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Abstract

Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural
activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the
order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of
cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and
spiking activity. We used this model to study the information contained in independent components obtained from the
reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with
Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of
two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5
(intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile
and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our
analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At
low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given
typical noise ranges.
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Introduction

Local field potentials, the low-frequency part of the extracellular

potential, are convenient signals to study activity of neural

populations over temporal scales ranging from milliseconds to

months [1,2]. Easy to record, they are difficult to interpret, because

the low frequencies of the potential can carry over long distances from

a source [3–5]. As a result, every electrode picks a signal generated by

a multitude of sources distributed over a substantial region.

In case of multielectrode recordings one may attempt recon-

struction of current sources generating the measured potentials

which helps to pinpoint the activity. Still, the obtained sources are

superpositions of different overlapping populations. To extract

activity of individual populations one can then use different

techniques for signal decomposition, for instance independent

component analysis (ICA [6,7]) on which we shall concentrate in

the present work, and indeed, success of several such approaches

has been reported [8–10].

The challenge that remains is how can we be sure that the

obtained components indeed carry functional meaning? Applying

any algorithm to a dataset is bound to produce some results and

the skill and the expert knowledge of the analyst are called for to

justify their meaning. In particular, for the case of ICA, observe

two issues: considering ICA a faithful model of the activity we

assume the activity to be a sum of products of spatial profiles, ci(x),
and temporal changes, gi(t):

C S D(x,t)~
Xm

i~1

ci(x)gi(t), ð1Þ

which need not be true, at least for the small number of

components we assume here. Secondly, we assume the sources to

be statistically independent, yet we know that in the brain there is

a strong coupling between different neural populations. It is thus

far from obvious if the ICA is a feasible model for tackling the

complexity of neural activity.

An ultimate test of any analytic approach is to analyze data for

which the ground truth is known. The quality of the test with

respect to its subsequent generalization depends on how realistic

were the test data used. In the previous tests of the combinations of

CSD analysis with component decompositions simple sources were

typically used. For example, in [8] as the test data we used linear

combinations of products of spatial sources and temporal profiles

of the form (1). The coefficients gi(t) were functions of time of

different classes: oscillatory functions (white noise low-pass filtered

under 300 Hz), simulated evoked potentials and experimental

evoked potentials. The spatial sources ci(x) where constructed to

resemble local CSD profiles observed in the studied experiment.

While the obtained spatiotemporal activity often resembled

experimental one, note that we imposed the structure of ICA on

the test sources we used. Similar product sources were also used in
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[9]. More involved test data were employed in [11], where

multiple copies of model data generated from activity of a single

cell were used to achieve the level of a population signal.

Restricted nature of the sources used for tests so far has

prompted some concerns regarding the validity of these approach-

es. For example, recently Gratiy et al. [12] wrote ‘‘[…] PCA and
ICA techniques decompose the signal into a sum of components with
no reliance on the underlying biophysical processes and assume
orthogonality or independence, respectively, of the processes to be
isolated — assumptions that are likely to be invalid in the context of
interacting neuronal populations.’’ Thus, if we want to continue

using these approaches, it is of utmost importance to find out to

what extent the results of Independent Component Analysis — or

any other competing method — can be interpreted functionally.

In this work we study the meaning of independent components

obtained from CSD reconstructed with kCSD method [13] from a

set of measured LFP. This is a method of LFP analysis we

proposed in [8], the main modification being an improved method

of source reconstruction (kCSD rather than iCSD). Our goal here

is to use ground truth data generated with a complex network

model of thalamocortical loop [14] to understand the functional

meaning of components obtained from data accessible experi-

mentally.

Methods

Extracellular potential and density of current sources
Extracellular potential in brain tissue is generated by trans-

membrane currents, mainly of the neural cells [1,15]. A point

current source I0~Id(x{x0) generates current density

J~I r̂r=4pr2, where r~x{x0, r~ DrD, and r̂r~r=r. Using Ohm’s

law J~sE~{s+Q in a uniform and homogeneous medium we

see that I0 contributes a potential

Q(x,t)~
1

4ps

I(t)

Dx{x0D
: ð2Þ

Contributions from multiple point sources

C(x,t)~
XN

n~1

In(t)d(x{xn)

add up linearly

Q(x,t)~ 1
4ps

PN
n~1

In(t)
Dx{xn D , ð3Þ

and for a general distribution of current sources C(x) this formula

generalizes to

Q(x,t)~
1

4ps

ð
dx’

C(x’,t)
Dx{x’D

, ð4Þ

A general relation between extracellular potential and the current

sources is given by the Poisson equation

C~{+(s+Q) ð5Þ

which is also valid in more general media with inhomogeneous

and anisotropic conductivity tensor s.

If we know the distribution of the current sources, which is the

case in simulations, we can use Eq. (4) to compute the potential in

extracellular space. We call that forward modeling. In experiments

we usually face the opposite: from the measured potentials we wish

to extract the distribution of sources generating the potential using

the Poisson equation (5). There are different numerical methods to

achieve this, called generally Current Source Density methods. We

call the problem of finding sources from potentials inverse
modeling and we return to this problem in the next sections. For

a more careful discussion of the relation of the extracellular

potentials and current sources see for example [16,17].

A single column thalamocortical network model
To generate test data with realistic level of complexity we

simulated a single-column model of thalamocortical loop based on

Traub et al. (2005) [14]. Original version of the model was

provided in IBM Fortran (ModelDB, accession number 45539).

We based our study on versions in Neuron (ModelDB, accession

number 82894) and neuroML (ModelDB, accession number

127353). This is the largest publicly available model of thalamo-

cortical network. The default version contains 3560 multicompart-

ment cells in 14 populations described in Table 1 and shown in

Fig. 1. As in the original Neuron version every section contains a

single segment.

To model the extracellular potential we need a meaningful

distribution of the cells and individual cell processes in space. To

achieve that we took cell morphologies from the NeuroML version

of the model [18] (Fig. 1 (A)) and distributed the neurons in a

cortical column (Fig. 1 (B)). The somas of these cells were

distributed randomly with a uniform distribution in particular

layers within cylinders of radius 200 mm. The depth of these

cylinders for each layer is given in Table 2.

Calculation of model LFPs
Extracellular potential was computed under the assumption of

homogeneous resistive medium. To calculate extracellular poten-

tial at a point x we used point source formula, Eq. (3), assuming

point sources located in the center of every neural segment

Q(x,t)~
1

4ps

XN

n~1

In(t)

Dx{xnD
, ð6Þ

here N is the number of all neural compartments in the model, In

is the transmembrane current from the n-th current source

positioned at xn, s is the extracellular conductivity. We assumed

s~0:3S=m: To get smoother data, more similar to what we

observe experimentally, we calculated the random position of

every cell 50 times. This led to denser network, less dependent on

the seed. To obtain the LFP we low-pass filtered the computed

potentials Q(r,t) with a Butterworth second-order filter under

500 Hz using MATLAB.

We compared resulting LFP with those obtained using line

source formula [19]:

Q(x,t)~
1

4ps

XN

n~1

In(t)

Dsn

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

n(x)zr2
n(x)

p
{hn(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
n (x){r2

n(x)
p

{ln(x)

�����
�����, ð7Þ

where the additional variables Dsn, rn, hn are the length of the n-th

line source, the radial distance from the source, the longitudinal

distance from the end of the source and ln~Dsnzhn: The

difference between the results was negligible, but the computation
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Figure 1. Structure of the model used. (A) Morphologies of model cells a) nRT, b) TCR, c) layer 6 nontufted pyramidal, d) deep
interneuron, e) layer 5 tufted pyramidal, f) layer 4 spiny stellate, g) layer 2/3 pyramidal, h) superficial interneuron (B) Cortical cells
placed in cortical column, different populations are marked by different gradation of color (blue — excitatory cells, red —
inhibitory cells). (C–G) as (B) but separated into different layers: (C) layer 2/3, (D) layer 4, (E) layer 5, (F) layer 6, (G) layer 5/6.
doi:10.1371/journal.pone.0105071.g001
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took much longer so for all simulations reported here we used the

point source formula.

Simulations
The simulations were ran in the NEURON simulator [20]. We

considered two ways of stimulating the system. The first type of

simulation was to model a response of a cortical barrel column to

whisker deflection. Such input was simulated as injection of

current into thalamocortical relay cells. A typical run consisted of

180 ms of simulation of network activity. During the first 50–

60 ms the network shows transient turn-on behavior and then the

spiking activity settles down. At 70 ms we injected a 3 ms long

square current pulse of amplitude 2 nA into all of the thalamo-

cortical relay cells. Such stimulus causes a few millisecond

activation in thalamocortical relay cells, the activity then

propagates to spiny stellate cells in layer 4, deep basket

interneurons in layers 5–6 and nucleus reticularis in the thalamus.

Then, the activation appears in fast rhythmic bursting cells in layer

2/3 and several milliseconds later in tufted pyramidal intrinsic

bursting and regular spiking cells in layer 5, pyramidal regular

spiking cells and interneurons in layer 2/3. Finally, the stimulus

reaches the rest of the population in the cortex: nontufted

pyramidal regular spiking neurons in layer 6 and the interneurons

in layer 5/6. 50 ms after the onset of the stimulus the network

calms down again (Fig. 2). To compute the LFP for the analysis in

this case we used only the data from 50 to 140 ms.

In the second type of simulations the model was stimulated with

injection of oscillatory current into the thalamic cells. We

simulated 600 ms of network activity. At 100 ms after the onset

of simulation a sinusoidal current with maximal amplitude of 2 nA

was injected into all of the thalamocortical relay cells, which

caused oscillatory response in the cortex (Fig. 3). The frequency of

the input current was 12.5 Hz, 25 Hz, 50 Hz, 100 Hz, or 200 Hz

in different runs.

In all the simulations the gap junctions and ectopic spikes were

disabled in the model [14]. There were several reasons for turning

off gap junctions. First, the Neuron implementation of the Traub’s

model was never tested with gap junctions. Secondly, inclusions of

gap junctions in the model makes the calculation time much larger

(which could be the reason for lack of thorough tests). Thirdly, we

were not able to run the model with gap junctions with variable

time step (needed for precise transmembrane currents estimation)

and in parallel mode (needed to get the results in a reasonable

time) on version 7.1 or older, and in Neuron 7.2, at least on

BlueGene Q. Finally, the place where the gap junctions appear to

influence model dynamics the most is the coupling between

pyramidal cells, which by itself is a controversial hypothesis.

To compute LFP, the sum of all transmembrane currents from

every segment was saved every 0.1 ms.

Datasets
In total, we analyzed six datasets, one obtained through

modeling of the whisker deflection, and five obtained through

simulating injection of oscillatory input current with different

frequencies (see above). Each dataset consisted of twelve matrices

Vif g12
i~1 containing the values of LFP generated by individual

populations of cortical neurons at the assumed positions of the

electrodes, and so their sum

Table 1. Cell types used in the model, numbers of sections in each cell and numbers of cells in each population.

Soma location Population name Number of sections Number of cells

layer 2/3 pyramidal regular spiking (RS) 74 1000

layer 2/3 pyramidal fast rhythmic bursting (FRB) 74 50

layer 2/3 superficial interneurons — basket (bask), axoaxonic
(ax) and low threshold spiking (LTS)

50 3 | 90

layer 4 spiny stellate (ss) 59 240

layer 5 pyramidal tufted intrinsic bursting (IB) 61 800

layer 5 pyramidal tufted regular spiking (RS) 61 200

layer 5/6 deep interneurons — basket (bask), axoaxonic (ax)
and low threshold spiking (LTS)

59 3 | 100

layer 6 pyramidal nontufted RS 59 500

thalamus thalamocortical relay (TCR) 139 100

thalamus nucleus reticularis (nRT) 59 100

total 3560

doi:10.1371/journal.pone.0105071.t001

Table 2. Position of the cortical layers in the model.

Layer Layer depth (mm) Populations

2/3 450–850 pyramidal RS, pyramidal FRB, basket, axoaxonic, LTS

4 850–1150 spiny stellate

5 1150–1650 pyramidal tufted IB, pyramidal tufted RS, deep basket, deep axoaxonic, deep LTS

6 1650–2150 pyramidal nontufted RS, deep basket, deep axoaxonic, deep LTS

doi:10.1371/journal.pone.0105071.t002
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V~
X12

i~1

Vi, ð8Þ

contained the total LFP generated by the whole column, which

would be the only signal accessible in the experimental setting.

The size of all the matrices was ne l|nt, where the number of

electrodes ne l was 26 positioned along a vertical line every 50 mm,

and the number of samples nt was 900 for the whisker deflection

data, or 5000 for the oscillatory data.

The density of the current sources for each cell population,

Cif g12
i~1, was represented by the values estimated from the

potentials using kernel CSD method (see the next section). This

procedure was chosen to reproduce the analysis which would be

applied in genuine experimental context. A relation of this

representation of CSD to the actual transmembrane currents in

the population is discussed later on. The complete simulated

activity was represented by reconstruction from the summary LFP:

C~
X12

i~1

Ci: ð9Þ

The CSD was reconstructed in ncsd~271 points distributed

regularly in space spanning position from z~0 to 2700 mm using

1D kCSD.

Current Source Density reconstruction
Observing the relation between the extracellular potential and

the current sources, Eq. (5), Pitts [21] proposed to estimate CSD

using the finite-difference approximation. If we consider a laminar

multielectrode, where the contacts are uniformly spaced:

zk~z0zkh, inserted in the cortex perpendicularly to the laminae,

and assume uniform potential along the layers, the CSD can be

approximated as follows [22]:

Figure 2. Raster plot of the network activity for the simulation of the response to whisker deflection. Blue dots indicate spikes of
excitatory neurons, red dots indicate spikes of inhibitory cells. For clarity of the picture, only activity of ten cells from a given population is shown
(activity of all cells within populations was similar). The first 50 ms of the simulation containing the turn-on artifact are not shown.
doi:10.1371/journal.pone.0105071.g002
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C(zk)~{
Q(zkzh){2Q(zk)zQ(zk{h)

h2
: ð10Þ

We call this approach Traditional CSD Method. The deficien-

cies and problems of this straightforward approach have been

discussed recently and a number of alternative estimation methods

were proposed [13,23–26].

Here we use Kernel Current Source Density (kCSD) method

[13] which for one-dimensional estimation works as follows. Since

we do not know the values of the sources (potentials) in the

directions we do not measure we assume the sources to be constant

on discs of radius r orthogonal to the line of measurements and

consider a class of CSD distributions of the form

C(x,y,z)~C(z)H(x,y), ð11Þ

where

H(x,y)~
1 x2zy2

ƒr2,

0 otherwise,

(
ð12Þ

for r~1 mm. We also assume here that the conductivity s is

constant, so the medium is isotropic and homogeneous. We

construct the one-dimensional profile C(z) from a basis of

functions ~bbi densely covering the line. These can be step or

Gaussian functions

C(z)~
XM
i~1

ai
~bbi(z), ð13Þ

where M&N, N being the number of electrodes. Substituting Eq.

(11) and (12) into (4) we find the potential profile generated by (13)

to be

Q(z)~
XM
i~1

aibi(z), ð14Þ

Figure 3. Raster plot of the network activity for the simulation of the response to injection of oscillatory current (100 Hz) to the
thalamus. Blue dots indicate spikes of excitatory neurons, red dots indicate spikes of inhibitory cells. For clarity of the picture, only activity of ten
cells from a given population is shown (activity of all cells within populations was similar).
doi:10.1371/journal.pone.0105071.g003
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where

bi(z)~
1

2p

ð
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z{z’)2zr2

q
{Dz{z’D)~bbi(z’)dz’: ð15Þ

Define kernel K and cross-kernel eKK functions as

K(z,z’)~
XM
i~1

bi(z)bi(z’),

~KK(z,z’)~
XM
i~1

bi(z)~bbi(z’):

In the noise free case one can show [13] that among the

multiple functions of the form (14), which satisfy Q(zk)~Vk, the

one that minimizes the norm DDQDD2~
Pm

i~1 Dai D2 is given by

C�(z)~eKKT (z):K{1:V, ð16Þ

where

eKKT (z) : ~ ½eKK(z1,z), . . . ,eKK(zN ,z)�,

K : ~

K(z1,z1) � � � K(z1,zN )

..

.
P

..

.

K(zN ,z1) � � � K(zN ,zN )

2664
3775,

V : ~ ½V1, . . . ,VN �T ,

where zk are the positions of the contacts, and Vk~Q(zk) are the

measured values of the potentials. Finally, to avoid over-fitting to

noisy data one can use ridge regression obtaining the form of

kCSD we use here:

C�(z)~eKKT (z):(KzlI){1:V: ð17Þ

For details see [13].

Independent Component Analysis
Consider multiple simultaneous recordings of linear mixtures of

signals generated by several sources. A common example is

recordings of speech of two people with two microphones. If the

sources are statistically independent one can use independent

component analysis (ICA) to recover the source signals [6,7]. In

our context, extracellular potentials measured (simulated) are

contributed by different cells. While we cannot assume indepen-

dence of cell activity within a population, we show here that even

strongly coupled populations generate signals which are sufficient-

ly independent to warrant a meaningful decomposition. In this

work we apply the ICA to CSD reconstructed from the simulated

potentials (C) and study to what degree the decomposition in Eq.

(9) can be recovered. We have tested temporal, spatial and

spatiotemporal ICA [27].

Principal Component Analysis. The first step of ICA

analysis is dimensionality reduction obtained through Principal

Component Analysis (PCA). PCA projects the data linearly onto a

subspace preserving as much information as possible and getting

rid of assumable noise. Consider the SVD factorization [28,29] of

the C matrix:

C~UDV T~
Xmin(nc s d ,T)

i~1

diUiV
T
i , ð18Þ

where U is of size nc s d|nc s d and its columns are called

eigenimages, D is a diagonal matrix of size nc s d|T , whose

diagonal values di are called singular values and V is of size T|T

and it’s rows are called eigensequences. The idea behind PCA is to

approximate C with a truncation of the (18) keeping only the terms

corresponding to the k (kvmin(nc s d ,k)) largest singular values

d1,:::,dk :

C&eCC~
Xk

i~1

diUiV
T
i ~U1:k,:D1:k,1:kVT

1:k,: ð19Þ

To simplify this, we define:

~C~U1:k,:D1:k,1:kVT
1:k,:~(U1:k,:D

1=2
1:k,1:k)(D

1=2
1:k,1:kVT

1:k,:)~
~UU ~VVT

: ð20Þ

Each element of the sum in (19) is called a principal component.

Choosing the number of principal components k correctly is

important as it also determines the number of independent

components the ICA algorithm will produce.

Spatial ICA. Spatial ICA (sICA) is based on the assumption

that each image in ~UU from Equation (20) is a linear combination of

k spatially independent images:

~UU~S AS, ð21Þ

where S is a (nc s d|k) matrix whose rows are independent image

vectors. If we knew AS we could obtain the independent image

vectors by computing ~UUA{1
S : We choose it by first assuming a

probability distribution for the independent image vectors. Then

we decide on the AS that maximizes the entropy HS (see [6],

Chapter 7.3) of ~UUA{1
S : computed under this probability

distribution. From (20) and (21) we see that k unconstrained dual

time courses can be obtained by computing AS
~VVT .

Spatial ICA can perform well in situations where there exist

spatially organized modules that perform distinct functions and are

generators of independent signals. An example can be the analysis

of fMRI data [30] or of averaged stimulus-evoked potentials,

where the signals are related to specific brain computation

performed by a network with fixed anatomical connections [8].

Temporal ICA. Temporal ICA (tICA) is conceptually dual to

sICA. We assume here that each sequence in ~VV from Equation

(20) is a linear combination of k independent temporal sequences:

The Meaning of Independent Components of CSD
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~VV~T AT , ð22Þ

where T is of size (T|k). Again, we assume some probability

distribution for the temporal sequences (columns of T) and choose

AT that maximizes the entropy HT of ~VVA{1
T : The k uncon-

strained dual images can be obtained by computing ~UUAT
T .

In terms of neural data analysis temporal ICA assumes

independent processes taking place in the brain at the same

moment. It seems to work well with EEG data [31–34]) where one

can consider the resulting signals to be produced by independent

generators performing different actions simultaneously.

Spatiotemporal ICA. Spatiotemporal ICA (stICA) is based

on an assumption about independence both throughout space and

time. Namely it is assumed that eCC can be decomposed

eCC~SLT ’~
Xk

i~1

diSiT
T
i ð23Þ

where S is a nc s d|k matrix of k mutually independent images, T
is an T|k matrix of mutually independent time sequences and L
is a diagonal scaling matrix. It is also assumed that there exist two

mixing matrices As and At such that S~ ~UUAs and T~ ~VVAT :
Since

eCC~SLT ’~eUUA{1
s L(eVVA{1

T )T~eUUA{1
s LA{1

T
eVVT , ð24Þ

it follows that AT~(A{1
S L)T :

We assume probability distributions for the independent image

vectors and temporal sequences separately. As in the previous

cases for given mixing matrices AS and AT the spatial and

temporal entropies HS and HT can be calculated. The principle

behind stICA is to maximize a linear combination of the entropies:

aHtemporalz(1{a)Hspatial , ð25Þ

where a[ 0,1½ � quantifies how much weight we attribute to the

temporal and spatial independence. Thanks to (24) we see that the

maximization can be run over AS and the diagonal matrix L.

stICA seems to to perform well in fMRI data analysis [27] and in

analysis of LFP data from multielectrodes [8].

To analyze the data from the Traub model we applied sICA

and stICA. We used the MATLAB code (STICA software

available at http://jim-stone.staff.shef.ac.uk) by J.V. Stone and J.

Porrill. We imposed conditions of high curtosis of the spatial

independent components, which can be done assuming the

probability density function (pdf) of the form 1{tanh2(x). The

pdf for the temporal signals was assumed of the form exp ({x4) (a

low-curtosis distribution). Those were the same choices as in [8].

Density of current sources computed directly from the
model vs. through kCSD from the LFP

In the present work as the reference representation of ground

truth current sources (Cj in Eq. (28)) we took the CSD

reconstructed from simulated contributions to the LFP coming

from given cell population. One may wonder to what extent the

selected procedure of computing current sources from potentials

rather than directly influences our interpretation of results. We

have previously compared the shape of sources reconstructed from

potentials against the true sources which generated them, in the

case of assumed smooth sources [13,24,26]. In the case of the

Traub’s model we have a sparse distribution of the sources in

space. What is physiologically meaningful is the coarse-grained

density of the current sources in the space. To compare the

different representations of CSD, Fig. 4 shows A) current sources

obtained in a simulation summed within boxes of

[50 mm6100 mm650 mm] in the plane cutting through the axes

of the column on which virtual electrode contacts were positioned;

B) coarse-grained CSD (smoothed with a Gaussian kernel of s
= 80 mm) through the same plane, and C) a reconstruction with

kernel CSD method from LFP computed at a grid of 8614

electrodes from the full simulation data. Vertical distance is given

in mm from cortical surface, horizontal from the center of the

simulated column.

The coarse-grained CSD in Fig. 4 B) was calculated as a

running average of computed currents with Gaussian kernel

Hs(x,y,z):

C(x,y,z)~XN

i

Hs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{xi)

2z(y{yi)
2z(z{zi)

2

q� �
ci(xi,yi,zi),

ð26Þ

where N is the number of all the current sources, ci(xi,yi,zi) is the

current source placed at (xi,yi,zi), and

Hs(r)~
1

s
ffiffiffiffiffiffi
2p
p exp {

r2

2s2

� �
ð27Þ

for s = 80 mm. While some differences between B) and C) are

apparent, overall we can see that CSD reconstructed with kCSD

Figure 4. Different representations of CSD. A) current sources
obtained in a simulation summed within boxes of
[50 mm6100 mm650 mm] in the plane cutting through the axes
of the column on which virtual electrode contacts were
positioned. B) coarse-grained CSD (smoothed with a Gaussian kernel
of s = 80 mm) through the same plane, and C) a reconstruction with
kernel CSD method from LFP computed at a grid of 8614 electrodes
from the full simulation data. Vertical distance is given in mm from
cortical surface, horizontal from the center of the simulated column.
doi:10.1371/journal.pone.0105071.g004
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reflects the coarse-grained sources well, which is how the

reconstructed CSD should be understood.

Results

Recovering activity of individual cell population in noise-
free case

The goal of this work was to study the relation of the

independent components of CSD reconstructed from (simulated)

measured potentials to the activity of specific cell populations. We

first simulated the network, and computed extracellular potentials

as described in the Methods section, which gave us ground truth

data — simulated CSD of individual cell populations — as well as

a set of generated recordings akin to what could be obtained

experimentally.

We then analyzed the simulated potentials as we would the

experimental recordings, that is, we first reconstructed current

sources from them using the kCSD method (see Methods for

details). Fig. 5A shows the total reconstructed CSD through the

center of the column as a function of time for the example data

obtained for 100 Hz oscillatory stimulation of the thalamus (see

Methods for the description of datasets used). Then, we reduced

the dimensionality of the obtained reconstruction C(x,t) using

PCA, and decomposed it using ICA. We considered both spatial

and spatiotemporal ICA as described in the Methods. Since the

results for spatiotemporal ICA decomposition were not better than

for purely spatial ICA decomposition, we describe here only the

results for the latter case. Fig. 5B–F shows a spatiotemporal

representation of five independent components obtained in spatial

ICA decomposition of this dataset. Each plot here shows a product

of the spatial profile fj(x) and the time course gj(t) defining a given

component Ij(x,t)~fj(x)gj(t), where j~1, . . . ,Ncomp, with

Ncomp~5 here.

To understand the meaning of the resulting components we

compared them with the CSD reconstructions representing

individual population activity, Eq. (9): Cif g12
i~1. Fig. 6B–D shows

the reconstructed CSD of the three population giving the largest

contributions to the total activity, Fig. 6A. Those are pyramidal

‘intrinsic bursting’ cells from layer 5 (B), pyramidal ‘regular

spiking’ cells from layer 2/3 (C), and pyramidal ‘regular spiking’

cells from layer 6 (D).

The product nature of the independent components is clearly

visible in Fig. 5 and noticeably different from the activity of

individual populations, Fig. 6. A comparison of these figures

immediately reveals that one cannot expect ICA analysis of such

complex data to recover population activity as single components.

To find out how the independent components relate to individual

populations we considered all possible distributions of the

components into groups. To find out how well a given subset of

ICs describes the activity of a selected population Cj for j~1::12,

we compared all linear combinations
PNcomp

k~1 aj,kIk, where aj,k~0

or 1, and
P

j,k aj,k~Ncomp (each component assigned to only one

population), with the reconstructed activity of every population Cj ,

using correlation as a measure of similarity

similarityj~%
X

k

aj,kIk,Cj

 !
, ð28Þ

where % denotes the Pearson’s correlation coefficient

%(X ,Y )~
S(X{SXT)(Y{SYT)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(X{SXT)2T
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(Y{SYT)2T
q ,

and where SXT:
Ð

dt
Ð

dx X (x,t).

For every studied data set we found that it is possible to recover

reliably activity of two cell populations, pyramidal cells in layer 2/

3 and layer 5, with correlations of 0.92 and 0.88 respectively for

the 100 Hz stimulation (on average, for all datasets: 0.91 and 0.9).

In all cases but one also the activity of pyramidal cells from layer 6

could be obtained (0.70 in the case of 100 Hz stimulus, 0.74 on

average; see Table 3). To get this result we need 2 independent

components (ICs) for pyramidal cells in layers 2/3, either 3 (50 Hz

dataset) or 2 (all other datasets) ICs for pyramidal cells in layer 5,

and 1 IC for pyramidal cells in layer 6 (in cases where this

population could be identified at all).

Figure 7 compares the spatiotemporal profiles of the activity of

the three populations dominating the CSD with the profiles of

summed independent components for the case of data shown in

Figure 6. These results show that applying the proposed method of

analysis (reconstruction of current sources from LFP through

kCSD followed by spatial ICA and grouping the components) to

simulated cortical LFPs allows one to obtain a good approxima-

tion of the activity of the individual cell populations of pyramidal

cells (layer 2/3 and layer 5) with less reliable recovery of the

activity of pyramidal cells from layer 6. The contributions from the

other populations to the CSD and LFP are too weak to be

recovered from recordings, even though their role in setting the

network activity, synchrony, etc. may be important.

The influence of spatial relation on the quality of

reconstruction. In the original model the spatial distributions

of the populations contributing the most to the simulated

recordings, layer 5 and layer 2/3 cells, were quite separated in

space. One may wonder what will happen if we shift the two

populations with respect to each other. While the network

dynamics does not change with such an exercise, the observed

potential and the spatial profiles of the CSD would differ.

Fig. 8 shows quality of reconstruction of the three dominating

populations for data generated by shifting population of layer 2/3

cells downwards in the simulation of whisker deflection. Observe

that the quality of reconstruction for the two main populations

(layer 5 and layer 2/3) remains rather stable although it drops

slightly, more for layer 2/3 cells, as we move them down. At some

point the third population (layer 6 cells) becomes discernible.

It is difficult to understand which features of the data can lead to

possibility of recovering of the third population, in particular the

third population appearing for the shift of 250 mm. To make sure

this result is not an artifact of, say, stochastic aspects of the ICA

algorithm, we repeated this analysis 50 times for every point in this

plot. As we can see, the quality of the reconstruction of the third

population at this point has some variability, as marked by the std

bar, but we could always reconstruct here the three populations.

For all the other points the results are very stable.

The influence of the number of electrodes on

reconstruction. Given that we can reconstruct at most three

populations anyway, one may wonder how many recordings need

to be taken to perform the decomposition. We have repeated our

experiments for the 100 Hz stimulus selecting for analysis subsets

of k~3,5, . . . ,13 simulated recordings from equally distant

electrodes selected so as to span the largest possible extent of the

total considered depth. We repeated the procedures of CSD

reconstruction followed by the ICA decomposition. We compared

thus obtained components with CSD of individual populations

The Meaning of Independent Components of CSD
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represented in the same way, that is by CSD reconstructed from

LFP taken at the same recording points. We found that while the

third population becomes less and less discernible with decreasing

number of electrodes, the two main populations remain remark-

ably stable (Fig. 9).

The influence of noise on reconstruction
All the results so far were obtained in the ideal case with no

measurement noise which does not happen in reality. So the

natural question is how these results need to be modified in the

realistic case with significant noise. It turns out, that the noise in

fact does not degrade the results significantly. Thus, while in the

experiment we may not be able to observe more than 2–3

dominating cell populations, their recovery is rather robust.

Fig. 10A, B show the values of the correlation coefficients between

the three dominating populations and the best selection of

independent components as a function of noise level in the data.

To obtain this figure we simulated white noise with amplitude

scale set as follows: the values of all the potentials for all times were

pooled and standard deviation of their distribution was computed.

This was used to set the amplitude (100%) of the additive noise

added independently on every electrode. As we can see, the

dominating two populations can be recovered even for significant

Figure 5. Independent components of reconstructed CSD. (B)–(E), ICs obtained in the spatial decomposition of the CSD
reconstructed with kCSD method from the simulated potentials, (A). Red — source (positive CSD), blue — sink (negative CSD). This color
code is kept in the whole article
doi:10.1371/journal.pone.0105071.g005
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noise (up to 50%), while the third strongest population cannot be

recovered for noise levels exceeding 15%.

We have also studied the influence of the number of

components k assumed in the ICA algorithm on identification of

population, Figure 10C, D. Note that we need at least five or six

components to be able to recover the third strongest population,

PYR 6 RS.

Note also that correlation levels shown in 10 were obtained with

prior knowledge of the ground-truth signals, which allowed us to

combine the right components together; for that reason they

should be interpreted as upper-bounds of reconstruction quality.

The question of how to deal with this issue in case of experimental

data is discussed in the final section.

Relation of the independent components of the total
activity to the principal components of individual
populations activity

One puzzle still remaining is what is the relation of the

independent components obtained above, Ij , to the individual cell

Figure 6. CSD of individual populations. Current source density of the whole network A), and contributions from individual cell populations B),
C) D).
doi:10.1371/journal.pone.0105071.g006

Table 3. Correlation between independent components obtained through our procedure with activity of specific cell populations
for different example simulations.

Dataset PYR 2/3 RS PYR 5 IB PYR 6 RS

whisker deflection 0.95 0.91 -

12,5 Hz 0.95 0.9 0.68

25 Hz 0.88 0.93 0.79

50 Hz 0.83 0.91 0.76

100 Hz 0.92 0.88 0.70

200 Hz 0.94 0.9 0.76

doi:10.1371/journal.pone.0105071.t003

The Meaning of Independent Components of CSD

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105071



populations activities, Ck. To understand this relation better we

performed PCA decomposing Ck. We found that the indepen-

dent components of the total CSD signal reflect well the

principal components of individual cell populations. Figure 11

shows an example comparison of the strongly non-product

activity of the population of pyramidal cells from layer 2/3 with

the sum of two independent components, and compares the

respective ICs with the principal components of this population

activity.

Discussion

By combining modeling of extracellular potentials in a large-

scale model of thalamocortical loop with data analysis employing

kCSD and ICA we showed that:

N Spatiotemporal activity of model populations may not have

simple product structure, hence it may not be possible to

represent activity of a population with just one product

component of the kind typically assumed in ICA or other

decomposition methods (Fig. 7).

Figure 7. Recovering activity of population from independent components. Comparison of the spatiotemporal profiles of the activity of the
three populations dominating the CSD with the profiles of summed independent components for the case of Figure 6. Note that the color scale on
the figures has been set the same for every row and is selected to emphasize each activity.
doi:10.1371/journal.pone.0105071.g007
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N Independent components recovered using ICA correspond to

principal components of the true activity of individual

populations, rather than to the full activity (Fig. 11).

N LFP activity of a cortical column is dominated by the

contribution from pyramidal cells (Fig. 6).

N The combination of kCSD and ICA allows to recover activity

of two strong populations of pyramidal cells (PYR 5 IB, PYR

2/3 RS) and, in most cases, one weaker (PYR 6 RS)

population (Fig. 8).

N These results are robust against relative spatial positions of

these populations, against noise and are preserved for small

numbers of electrodes and components (Fig. 9, 10).

Our results lead us to conjecture that the proposed method of

analysis: reconstruction of current sources from recorded LFP

followed by spatial ICA and grouping the components, allows one

to obtain a good approximation of the activity of individual cell

populations contributing to the extracellular potential. In the

cortex, these will typically be large populations of pyramidal cells,

however, depending on the size of the population and their

synchrony, as well as the composition of the network in the studied

region of the brain (e.g. thalamus), cells with more closed fields,

such as stellate cells, for example, may also have sizable

contributions [4,5], which could in turn be recovered from data

[8].

The obtained results carry both good and bad news. The bad

news are that even with substantial number of electrodes one

cannot recover more than three populations out of twelve. On the

other hand, the good news is that top two populations are very

robust and even with substantial amount of uncorrelated noise on

top of the measurements, for just a few electrodes, one can reliably

recover their activity with kCSD-ICA. The robustness of these

signals, of course, lies at the heart of the utility of extracellular

electrophysiology of slow potentials. What we show here goes

beyond traditional approaches as we can identify activity of

individual cell populations, and as such give functional meaning to

the results of previous analyses [8].

One aspect of the proposed scheme for identification of

activities of individual cell populations is finding the ICs which

need to be combined. We have tried a number of data-based

schemes, including correlating different spatial and temporal

components, and we have not been able to find one which we

could recommend as completely general working in every

situation. This can be easily understood: Since, as we show, ICs

describing a given population are principal components of this

population activity, which are by definition orthogonal, their

correlation should be zero. Moreover, if we have coupled

populations, they would typically drive one another with similar

frequency content in both, thus degrading the usefulness of

frequency based schemes. Even after smoothing spatial profiles

and demanding substantial overlap between two spatial IC profiles

we see that the components corresponding to different but spatially

overlapping populations would typically overlap too.

This conundrum is difficult to solve using insights coming purely

from data. In our view, there are two solutions to recommend in

analysis of experimental data, where the ground truth is

unavailable: 1) judging by the prior anatomical and physiological

knowledge of the studied system one must postulate the possible

position and number of relevant cell populations and then try to

match the obtained components until plausibility is obtained; 2)

use the insights from analysis of model data, coming from models

of the studied system, to judge what are the possible shapes of

components to expect. We believe that even with crude models of

the system this scheme might be efficient. For example, our

expectation for the analysis of experimental cortical data from

different areas would be to run such analysis for at least 10

contacts, using at least 5 ICA components in spatial ICA, and then

match them according to the position of the spatial part.

We do not exclude the possibility that there might be a viable

data-based solution for identification of the components to match,

however, we have not been able to identify one.

In a way, our previous study [8], from the perspective of ICA

validity was performed on simpler data, in the sense that in the

thalamus the coupling between individual cells is indirect (driven

by the sensory inputs and cortical feedback). We believe that the

strongly coupled network modeled here provided much more

realistic model of the experimental cortical LFP and as such

provides a much stronger validation of the proposed analytic

approach than the previous studies.

Figure 8. Quality of reconstruction of the three dominating
populations for data generated by shifting population of layer
2/3 cells downwards. Observe that the quality of reconstruction for
the two main populations remains rather stable while the reconstruc-
tion of the third population becomes discernible only for some
locations. Data from the simulation of whisker deflection. Results of 50
repetitions of ICA algorithm, error bars denote standard deviation.
doi:10.1371/journal.pone.0105071.g008

Figure 9. Quality of reconstruction of individual cell popula-
tions from decreasing number of electrodes. Quality was judged
against equivalent representation of individual cell populations.
doi:10.1371/journal.pone.0105071.g009
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Since the two elementary operations used here (CSD, ICA)

formally do not commute, one may wonder if their order matters

in practice. In their studies, Makarov, Herreras, et al. [9,11] report

positive results for the approach when they first decompose the

signals and then reconstruct the sources. While the results may also

depend on the data being analyzed, our experience when we tried

both approaches [8] is that recovering sources before doing

decomposition is generally a more beneficial strategy. Conceptu-

ally, CSD is sharpening the picture of neural activity restricting the

extent of individual sources. As such it seems to us a good

preprocessing step for further decomposition.

In analysis of experimental data one has to take into account the

presence of inherent noise. The kernel CSD method we use here

[13] is to our knowledge the only technique for CSD estimation

from incomplete array of electrodes that avoids overfitting to noise

which is why we also use and recommend it. Another aspect,

possibly degrading the quality of the results obtained experimen-

tally, is that in real brain any column is surrounded by neighbors

contributing to the measured potential. This is where the CSD

analysis is helpful, as it recovers the local sources from the nonlocal

potentials.

In this work we studied the performance of ICA in extracting

activity of individual cell populations but there are other methods

of decomposition. Di and Barth [35] used principal component

analysis to indicate the dominating contributions of the supra- and

infragranular pyramidal cells to the recorded LFP in the barrel

cortex. While the PCA gives useful results, we believe ICA is a

more powerful method and may provide richer output.

Another technique introduced recently is Laminar Population

Analysis [10]. The approach here is different than in PCA and

ICA, namely one assumes a specific set of populations and

considers their connectivity matrix. Then, using the data on the

pooled inputs (CSD) and outputs (multi-unit activity, MUA) of the

populations one fits the coefficients in the modeled equations to

obtain information on the relevant populations. While this method

may potentially provide deeper results it also requires more data

(MUA as well as LFP). Also, it has not been validated with

similarly complex data for which ground truth is known. A

comparison of the method presented here with LPA studied for the

same model data is planned for the future.

In this paper the LFP is computed from the currents using

assumptions of uniform and homogeneous medium. While the

brain tissue is inhomogeneous and anisotropic, recent results for

microscale inhomogeneity [36] do not indicate the need for

modifications of Eq. (4) at the relevant spatial and temporal scales.

Also, the cortical anisotropy studied for example in the rat [37]

seems meaningless to include in the modeling, since the variability

in the measured values of conductivity tensor across specimen is

Figure 10. Recovering activity of populations for different noise levels. Simulations with A) 13 electrodes, B) 26 electrodes; and for varying
numbers of components assumed in ICA: simulations with C) 13 electrodes, D) 26 electrodes. X-axis: A), B), noise level, see text for details, C), D),
number of components; y-axis: correlation of the recovered population activity with the original population activity for optimal choice of
components. The value of 0 denotes cases where the activity of the original population correlated better with a constant, zero-valued signal, than
with any combination of components.
doi:10.1371/journal.pone.0105071.g010
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comparable with observed anisotropy. While the specific contri-

butions from different biophysical mechanisms to different aspects

of LFP are highly debated today [1,38,39], we believe that the

approach we use is still adequate, indeed, the most appropriate for

estimation of extracellular potential in simulations [2].
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