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Consensus clustering (CC) has been adopted for unsupervised class discovery in many genomic studies. It
calculates how frequently two samples are grouped together in repeated clustering runs, and uses the
resulting pairwise "consensus rates" for visual demonstration that clusters exist, for comparing cluster
stability, and for estimating the optimal cluster number (K). However, the sensitivity and specificity of CC
have not been systemically assessed. Through simulations we find that CC is able to divide randomly
generated unimodal data into apparently stable clusters for a range of K, essentially reporting chance
partitions of cluster-less data. For data with known structure, the common implementations of CC perform
poorly in identifying the true K. These results suggest that CC should be applied and interpreted with
caution. We found that a new metric based on CC, the proportion of ambiguously clustered pairs (PAC),
infers K equally or more reliably than similar methods in simulated data with known K. Our overall
approach involves the use of realistic null distributions based on the observed gene-gene correlation
structure in a given study, and the implementation of PAC to more accurately estimate K. We discuss the
strength of our approach in the context of other ensemble-based methods.

C
luster analysis is a basic tool for subtype discovery and sample classification using high-dimensional data.
In a dataset of n samples and p features, when the class/subtype labels are known for the samples, the
typical task is to define an optimized predictor in this training set, and apply it in class prediction for new

samples with unknown labels. Here the performance is assessed by "external" validation measures, usually the
agreement between the prediction and the known labels. In contrast, when class labels are not known, the task is to
perform ab initio class discovery. Since 1996, cluster analysis of microarray-derived gene expression profiles has
led to the discovery of molecular subtypes of many cancers1–6. However, it has always been difficult to compare
clustering results between methods or between studies. Thus, a clustering-based study often leaves behind
questions such as: what is the chance of reporting clusters when none truly exists? Is it possible for a method
to overstate clustering strength? What is the confidence of the inferred optimal number of clusters (denoted K
from now on)? And how can one validate the optimal K in an unbiased fashion? Inattention to these questions in
the initial, subtype-discovery phase can hinder the downstream, integrative analyses. For example, the number of
subtypes for a certain cancer could differ between two studies simply because neither study had strong evidence to
formally support K over (K21) or (K11). Similarly, within the same cancer cohort, the reported optimal K may
vary among DNA, mRNA, and methylation data if different methods were applied to different data types, and if
these methods have different sensitivity/specificity in detecting clusters. The end result of such confusion is that
we don’t know if the discrepancy between studies or between data types within a study could reflect a real
biological distinction, or could be explained by methodological differences or the mere absence of a strong cluster
signal.

Despite its critical importance, the task of evaluating cluster strength is difficult to be formulated in a hypo-
thesis-testing framework7. This is because each real dataset could have its own unique covariance structure,
making it challenging to calculate false-positive and false-negative rates of cluster results. In gene expression
analyses, for example, shared regulatory pathways or mixture of multiple cell types inevitably produce strong
gene-gene correlations. Thus a multivariate Gaussian distribution without gene-gene correlation does not rep-
resent a valid null distribution in cluster analysis. This difficulty has motivated the development of non-
parametric, resampling-based methods, where multiple subsamples of the original dataset are clustered, and
the results are compared against null datasets to assess cluster strength in terms of cluster stability.

Many cluster ensembles methods have emerged (reviewed in Ref. 8, also see below "Comparison with other
ensemble-based methods"). One such method, consensus clustering (CC)9, has recently gained widespread use in
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genomic studies (e.g.10–12,). CC calculates a ‘‘consensus rate’’ between
all pairs of samples, defined as the frequency with which a given pair
is grouped together in multiple clustering runs, each with a certain
degree of permutation either by random initialization or by random
sample- or gene-subsampling. The resulting sample-sample similar-
ity matrix is routinely used both as a visualization tool for putative
clusters and as an inference tool: the differences between within-
group and between-group consensus rates are used to assess cluster
stability and to infer the optimal K. The main assumption of CC is
that if the samples under study were drawn from K distinct sub-
populations that truly exist, different subsamples would show the
greatest level of stability at the true K. This assumption is easily
satisfied in cases of well-separated clusters. However, whether CC
can also find apparently robust clusters in data with weak or no
clusters has not been evaluated. Although this limitation is acknowl-

edged in literature (for example9,), many studies using CC still rely on
the consensus rate heatmap to visually demonstrate the existence of
clusters, with few going further to reporting their robustness.

An early example that motivated this reassessment is the analysis
of Glioblastoma Multiforme (GBM) by The Cancer Genome Atlas
(TCGA) Research Network13, which reported four molecular sub-
types according to gene expression clusters discovered by CC14. We
found that, while the CC heatmaps show four crisp clusters (Fig. 1a–
b, Supplementary Note 1), the appearance of clusters in the Pearson’s
correlation coefficient matrix (Fig. 1c) is much weaker, and principal
component analysis (PCA) does not show discernible gaps among
reported clusters (Fig. 1d). Further, the number of clusters, K 5 4,
does not always appear better than alternative hypotheses such as
K52 or 3 (Supplementary Note 1, Supplementary Fig. 1 and 3c).
These observations led us to ask the following questions: (1) How can

Figure 1 | Different ways to visualize clustering strength in GBM1. (a) gene-subsampling consensus heatmap with K 5 4, (b) sample-subsampling

consensus heatmap with K 5 4, (c) sample-sample Pearson’s correlation coefficient heatmap in the same order as in a, showing less crisp clustering

patterns, (d) four clusters found by k-means clustering with k 5 4, visualized by PC1, PC2, and PC3 (along the x-, y-, and z-axis, respectively). The

variances explained by PC1-PC2-PC3 are 21.6%, 9.9%, and 7.9%, respectively. The color scale on the heatmaps ranges from 0 (blue) to 1 (red) and is the

same throughout the paper unless otherwise stated.
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a researcher realize if he/she is merely partitioning data from a unim-
odal distribution into multiple groups? (2) How should the optimal K
be determined? (3) How to verify the existence of clusters and how to
validate K? In this study we address these questions by systematically
assessing the sensitivity and specificity of CC using simulated data-
sets with known absence of clusters, or datasets with known number
of clusters. We also discuss CC in the context of similar methods.

Results
CC is capable of finding clusters in simulated datasets of unimodal
distribution. We generated two simulated datasets with no clusters:
(1) Square1, consisting of 100 samples, each with measurements in
1,000 genes, that form a regularly spaced square-shaped grid in the
PC1-PC2 space, and (2) Circle1, with ,300 samples forming a
similar but circle-shaped grid (see Methods for details of the

simulation). We tested CC on Circle1 for K 5 2–5, using k-means
as the base method. In Figure 2a–d, the upper panels show the group
partition in a single typical k-means run; and the lower panels show
the CC matrix heatmaps for 250 runs with 80% sample-subsampling.
While there is no inherent structure in Circle1, CC can nonetheless
partition the samples into K 5 2–5 subgroups, which are spatially
segregated. Importantly, CC is able to show a high level of apparent
cluster stability, especially at K 5 2–4 (Fig. 2a–c). Moreover, the
stability is further improved for larger K (such as 7 or 8)
(Supplementary Fig. 2), making it tempting to conclude that the
original data contain 7 or 8 clusters. The apparent stability in
Circle1 is potentially caused by the presence of outliers or "corners"
of the sample distribution that arise as a random byproduct of the
simulation procedure. To investigate this, we performed CC on
Square1 for K 5 2–5 and found clear partitions and strong

Figure 2 | Consensus heatmaps show apparent clusters even for samples in unimodal distributions. The top panels show Circle1 sample clusters

with k-means partitioning for K 5 2–5 (in a–d), displayed with PC1 (17.7%) on the x-axis and PC2 (15.1%) on the y-axis. The bottom panels show

consensus heatmaps for K 5 2–5 with 80% sample subsampling and k-means as the base method. The top panels in (e–h) show Square1 sample clusters

with k-means partitioning for K 5 2–5 displayed on PC1 (21.8%) and PC2 (19.1%). The bottom panels show consensus heatmaps for K 5 2–5 with 80%

sample subsampling and k-means as the base method.
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stability, especially for K 5 4 (Fig. 2e–h). Clusters for K 5 2–3 were
not as ‘clean’, suggesting that the four corners of the grid helped to
anchor the K 5 4 partitions and enhance their stability.

Together, these two examples illustrate how CC is capable of dem-
onstrating apparent stability of chance partitioning of null datasets,
suggesting that its exquisite sensitivity could lead to over-interpreta-
tion of cluster strength in a real study. Further, visual evidence from
CC can be misleading, and this is particularly relevant in practice, as
many published studies using CC relied on visualization of the CC
matrix to support cluster claims. To systematically evaluate the sens-
itivity of CC, one needs to compare clustering results for a test dataset
with those from an ensemble of negative datasets, which form a null
distribution.

CC shows stable clusters for null models harboring empirical
gene-gene correlations. One option to generate the null distri-
bution is to populate an ensemble of n-p matrices—for n samples
and p genes—using random values from a univariate uniform or
unimodal distribution15. However, the gene-gene correlation struc-
ture also needs to be considered when constructing null distributions
as it is a key parameter in unsupervised class discovery. The influence
of the gene covariance structure on sample discovery is caused by the
interdependence between the gene-gene and sample-sample corre-
lations. This can be understood in two ways: (1) If the samples fall
into two clusters, the genes that differentiate the two clusters will be
correlated, leading to a corresponding structure in gene-gene corre-

lation. (2) Conversely, if a group of genes are co-regulated, they will
limit the "shape" of sample projections in the p-dimensional space.
For example, if gene-1 (g1) and gene-2 (g2) are strongly correlated,
samples will tend to occupy an elongated ellipsoid in the g1-g2
dimension rather than a sphere, making it easier to identify sample
clusters occupying opposite ends of the ellipsoid.

We created null cluster-less datasets with the same gene-gene
correlation from a real dataset by (1) constructing an n-m score
matrix representing the top m principal component scores for n
samples by randomly sampling a univariate Gaussian distribution,
and (2) multiplying this score matrix with the top m eigenvectors
from TCGA’s data for the first GBM cohort (GBM114) (Methods). By
repeating this procedure we generated 50 null datasets called the
pcNormal datasets. When needing to run one-to-one comparisons
with GBM1, we chose a representative dataset from pcNormal,
Sim25, for which the silhouette width (Methods) is ranked 25th
among the 50.

Although the pcNormal datasets have a known lack of substructure,
CC shows stable clusters with K 5 2, 3, 4. As an example, Sim25
(Fig. 3) showed stable clusters in the K54 heatmap; and these are as
crisp as those for the original GBM1 data (compare Fig. 3b–c with
Fig. 1a–b). K52 and 3 also showed crisp clusters. Although this
comparison does not establish that GBM1 has no valid clusters, it
shows that simulated data with no known local density or outlier
groups are fully capable of producing visually convincing clusters with
the use of CC. In contrast with these observations with CC, other

Figure 3 | CC shows stable clusters in a simulated dataset (Sim25) that carries gene-gene correlation but lacks known clusters. (a) sample-sample

correlation heatmaps, showing weak or inconsistent clustering, (b) 80% gene-subsampling consensus heatmaps, (c) 80% sample-subsampling consensus

heatmaps. Sim25 is chosen as a representative random dataset from the pcNormal null distribution. For each K in 2–5 (show from left to right), the order

of samples on all three heatmaps is the one obtained from average-linkage hierarchical clustering on the gene-subsampling consensus matrix (in b).

www.nature.com/scientificreports
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quantitative measures such as CLEST and average silhouette width did
show that GBM1 had more structural features than the null datasets
(Supplementary Note 2). This underlines the fact that different clus-
tering methods emphasize different features of a given heterogeneous
dataset. Silhouette widths16, for example, are strongly influenced by
the existence of one or more highly compact ‘‘local’’ clusters.

Difficulties in finding the true K. To generate datasets of known K
and known cluster separation, we obtained K clusters in Sim25 using
a k-means run, then incrementally "pulled apart" the samples in each
cluster, in PC space, from the global center of all samples (Methods).
We generated such "positive datasets" for K 5 2–6, and with pull-
apart degree "a" in the range [0, 0.8], where 1 represents pulling the
sample PC scores away from the global mean by the original distance
between the cluster mean and the global mean.

The original implementation of CC involves two measures for
finding K: the cumulative distribution function (CDF) and the pro-
portional change in the area under the CDF curve upon an increase
of K (D(K)) (Methods). In addition to CDF and D(K), we also tested
two other methods for finding K: GAP-PC17 and CLEST15. The
results for the four methods are shown in separate rows in
Figure 4. Within each row, from left to right are results from four
positive datasets: no-pull-apart (a 5 0), 2-way pull-apart at a 5 0.08,
3-way pull-apart at a 5 0.12, and 4-way pull-apart at a 5 0.12,
respectively. These a values were chosen as the smallest values in
the range [0, 0.8] where the CDF plot exhibits a flat middle portion
for the true K value (Fig. 4a).

CDF is able to reveal the correct K, as the CDF curve is flat only for
the true K (Fig. 4a), reflecting a perfectly or near-perfectly stable
partitioning of the samples at the correct K. As expected, the no-
pull-apart dataset does not have such a flat curve because true K 5 1.
In contrast, D(K) curves (Fig. 4b) are alike in that they all exhibit an
"elbow" at K 5 4, i.e., K 5 4 had a smaller improvement than K 5 3;
and that K 5 4 would be called optimal even when the true structure
has K 5 1, 2, or 3.

The GAP method provides an estimate of K by comparing the
change in within-cluster dispersion with that expected under a ref-
erence null distribution. According to the original decision rule of
GAP17 (Methods), all four datasets (Fig. 4c) conclude an optimal K of
3, even when the true K is 1, 2, or 4. The CLEST method is based on
the dk statistic (see15 and also Methods). In Figure 4d, the optimal K
for the first dataset is 1 because the minimum required difference was
not achieved by any K (dk , dmin 5 0.05). For K 5 2, 3, and 4, CLEST
concludes an optimal K of 2, 3, and 5 respectively, as given by the K
with the maximum dk. In total, CLEST was able to make correct
inferences in three out of four cases tested.

We also analyzed two real datasets that have well-separated clus-
ters: a lymphoma dataset by Alizadeh et al.1 and a dataset of twelve
cancer types ("Pan-Cancer")18. The former has been used as a bench-
mark in multiple method comparison studies. It was originally
reported to have an optimal K 5 3 based on 4,026 genes1, and was
corroborated by Smolkin & Ghosh19. However, de Souto et al.20 found
that K could be either 3 or 4 with a subset of 2,093 genes (which we
used in our test). The Multi-K method21 found K 5 3 using the 300
most variable genes. Bertoni & Valentini22 and Lange et al.23 inde-
pendently found K 5 2 by using the 200 most variable genes. Lange et
al. also reported that if K 5 3 is forced, the 3 groups would not
correspond to FL, CLL and DLBCL, but would split DLBCL into
two groups. The correlation and CC heatmaps, shown in
Figure 5a–d, suggest that K 5 2 and K 5 3 are both plausible. The
CDF plot (Fig. 5e) show a flat curve for K 5 2, but an increase of the
area under the curve for K 5 3, resulting in a maximal D(K) at K 5 3
(Fig. 5f). These observations show that even the real datasets with
well separated clusters can have an uncertain true K, making it dif-
ficult to use them as benchmarks for comparing class discovery
methods. A similar situation is seen with the Pan-Cancer dataset

(Supplementary Fig. 4a–d): it contains 12 clinically defined cancer
types, but K 5 16 was found in a previous report18. Our analysis show
that any K above 8 is plausible (Supplementary Fig. 4e–f).

For these reasons, simulated datasets where the data structure is
controlled are more reliable for comparing methods that aim to find
the true K. In our simulated positive datasets, when clusters are
sufficiently separated, the CDF curves exhibit a flat middle segment
only for the true K, and this can be used to infer the optimal K (see
below). In contrast, D(K) is uninformative even in the presence of
genuine structure (Fig. 4b). The original GAP decision criterion also
performs poorly (Fig. 4c). CLEST, on the other hand, may have
similar sensitivity compared with CDF curves (Fig. 4d). In a next
section we will expand our comparison to a wider range of (K, a)
combinations.

Proportion of ambiguous clustering (PAC) and its performance.
In the CDF curve of a consensus matrix, the lower left portion
represents sample pairs rarely clustered together, the upper right
portion represents those almost always clustered together, whereas
the middle portion represents those with occasional co-assignments
in different clustering runs. As shown in Figure 4a, the CDF curves
show a flat middle segment only for the true K, suggesting that very
few sample pairs are ambiguous when K is correctly inferred. To
capture this feature of the CDF curve we propose a new index: the
"proportion of ambiguous clustering" (PAC), defined as the fraction
of sample pairs with consensus index values falling in the
intermediate sub-interval (x1, x2) g [0, 1] (Methods). A low value
of PAC indicates a flat middle segment, allowing inference of the
optimal K by the lowest PAC.

We used the aforementioned positive datasets to compare PAC
with six other methods: D(K), CLEST, GAP-PC with the original
decision rule, GAP-PC with a modified decision rule (explained in
Methods), the silhouette width, and LCE24. While Figure 4 showed
results for four specific combinations of K and a, here we sought
to compare methods across a wider range of (K, a) values. The
results are shown in a new plot, with five panels of stacked bar
plots for each method (Fig. 6). Those for LCE are shown in
Supplementary Figure 5. For each method, the five panels corre-
spond to, from bottom to top, K 5 [2,...,6]. Within each panel,
from left to right are segmented bar plots for increasing a in the
range [0, 0.8]. Within each bar plot, the length of the vertical
segments shows the fraction of inferred K across 50 simulated
positive datasets for the given (K, a) combination (For LCE we
only tested 10 datasets for each parameter combination, see below
and Methods). The segments were color-coded to facilitate direct
visualization of how well the inferred Ks agree with the true K, as
shown on the far right. Such plots allow systematic performance
comparisons for different methods under different (K, a). For a
given (K, a), the same 50 datasets were used in testing the first six
methods.

PAC detects the correct K across most of tested (K, a) pairs
(Fig. 6a). In comparison, D(K) detects the correct K for K5 2 and
3, but calls K 5 3 even when the true K 5 4–6 (Fig. 6b), i.e., it
consistently under-calls when K .3, consistent with Figure 4b. For
CLEST, the inferred K is correct for most datasets with true K52, 3, 6
and with a . 0.2 (Fig. 6c). When the true K is 4 or 5, CLEST has a
tendency to overcall. On the whole, the parameter space of correct
calls in CLEST is smaller than in PAC, but comparable with modified
GAP-PC and LCE.

The original GAP-PC method performs well for K5 2–3, and
improves with larger a, but it severely under-calls for K 5 4–6
(Fig. 6d). In contrast, the modified GAP-PC performs well for K 5

3–6, although it over-calls when true K 5 2 (Fig. 6e). On the whole,
the modified GAP-PC is improved over the original GAP-PC. The
silhouette width severely under-calls in most situations (Fig. 6f).
Lastly, LCE showed variable performance according to the algorithm

www.nature.com/scientificreports
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for creating the ensemble (fixed-k or variable-k), the method to
partition the consensus matrix (average linkage, single linkage, or
complete linkage), and the internal validation index (Davies-Bouldin
and Dunn index). The best of these 12 combinations is FixedK_CTS-
CL_DB (Supplementary Fig. 5): it performed comparably with GAP-
PC and CLEST, but worse than PAC (Fig. 7). In sum, using simulated
data we show that PAC outperforms several commonly used meth-
ods for estimating K.

Gene-gene correlation among most discriminant genes makes it
easy to ‘‘validate’’ any K. After an optimal K is determined for a
dataset, the next task is to validate K. This can be difficult when there
is no external information (e.g., known class labels) with which to
calculate classification error rates. An alternative solution is to
replicate the claim of K clusters in independent datasets. Ideally,
the replication in the second dataset should not "borrow" any
information from the first, discovery dataset. However, a method

Figure 4 | Difficulties in finding the true K. The four columns from left to right are for (1) a randomly generated unimodal dataset, (2) a 2-way

pull-apart dataset with degree of pull-apart a 5 0.08, (3) a 3-way pull-apart dataset with a 5 0.12, and (4) a 4-way pull-apart dataset with a 5 0.12. The

first row (a1–a4): CDF plots from the consensus matrices. CDF curves for K 5 2–6 are shown in black, red, green, blue and cyan, respectively. The second

row (b1–b4): D(K) plots across K 5 2–6. An elbow occurs at K 5 4 in all plots suggesting an optimal K of 4. The third row (c1–c4): GAP plots

across K 5 2–6. In all four plots the optimal K value according to the original interpretation is 3. The fourth row (d1–d4): CLEST plots across K 5 2–6.

The decision criterion involving dk suggest an optimal K of 1, 2, 3, and 5 in these four cases, respectively.

www.nature.com/scientificreports
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Figure 5 | Consensus clustering diagnostic plots on the Alizadeh et al. dataset. The dataset contains 62 samples from three histopathologic classes

(DLBCL, CLL, FL) and 2,093 probes. Shown are heatmaps for sample-sample correlation coefficient matrix (a,c) and CC matrix (b, d) for K 5 2 (a–b) and

K 5 3 (c–d). The consensus heatmap for K 5 2 shows crisp clusters, while at K 5 3 additional structure is seen. The CDF plot shows a flat middle segment

for K 5 2 (e), however the D(K) plot has an elbow at K54 (f).

www.nature.com/scientificreports
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that has become highly popular involves (1) determining the most
discriminant genes from the original dataset for its optimal K-way
clustering, and (2) using these genes to classify samples in an
independent dataset. In a typical implementation2,25, after the best
classifier genes for each of K clusters are chosen from the learning set,
a heatmap of all learning samples with only these genes is
constructed, with the samples and the genes both grouped in K
clusters. Next, another heatmap is made using the same genes for
the replication samples. Observing the same number of discrete gene
and sample clusters in the latter heatmap is considered a validation of
K. We show below that, due to the persistent gene-gene correlation
structure in genomic datasets, this approach can easily ‘‘validate’’ a K
value even for data with no true clusters.

For this analysis, we start from Sim25, the representative dataset
from the pcNormal simulations, using it as the ‘‘discovery’’ dataset
from which the clusters and discriminating genes were to be learned.
Following the procedure in14, we first run k-means on Sim25 with K
5 4 and obtain four clusters for the 202 samples. We then find the
210 most discriminating genes for each cluster based on the t-scores

for each cluster against the three other clusters. The four gene sets are
combined to form a list of 551 unique genes, and are used in both
Sim25 and a series of replication datasets chosen from pcNormal.
The heatmap of Sim25 (Fig. 8a) shows discrete placement of four
gene sets and four sample classes. However, for nine null datasets
from pcNormal, selected to represent the entire spectrum of silhou-
ette width averages, similar clustering signatures are observed in all
nine cases (Fig. 8b). This can be explained by noting that the most
discriminant genes contain many that are strongly correlated with
each other. Such correlations could arise from co-regulation by com-
mon upstream regulators, or from inherent differences in different
cell types, and can easily recur in an independent dataset even when
the clustering pattern is different or absent in the latter. Results in
Figure 8 show that the blocks of genes with co-expression in subsets
of samples could persist even when the independent dataset is simu-
lated from a unimodal distribution, thus apparently validating K.

Comparison with other ensemble-based methods. CC is a method
for class discovery, and must rely on "internal" validation measures

Figure 6 | The ability to identify K is better for PAC than other methods. Identifiability graphs for (a) PAC, (b) D(K), (c) CLEST, (d) GAP-PC

with the original decision rule, (e) GAP-PC with a modified decision rule, and (f) silhouette width. The x-axis shows a, the degree of the pull-apart signal,

i.e., the cluster strength. The y-axis shows K, the true number of clusters. The colors in the bars indicate estimated K values for the corresponding

(K, a) pair. The length of each color in a given bar is proportional to the frequency of inferring a particular K value in the set of 50 simulations.

www.nature.com/scientificreports
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such as the stability of the partition in an ensemble of diverse cluster
solutions (other internal measures include compactness, connected-
ness, separation, etc.8). It belongs to the sub-class of methods known
as stability-based cluster ensembles methods. One way to categorize
these methods is by how the ensemble is generated. 1. Some methods
perform gene-subsampling, essentially generating the ensemble by
repeated clustering runs in feature sub-space9,19,26. 2. Others perform
sample-subsampling, with the hypothesis that samples drawn from
the same source should consistently exhibit the structure of the
source population9,15,27. 3. Others apply a multitude of "base" clu-
stering algorithms (e.g., k-means and hierarchical clustering)28, or,
4. incorporate a diverse set of parameter choices for each method,
such as varying the initial cluster centers or the number of clusters (k)
in k-means clustering21,26,29. 5. Some methods inject random noise in
the original dataset to produce the ensemble of perturbed solutions30.
Here we focus on methods for identifying sample clusters among n
samples using p genes, where p ? n. Those that aim to identify gene
clustering (e.g., Figure-of-Merit31) have a different dimensionality
problem and are not considered here. In typical implementations
CC uses either gene- or sample-subsampling. Its base clustering
algorithm is k-means in this study, yet was chosen as hierarchical
clustering or self-organization maps in other comparisons24,26,27. We
have found (not shown) that hierarchical clustering with average
linkage is unreliable as a base method, because cutting the den-
drogram at level K often assigns outlier samples into small or
singleton clusters. This drawback of HC has been observed in
other studies20,21.

While many cluster ensemble methods were developed after CC
was proposed, and most of them performed well in their original
evaluations, they emphasize different aspects of data structure and
were tested in specific settings. As a result, no method is regarded
universally as "the best". While we do not intend to provide a direct

method comparison in this study, in the following we highlight some
key distinctions of our approach. Many methods do not consider
gene-gene correlations in generating the null datasets21,26,27, therefore
the "data manifold" in the real data are not recapitulated in simu-
lation. In this study we advocate the routine use of gene-gene cor-
relation in simulations. Some methods evaluate performance based
on the ability to identify complex geometric shapes in the sample
distribution such as donuts, spirals, horseshoes, concentric rings21,29.
We do not consider such complex shapes to be highly relevant for
biomedical data. At least one method focused on evaluating cluster-
specific robustness, not finding the optimal K30. Only a fraction of the
methods, such as GAP17, MULTI-K21, and Model Explorer27, con-
sider the global null scenario with K 5 1, with the others only infer-
ring K52 or above. Bertoni & Valentini22 expressed the importance
of K 5 1 but did not formally test it. Our implementation of PAC is
similar to Model Explorer27 and Bertoni & Valentini22 in using the
cumulative distribution pattern of a stability measure across a range
of K to find the optimal K. Our observation in Figure 2 that CC
merely creates partitions of unimodal data has been noted by Ben-
David et al.32, who pointed out that such partitions can be increas-

Figure 7 | Overall summary: PAC outperforms other methods. The

overall accuracy of each tested method is defined as the percentage of

correct K calls averaged over K 5 2–6 and a in [0,0.8]. For LCE only the

best of 12 parameter combinations (shown in Supplementary Figure 5b) is

shown.

Figure 8 | The gene-sample signatures from the learning set (Sim25) are
preserved even when the test sets have no known clusters. (a) The

heatmap of four sample groups (1–4) and four groups of most

discriminant genes (A–D) discovered by k-means clustering of Sim25 with

K 5 4. (b) Heatmaps for nine datasets similarly simulated as Sim25. The x-

axis shows the samples as partitioned into 4 clusters with k-means, and the

y-axis shows the same "most discriminant genes" from Sim25. These nine

null test datasets were able to show the same placement of the gene-sample

blocks as in Sim25.
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ingly stable as sample size increases. Several innovations have
appeared among the new methods. For example, Kim et al. applied
entropy plots to de-emphasize new clusters formed by one or a small
number of samples21. Bertoni & Valentini22 perform sample re-sam-
pling in a "bounded" space around the original data. The method we
tested, LCE24, incorporates a link-based similarity measure.

The results of LCE tested on positive datasets show that it under-
performed PAC (Figure 7, Supplementary Fig. 5). Since it does not
consider the null situation of no clusters (K 5 1), it cannot be eval-
uated on our negative datasets and cannot inform whether the struc-
ture is absent. Its performance on real datasets varies (Supplementary
Table 1). Over the 12 parameter combinations it infers K52, 3, 4, 5, 8
for GBM1, K52, 3, 7 for Alizadeh et al., and K 5 2 or 6 for Pan-
Cancer. Using the best-performing combination, FixedK_CTS-
CL_DB, it finds K 5 4 for GBM1 and K 5 2 for Alizadeh et al., both
reasonable solutions. But it finds K 5 2 for Pan-Cancer, severely
under-calling the true K of 8–16.

Discussion
Our assessment using simulated Circle1 and Square1 has shown that
CC is exquisitely sensitive: declaring structure where there is no
significant separation or local compactness. This led us to system-
ically assess CC’s sensitivity by comparing the real data with suitably
formed null datasets. We also assessed the specificity of finding true
K by comparing different methods across positive datasets of known
K, with known degrees of separation. To limit the scope of our
analysis we had to make some specific assumptions: (1) Samples in
cluster boundaries are assigned to a single cluster; no partial mem-
berships are used, (2) clusters are viewed as disjoint but co-equal,
without being nested in each other, and (3) clusters are simulated
with similar sizes, with no outliers added to represent very small
groups (i.e., uneven divisions). These complicating factors need to
be explored in future studies.

The choice of null distribution depends on the two distinct tasks of
class discovery: first, to determine if there is evidence for clusters;
second, when it is shown that clusters do exist, to determine the
optimal number of clusters. For the first task, a global null should
be constructed to test the "structure vs. no-structure" hypotheses, and
needs to account for the gene-gene correlation in the original dataset as
it affects the shape of the sample distribution in the high-dimensional
space, potentially driving the baseline cluster stability. Here we refrain
from using the terms ‘‘random’’ and ‘‘homogeneous’’ to describe this
type of global null, because the gene-gene correlations can be consid-
ered as a form of innate data structure (i.e., non-random). For the
second task, a set of study-specific null datasets for alternative K’s
should be used, because K cannot be reported as optimal unless the
null hypotheses of K21 and K11 are both rejected22.

In summary, while CC can be a powerful tool for identifying
clusters, it needs to be applied with caution as it is highly sensitive
and prone to over-interpretation. If clusters are not well separated,
CC could lead one to conclude apparent structure when there is
none, or declare cluster stability when it is weak. To reduce false
positives in the exploratory phases of a new study, we recommend
the following: 1) Do not rely solely on the consensus matrix heatmap
to declare the existence of clusters, or to estimate optimal K. 2) Do a
formal test of cluster strength using simulated unimodal data with
the same gene-gene correlation as in the empirical data. 3) Apply the
proportion of ambiguous clustering (PAC) as a simple yet powerful
method to infer optimal K. 4) do not use the most discriminant genes
for K clusters in the test dataset to validate K in a new dataset. Lastly,
we strongly recommend that CC is applied in conjunction with other
cluster ensembles methods.

Methods
Datasets. This study used gene expression data from three cohorts of GBM samples.
GBM1 is the cohort analyzed by the TCGA pilot study13,14. Gene expression data were
downloaded in March 2010 from http://tcga-data.nci.nih.gov/docs/publications/

gbm_exp/. Most of our analyses were based on "unifiedScaledFiltered.txt", which
contains processed data for 1,740 most variable genes for 202 GBM1 samples. A
second cohort was subsequently analyzed by TCGA and was called GBM2 here. Gene
expression data for GBM2 were downloaded in September 2010 from the TCGA Data
Matrix webpage (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). This
dataset contains 175 samples, and we focused on the same 1,740 genes as in GBM1.
The third cohort was the validation dataset used in14 and is a collection of samples
from four previous studies25,33–35. This dataset, called "validation" in this work,
contains 260 samples, and the number of genes in common between GBM1 and
validation is 1,676. This dataset was also downloaded in September 2010 from http://
tcga-data.nci.nih.gov/docs/publications/gbm_exp/.

The Alizadeh et al. dataset was downloaded on June 23, 2014 from http://
bioinformatics.rutgers.edu/Static/Supplements/CompCancer/CDNA/alizadeh-
2000-v3/. It contains gene expression patterns of the three most prevalent adult
lymphoid malignancies: Diffuse large B-cell lymphoma (DLBCL, n549), follicular
lymphoma (FL, n59) and chronic lymphocytic leukemia (CLL, n511). Alizadeh et al.
further identified two molecularly distinct groups of DLBCL, DLBCL1 and DLBCL2
(n521 and 21, respectively). We have adopted the gene filtering scheme in de Souto
et al.20 to obtain 2,093 genes. The parameters used in this filter are shown in http://
bioinformatics.rutgers.edu/Static/Supplements/CompCancer/CDNA/alizadeh-
2000-v3/alizadeh_description.htm/.

The Pan-Cancer dataset (version number 2014-06-03) was downloaded on June
23, 2014 from the UCSC Cancer Genomics Browser https://genome-cancer.ucsc.edu/
proj/site/hgHeatmap/. It contains RNAseq (Illumina HiSeq) gene expression profiles
across 12 TCGA cohorts in the PANCAN12 study. This dataset for 3,468 samples was
originally downloaded on June 23, 2014 from https://www.synapse.org/
#!Synapse:syn1695373 and log transformed by using log2(x11). Genes with both
mean and variance greater than 2.5 were kept in order to select for the highly
expressed and highly variable genes, resulting in 1,338 genes. The filtered data were
centered and scaled across samples to have mean 0 and standard deviation 1. To
reduce computational burden we removed every other sample in the filtered dataset
to arrive at a reduced version with 1,734 samples, which have a similar representation
of each tumor type as in the full version. The number of samples from each tumor type
is: Acute Myeloid Leukemia 173 (89, the number in parenthesis is the reduced
dataset), Bladder Cancer 96 (49), Breast Cancer 822 (396), Colon Cancer 192 (104),
Endometrioid Cancer 333 (166), Glioblastoma Multiforme 167 (82), Head and Neck
Cancer 303 (149), Kidney Clear Cell Carcinoma 470 (244), Lung Adenocarcinoma
355 (172), Lung Squamous Cell Carcinoma 220 (108), Ovarian Cancer 266 (139),
Rectal Cancer 71 (36).

Square1 and Circle1 simulations. We drew two 1000-element random vectors from
Normal(0,1) that served as fixed PC1 and PC2 eigenvectors. Next, for Square1, we
generated 100 pairs of [PC1, PC2] coefficients that would place 100 samples onto a
10-by-10 grid in the PC1-PC2 space. In this formation, samples had regularly
increasing PC1 scores from left to right in the PC1-PC2 plot, and regularly increasing
PC2 scores from bottom to top. The [PC1, PC2] scores were slightly "wiggled" from
the grid points by adding random Normal(0,1) noise. The final 100 3 1000 data
matrix is formed by linear combinations of the two fixed PC eigenvectors with the 100
[PC1, PC2] coefficient pairs. Similarly, for Circle1, we repeated the procedure above
but changed the number of samples from 100 to 400, forming a 20-by-20 grid plus the
same level of random wiggle. We then trimmed the square grid to keep only the
samples with a distance to the center smaller than a radius of ,9.62 grid units, leaving
,300 samples that form a circle. Strictly speaking, both Square1 and Circle1 have
higher gene-gene correlations than a matrix filled with Normal(0,1) data, because all
100 (or 300) objects are derived from the same PC1 and PC2 vectors. However, they
are still cluster-less (or unimodal) in the sense that the sample placements lack local
compactness or separation. Thus they can serve as the null dataset where no cluster is
known to exist, and from which no robust cluster should be found.

Generating null distributions based on empirical gene-gene correlations in
GBM1. In settings naturally encountered in genomic studies, n = p, and gene-gene
correlation information is often reliably represented by the top eigenvectors, i.e., the
top principle component loadings that quantify the contribution of each of the p genes
to the most salient data structure. By using PCA we decomposed the GBM1 data
consisting of 202 samples and 1,740 genes into (1) the 202 3 202 principal
component score matrix and (2) the 202 3 1740 eigenvector matrix. When
simulating null datasets, in order to preserve the same relative magnitude of the PC
scores for different PCs in GBM1, we constructed 202 3 202 random PC score
matrices by populating each column with random draws from a univariate Gaussian
distribution with mean 5 0 and standard deviation equal to that of the corresponding
column in the original GBM1’s score matrix. Multiplying this random score matrix
with the 202 3 1740 eigenvector matrix yields a null 202 3 1740 dataset, in which it is
known that no cluster exists. We repeated this procedure 50 times to generate a null
collection of pcNormal datasets.

The specific steps for this procedure are as follows:

1. Using principal component analysis, we obtain the orthogonal matrix A of
GBM1 eigenvectors.

Y202|202~GBM1202|1740|A1740|202 ð1Þ

Y is the PC score matrix for GBM1. A is the PC vector matrix.
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2. Next, we simulate a random score matrix YN where column i is populated with
random values in a normal distribution with zero mean and standard deviation
equal to that of column i in Y.

YN
:i *N 0,sið Þ ð2Þ

where si is the standard deviation of Y.i and i5{1, …, 202}.
3. Multiplying YN with the transpose of A yields QN, one of the pcNormal

simulations.

QN
202|1740~YN

202|202|AT
202|1740 ð3Þ

4. We repeat steps 2 and 3 50 times to obtain a collection of 50 pcNormal
simulations.

QN
� �j

~ YN
� �j

|AT , j~ 1, . . . ,50f g ð4Þ

Choosing a representative null dataset from pcNormal. A representative dataset,
called Sim25, is chosen from pcNormal as having clustering signals closest to the
median of the 50 datasets, as measured by the average of positive silhouette widths
and the fraction of negative silhouette widths. Let

fN~fraction of negative silhouette widths

aP~average of positive silhouetee widths

Sim25~ arg min
i

d median fNð Þ,median aPð Þ½ �, fNi,aPi½ �ð Þ
ð5Þ

where [fNi, aPi] is the silhouette width statistics for simulation i g {1, …, 50} and d is
the Euclidean distance function in the [fN, aP] space.

Choosing nine pcNormal simulations for validation by most discriminant genes.
The Euclidean distance of the (aP,fN) pair to the median of these quantities in the
pcNormal cohort was computed for each of the 50 simulations and ranked from
lowest to highest. Every 5th dataset was selected among the ranked simulations, such
that the [6, 11, 16, 21, 26, 31, 36, 41, 46] ranked datasets were chosen. This ensures that
nine datasets cover the entire range of clustering strength in pcNormal.

Generating positive datasets for comparing the ability to find true K. To generate a
positive dataset with K clusters, we first ran k-means clustering on Sim25 with the
designated K in the range of 2–6. Next, we computed the centroids of the PC scores for
each of the K clusters, and added a known fraction of the centroid coordinates (i.e. the
pull-apart degree, denoted as a positive scalar, "a") to the original PC scores of each
sample in the corresponding cluster. Next, we multiplied the resulting PC scores from
all clusters by the original principal component vectors of Sim25 so that the pull-apart
datasets preserve the initial gene-gene correlation structure (with the caveat that
increasing a values would gradually increase the gene-gene correlation).

Algorithmically, we execute the following steps for this procedure:

1. Use principal component analysis to obtain the eigenvector matrix A as before.

Y202|202~Sim25202|1740|A1740|202 ð6Þ

2. Use k-means to find K clusters in Sim25, assign each sample si (i 5 1, …, 202)
into one of K classes. The set of samples in class k(k 5 1, …, K) is denoted as Ek

3. For each set Ek, compute the centroid Ck of PC scores YEk

4. For each set Ek and for a given pull-apart degree a, compute pulled-apart score
matrix Yp

Ek

Yp
Ek

~YEkz a|Ckð Þ ð7Þ

5. Multiply Yp with AT to obtain the pulled-apart dataset Xp.

Xp
202|1740~Yp

202|202|AT
202|1740 ð8Þ

Base method for consensus clustering: K-means. Given a set of observations (x1, x2,
…, xn) where each observation is a d-dimensional real vector, k-means clustering
aims to partition the n observations into k sets (k # n), S 5 {S1, S2, …, Sk} so as to
minimize the within-cluster dispersion:

argmin
s

Xk

i~1

X
xj[Si

xj{mi

�� ��2 ð9Þ

where mi is the mean of points in Si
36.

The method starts with k arbitrary cluster centers. Each search step consists of
assigning each observation to its nearest cluster center, and updating the centers of the
clusters according to the observations assigned to each cluster. The procedure is
repeated until the cluster assignment no longer changes.

Five ways to measure clustering signals and determine K. Empirical CDF. For a
given consensus matrix M, the corresponding empirical cumulative distribution
(CDF) is defined over the range [0, 1] as follows:

CDF cð Þ~
P

ivj1 M i,jð Þƒcf g
N N{1ð Þ=2

ð10Þ

where 1{…}denotes the indicator function, M(i, j) denotes entry (i, j) of the consensus
matrix M, N is the number of rows (and columns) of M, and c is the consensus index
value9.

Proportional area change under CDF (D(K)). The changes of CDF as K increases
provide evidence for finding the optimal number of clusters. A CDF curve that closely
describes a three-phase step function is indicative of a higher cluster stability. A
method for using this information is to select the largest K that induces a large enough
increase in the area under the CDF9, which is defined as:

A Kð Þ~
X

xi{xi{1½ �CDF xið Þ ð11Þ

The progression, in turn, can be visualized by plotting the proportion increaseD(K) in
the CDF area as K increases. D(K) is computed as follows:

D kð Þ~
A Kð Þ if K~2

A Kð Þ{A K{1ð Þ½ �
A K{1ð Þ if Kw2

8<
: ð12Þ

The optimal K according to D(K) is the K where the ‘elbow’ occurs in the D(K) vs. K
plot. This is a subjective criterion, and in cases where the elbow occurs at a D(K) value
very close to zero, the optimal K can also be considered to be the K before the elbow
occurs or the K where D(K) reaches its maximum. In Figure 6, we adopted this last
decision rule due to the elbow rule not being amenable to automatization.

Silhouette width. The silhouette widths of a clustering result16 have been applied to
report clustering strength and to find the optimal number of clusters K. For an object i
in the dataset, let A denote the cluster to which it is assigned, and define

a(i) 5 average dissimilarity of i to all other objects of A

For each of the clusters C ? A, calculate

d(i,C) 5 average dissimilarity of i to all objects of C

Then select the smallest of d.

b ið Þ~ min
C=A

d i,Cð Þ ð13Þ

The silhouette width of object i is defined as:

S ið Þ~ b ið Þ{a ið Þð Þ
max a ið Þ,b ið Þf g ð14Þ

It can be seen that S(i) lies between 21 and 11.
In Supplementary Figure 3b we compare GBM1 with the null simulations

according to two summary statistics derived from silhouette widths. One is the
"fraction of samples with negative silhouette widths". A negative silhouette width
indicates that the sample is likely to have been assigned to the wrong cluster. The
second statistic is the "average of positive silhouette widths". Higher values of this
statistic indicate stronger cluster separation.

GAP-statistic. The GAP-statistic provides an estimate for the number of clusters in a
dataset by comparing the within-cluster dispersion Wk with that expected under an
appropriate reference null distribution (Wb

k where b g {1,2, …, B})17. We first
computed Wk for each K $ 2. We have not included K51 to ensure comparability
across all methods tested here; methods such as CDF and silhouette width do not
allow an inference of K51.

For the reference distribution, there are two alternative algorithms: GAP-unif and
GAP-PC. For the former, the null datasets are generated from a uniform distribution
over the range of each observed feature; and for the latter, they are generated from a
uniform distribution over a box aligned with the principal components of the cen-
tered design matrix. The first approach has the advantage of simplicity, but the second
approach can factor in the shape of the data distribution17. We chose the latter as it can
take into account the empirical gene-gene correlation.

We generated B 5 40 reference datasets using GAP-PC. Next, we computed the
within-cluster sum of squares W1

k , � � � ,WB
k for each reference dataset and estimated

the gapk statistic with the formula:

gapk~
1
B

XB

b~1

log Wb
k ~ log Wk ð15Þ

The standard error for this quantity, sk, was then computed as sk~sdk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z 1=Bð Þ

p
where sdk is the uncorrected sample standard deviation of the log Wb

k quantities with
b g {1,2, …, B}.
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The optimal K is the smallest K for which the GAP score is larger than the lower
bound for K11; where the lower bound is defined as the GAP score minus the
standard error for that particular K value:

optimal K 5 smallest K such that gapk $ gapk112sk11
17

Modified GAP-PC:. The original GAP-PC decision rule for the optimal K is to
choose the smallest K where the gapk score is larger than the lower bound for K11.
Our modified, more intuitive decision rule is to declare the K value with the highest
gapk score as the optimal K.

CLEST. CLEST15 is a resampling-based method that randomly partitions the original
dataset into a learning set and a test set. The former is used to build a K-cluster
classifier, which is applied to partition the latter (the test set) in supervised assignment
(such as DLDA37). The test set is also partitioned independently with the same
unsupervised clustering algorithm as applied to the learning set. The concordance
between the supervised and unsupervised partitions is summarized by measures such
as the Fowlkes-Mallows (FM) index, for which a higher value indicates a stronger
agreement of clustering results.

The observed concordance for each K is denoted as tk. Its estimated expected value
under the null hypothesis of K51, namely t0

k , is then subtracted from tk to obtain the
dk statistic. Among the K values that satisfy a pre-specified dmin criterion (here dmin

50.05), the optimal K is the one with maximum dk. If none of the tested K values
satisfy the pre-specified criteria, the optimal K is concluded to be 1.

A new way to infer optimal K using CC: Proportion of Ambiguous Clustering
(PAC). The empirical CDF plot has consensus index values on the x-axis and CDF
values on the y-axis. PAC is defined as the fraction of sample pairs with consensus
index values falling in the intermediate sub-interval (x1, x2) g [0, 1]. x1 and x2 are
data-dependent thresholds, but will generally be chosen near 0 and 1 respectively. In
our implementation, x1 5 0.1 and x2 5 0.9. Since CDF(c) corresponds to the fraction
of sample pairs with consensus index values less than or equal to c as explained in the
‘‘Empirical CDF’’ section above, PAC is given by CDF(x2) - CDF(x1). A low value of
PAC indicates a flat middle segment, allowing inference of the optimal K by the lowest
PAC.

PACk x1,x2ð Þ~CDFk x2ð Þ{CDFk x1ð Þ ð16Þ

optimal K~ arg min
k

PACk ð17Þ

LCE Pseudo-code. LCE was implemented using functions from the LinkCluE
package38.

We set N 5 202 (Number of samples) and K_max 5ceiling(
ffiffiffiffi
N
p

)5 15.
Run 1: Fixed K. Execute step 1–5.

Step 1: Generate cluster ensemble from k-means runs with 10 different random
seeds and fixed K where K5K_max.

Step 2: For ensemble from Step 1, create link-based similarity matrix using CTS
(referred to as WCT in Iam-on et al.24) and decay factor 0.8.

Step 3: Partition the similarity matrix from Step 2 with a consensus function to
assign samples into K_final clusters.

- Consensus function alternatives are average-, single-, and complete-
linkage HC

- Vary K_final in 2:6

Step 4: Evaluate quality of clusters using internal validity measures Davies-
Bouldin (DB) and Dunn index. The DB and Dunn indices were calcu-
lated by comparing the partition from Step-3 and the k-means partition
of the input data.

Step 5: Optimal K is the K_final with the best internal validity measure (highest
Dunn index or lowest Davies-Bouldin index)

Run 2: Random K

- In Step 1, use random K in 2:K_max instead of fixed K. Then, execute
step 2–5 as above.
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