations and survive
the equilibrium process [87]. Upon asymmetric division, a
cancer stem cell generates a daughter stem cell for self-
renewal and a daughter cell that undergoes further differenti-
ation. The differentiated pancreatic cancer cells are subjected
to immunosurveillance, and most of them could be detected
and destroyed by the immune system as mentioned above. In
contrast, poorly immunogenic cancer cells are more likely to
escape from immunosurveillance. In breast cancer, the
downregulation of MICA/MICB on CSCs promotes the
resistance of breast CSCs to NK cell cytotoxicity and lung
metastasis formation [88]. Whether pancreatic CSCs survive
by this mechanism needs to be explored. In the meanwhile,
the pancreatic CSC niche is not totally established yet. The
dependence of pancreatic CSCs on their niche may restrain
their rapid propagation [89]. The equilibrium process is
functionally similar to the state of tumor dormancy [90].
The pancreatic CSCs may stay dormant for a long time
before eventually becoming clinically apparent.

In the escape process, pancreatic cancer cells successfully
evade immune destruction. Several factors can result in the
weakening of the immune system, such as aging, immuno-
suppressive drugs, and systemic immunosuppression. On
the other hand, the TME of pancreatic cancer is generally
regarded as poorly immunogenic and could also contribute
to immune escape of pancreatic CSCs [91]. Pancreatic cancer
cells are able to reprogram the TME via secretion of
immunosuppressive factors and recruitment of immunosup-
pressive cells, such as regulatory T-cells (Tregs) and myeloid-
derived suppressor cells (MDSCs), both of which can
suppress the cytotoxicity of CD8+ T-cells and NK cells
[92–94]. Monocytic MDSCs increase the frequency of
ALDH1 (Bright) pancreatic CSCs and promote mesenchymal
features of pancreatic cancer cells through tumor-induced
STAT3 activation [95]. Besides, as mentioned above, PSCs,
CAFs, and TAMs can also support pancreatic CSCs growth
and promote immunosuppression in the niche. The immu-
nosuppressive niche allows pancreatic CSCs to rapidly pro-
duce specialized cancer cells with high metastatic potential
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or chemoresistance. Finally, pancreatic CSCs and their
differentiated progeny progressively grow into a visible tumor
in the pancreas and even metastasize to distant sites.

Although the biological properties of pancreatic CSCs
may help to explain how pancreatic cancer avoid immune
destruction, the underlying mechanisms of pancreatic CSCs
in cancer immunoediting remain to be further investigated.

6. Conclusion

Remarkable research results have been made in identifying
characteristics of CSCs in pancreatic cancer over the last
decade. Pancreatic CSCs have been suggested to exhibit high
resistance to current therapies. However, there has been lim-
ited progress in developing alternative therapeutic options to
eradicate pancreatic CSCs. Recently, cancer immunotherapy
has emerged as an attractive research field in cancer treat-
ment. Immune checkpoint inhibitors targeting CTLA-4,

PD-1, and PD-L1 have shown clinical benefit in patients with
advanced melanoma, non-small-cell lung cancer, and several
other cancers [96–98]. Several phase I/II clinical trials study-
ing the safety and efficacy of immune checkpoint inhibitors
are being conducted in pancreatic cancer. In spite of efficacy
in mismatch repair-deficient patients, the response is very
poor [99, 100]. Due to the potential role of pancreatic CSCs
in cancer immunoediting, immunotherapy targeting pancre-
atic CSCs and the niche components may provide a novel
treatment strategy for pancreatic cancer [101, 102].

Pancreatic CSCs express specific markers, including
CD24, CD44, CD133, EpCAM, CXCR4, c-Met, and CD166,
at levels substantially different from the bulk pancreatic
cancer cells. These markers not only have proven useful for
identification and isolation of pancreatic CSCs but also can
be considered as potential targets for cancer immunotherapy
[103]. In addition, targeting the niche components may also
help to eliminate CSCs [104]. Schatton et al. reported that
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Figure 2: The potential role of pancreatic CSCs in cancer immunoediting. Elimination (left): in the elimination process, most of pancreatic
cancer cells can be successfully detected and destroyed by the innate and adaptive system. However, pancreatic CSCs are believed to be
immunologically privileged like normal stem cells. Low immunogenicity prevents pancreatic CSCs from recognition and elimination by
the host immune system. Equilibrium (middle): in the equilibrium process, the immune system and pancreatic cancer cells that have
survived the elimination process enter into a dynamic equilibrium. The function of the immune system can be negatively regulated by
cancer cells and stromal cells. The majority of pancreatic cancer cells are destroyed, but some cancer cells acquire the ability to avoid
immune destruction. The equilibrium process is functionally similar to the state of tumor dormancy. Escape (right): in the escape process,
pancreatic cancer cells can inhibit host anticancer immunity by secretion of immunosuppressive factors and by recruitment of stromal
cells, such as Tregs and MDSCs. Besides, PSCs, CAFs, and TAMs also support pancreatic CSC growth and promote immunosuppression.
The immunosuppressive niche allows pancreatic CSCs to rapidly produce specialized cancer cells with high metastatic potential or
chemoresistance. Finally, pancreatic CSCs and their differentiated progeny progressively grow into a visible tumor in the pancreas and
even metastasize to distant sites.
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CSCs inhibited T-cell activation by expression of PD-1 and
B7.2 in melanoma [105, 106]. Lee et al. demonstrated prefer-
ential expression of PD-L1 on CSCs in head and neck cancer
[107]. These findings raise the possibility that pancreatic
CSCs might actively suppress anticancer immunity through
CTLA-4 and PD-1 pathways. Assessment of the expression
of immune checkpoint molecules on pancreatic CSCs and
their niche will be necessary to verify whether this is the case
in pancreatic cancer. In addition, Ames et al. found that NK
cells preferentially killed pancreatic CSCs in vitro and
intratumoral injection of activated NK cells in the human
pancreatic cancer-bearing NSG mice significantly reduced
the number of pancreatic CSCs and tumor burden [108].

Therefore, immunotherapy targeting pancreatic CSCs
and their niche holds tremendous promise in pancreatic can-
cer treatment. Further research is urgently needed to improve
our understanding of pancreatic CSCs and to develop more
effective therapeutic strategies to eradicate pancreatic CSCs.
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