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Abstract

Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium
Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction
of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of
transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune
response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another
possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to
MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia
or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve
strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an
intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed
value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.
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Introduction

Tuberculosis (TB) is an infectious disease caused by the

bacterium Mycobacterium tuberculosis (MTB). MTB has been

infecting humans for a long time, at least millenia and likely even

longer [1]. As such, MTB had to evolve evolutionary strategies

that allowed it to persist in small groups of human hosts. An

interesting question is if one can see signatures of this potential

evolutionary adaptation to small groups of human hosts in MTB’s

‘‘life history’’ today.

Upon infection with MTB, most hosts enter a latent state. Those

hosts do not show signs of disease but do harbor MTB, which can

activate and lead to disease at any future time [2–4]. It might take

a long time before activation occurs, and the majority of TB

infected hosts die from other causes besides TB without ever

developing disease [5]. Hosts latently infected with MTB cannot

infect others. Therefore, at first glance, latency does not seem to be

beneficial for MTB. One possible explanation for the long latency

and the fact that activation to disease only occurs in a fraction of

hosts is based on the human immune response [6–8]. It is known

that a competent immune response is needed to contain infection

and avoid disease, as dramatically illustrated in HIV infected hosts

with weakened immune responses, who activate at much higher

rates [9–11]. This suggests that the co-evolutionary arms race

between MTB and its human hosts has lead to a host immune

response that can successfully contain MTB in a state of

suboptimal fitness [12,13]. The fact that there seems to be local

adaptation on both the pathogen and host side lends support to

this idea [13–17].

Although host immune pressure is a plausible explanation for

reduced activation rates, there are also arguments against this idea.

Pathogens like MTB replicate rapidly (compared to their human

hosts) and often reach large population sizes; both features are

known to foster rapid evolution, especially under strong selective

pressure [18,19]. This is at vivid display in the evolution of drug

resistance for MTB and many other pathogens [20,21]. Therefore,

one could argue that if long latency and low activation rates were

evolutionary strongly suboptimal for MTB, evolution would have

led to higher rates of activation. Instead, as has been suggested

previously [22,23], long latency and low activation rates might be

strategies that are evolutionary beneficial to MTB by increasing its

fitness.

There is no single way to quantify the fitness of an organism.

For infectious diseases, an often used measure of fitness is

transmissibility, usually defined by the reproductive number, R0

[24,25]. It can be shown that in direct competition of two strains

(under equilibrium conditions), the strain with the higher R0

outcompetes the one with the lower R0 [25]. However, in the

absence of direct competition, strains with lower R0 might

sometimes be more advantaged as they can better avoid local

extinction and therefore win through indirect competition against

strains with higher transmissibility [26–29]. Therefore, an

alternative way to capture fitness of pathogens is by quantifying

their ability to persist in a host population.

The impact of transmissibility and persistence on overall fitness

has been an active area of research [30–34]. The importance of

different measures of fitness such as these depends on the situation.
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Since MTB is an ancient organism that has infected humans for

millenia [12,35–38], it had to evolve strategies that allowed it to

persist in relatively small, spatially structured host populations.

Under such circumstances, fitness benefits due to non-extinction

might have had an important impact on overall evolutionary

dynamics [28,39,40].

It has been previously proposed that a prolonged latency might

have been one persistence strategy [23,41]. Here, we use a

mathematical model to explore this idea. We introduce a measure

of persistence of MTB in a population and investigate how well

MTB can persist as a function of the latent period. We find that

TB persistence is optimal for an intermediate duration of latency

and level of activation. We also find that the optimal level of

activation is above the observed value, suggesting that host

immunity plays some role in keeping MTB below its optimal level

of fitness.

Methods

Mathematical model description
We use a compartmental mathematical model formulated as a

set of ordinary differential equations to describe the population-

level infection dynamics of TB. The model is shown schematically

in figure 1. Our model is similar to other recently studied TB

models [42,43]. We consider 3 types of hosts (compartments) in

our model: susceptible hosts, S, latently infected hosts, L, that

harbor MTB but are not infectious and show no signs of disease,

and infectious hosts with active disease, I. We keep the model

simple and do not distinguish between features such as age-related

differences (e.g. children versus adults). Such additional details

could be included in further more detailed models. The total

population size is N = S+L+I. New hosts enter the system at a

maximum rate l per person, this rate saturates once the

population reaches some maximum level, Nm. All hosts die due

to causes other than TB after an average lifespan of 1/mn years.

Uninfected hosts can become infected through contact with an

infectious host at rate b. The infection process is modeled in a

density dependent manner [43,44]. After infection, a small

fraction f of hosts rapidly develop disease (fast progression)

[11,45,46] and move into the active disease compartment, I. The

majority of hosts enter the latent state, L (slow progression).

Latently infected hosts can convert to infectious, diseased hosts

later in their life at rate a (activation) or through reinfection, with

the chance of disease due to reinfection reduced by a factor k [47–

49]. Infectious, diseased hosts either die due to disease after on

average 1/md years, or regress and return to the latent stage at rate

w. Following previous models, we assume that recovered

individuals do not fully clear the infection but instead return to

the latent stage [43,50–52]. Table 1 summarizes the model

variables and parameters and provides references for the

parameter values used for most of our analysis. The model

equations are

dS

dt
~lN(1{

N

Nm

){bIS{mnS ð1Þ

Figure 1. Flow diagram for the TB transmission model. Susceptible hosts (S) are born at rate l with birth rate saturating at high population
density, Nm. Hosts in each compartment die at a background mortality rate mn. Infection of susceptibles occurs at rate b upon contact with TB
infectious hosts (I). After TB infection, a fraction f of hosts develop active TB in a short time (fast progression), the remainder enter the latent stage.
Latent hosts (L) can activate and develop TB disease sometime later at rate a (slow progression). Latent hosts can also develop active TB after re-
infection with TB, with probability of this occurring compared to fast progression of susceptibles reduced by a factor k. Infectious, diseased hosts (I)
might regress to the latent stage at rate w. Hosts with active disease die due to diseased induced mortality at rate md.
doi:10.1371/journal.pone.0105721.g001
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dL

dt
~(1{f )bISzwI{aL{kfbIL{mnL ð2Þ

dI

dt
~fbISzaLzkfbIL{wI{(mnzmd )I ð3Þ

We implemented all model simulations in R [53]. The code to

reproduce the simulations described here is available from the

author’s webpage at http://handelgroup.uga.edu/resources.htm.

Results

Persistence of MTB as a function of latency
Our main outcome of interest is the potential of MTB to persist

in a host population and how persistence potential depends on the

duration of the latent period and fraction of latent TB hosts that

activate. While pathogens that have an environmental stage as an

important component of their transmission cycle can persist even

in the absence of any infected hosts [54–58], for pathogens where

direct transmission is the main important component, persistence

(non-extinction) requires the continued presence of infected hosts.

For MTB, extinction occurs if no more latently infected hosts, L,

and infectious, diseased hosts, I, are present. Persistence is more

likely (i.e. extinction is less likely) as the number of infected hosts in

the population increases [59–61]. Since for MTB, only a fraction

of latently infected hosts will become infectious and contribute to

transmission, a better measure of persistence is given by the

quantity P, defined as P~IzaL, where I and L are the number

of infectious and latently infected hosts, and a represents the

fraction of latently infected hosts that will develop TB disease,

become infectious and are able to transmit. For our model, a is

given by the ratio of the rate of latently infected hosts that move on

to develop active TB, azkfbI , divided by the total rate at which

latently infected hosts leave the latent stage, a+kfbI+mn, i.e.

a~(azkfbI)=(azkfbIzmn).

Persistence as defined by P, especially at the steady state,

provides a useful measure for the ability of MTB to not go extinct

in the population (see our comparison with a stochastic model

below). We run simulations of our model for different values of the

activation rate, a, and record I and L at steady state and use this to

compute P as function of a. Figure 2A shows that optimal

persistence is achieved at intermediate rates of activation.

Figure 2B shows individually the three components that make

up P. The number of infectious hosts at steady state, as well as the

fraction of hosts activating, a, increase with increasing activation

rate. The number of latent hosts first increases and then decreases

with larger activation rate. The combination of these three

quantities leads to a maximum for persistence P at intermediate

values.

Optimal persistence at an intermediate rate of activation also

implies that instead of having every latent host activate and

become infectious, it is beneficial for the pathogen to let some

infections ‘‘go to waste’’ by way of latent hosts dying before they

become infectious. This helps with overall persistence and is worth

the ‘‘loss’’ of a fraction of latent hosts due to natural death before

they activate and are able to transmit. Figure 2C shows persistence

as a function of the fraction of hosts that activate, a. The figure

also illustrates another interesting point: The optimal fraction of

hosts that activate is slightly above 50% given the chosen model

parameters. This is higher than the <10–20% observed [62,63],

suggesting that MTB is not able to achieve the activation rate that

would optimize its persistence. This might be attributable to the

host immune response playing a role at reducing activation.

The impact of parameter value uncertainty on optimal
persistence and activation

To investigate how sensitive results reported in the previous

section are to changes in parameter values, we performed an

uncertainty analysis and sampled the model parameters using

Latin Hypercube Sampling [64–67]. For each parameter, we

considered uniform distributions ranging between 0.5 and 2 times

the base parameter value shown in table 1. For each parameter

sample we computed the values P0, a0 and a0, i.e. the optimal level

of persistence and the activation rate and fraction at which the

Table 1. Initial conditions and parameter values.

Symbol Interpretation Value Source and Comments

Nm maximum population size 1 population size normalized to 1

S0 initial susceptible hosts 0.6 calculated as (1{mn=l)Nm , to obtain steady population size in the
absence of TB

L0 initial latent hosts 0 arbitrary choice

I0 initial infectious, diseased hosts S0/1000 one infected per 1,000 hosts

l maximum birth rate 0.05 per year 50 births per 1,000 hosts, representing a high birth rate scenario

mn natural mortality rate 0.02 per year assuming a life-span of 50 years for healthy hosts

md disease-induced mortality rate 0.33 per year assuming 3 years life-span for untreated diseased hosts [81]

b rate of transmission 10 per year [82–84]

w rate of regression 0.25 per year return from active TB stage to latency [81]

f fraction of TB infections that lead to disease via fast
progression

0.1 [11,46,50,84]

k reduction of fast progression rate upon reinfection
of latent hosts

0.5 [45,46,49]

a rate of TB activation in latent hosts varied

Initial conditions of model variables and values of model parameters. These values are chosen for all simulations unless indicated otherwise.
doi:10.1371/journal.pone.0105721.t001
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optimum occurs. Figure 3 shows the distribution of those values.

Of most interest, for almost all parameter samples the fraction of

hosts that activate remains well above the 10% found for MTB in

the field.

In text S1, we show further results by exploring how changes in

each model parameter individually affect optimal persistence and

activation. As expected, increased population size (though

increased carrying capacity parameter or increased birth rate)

leads to improved persistence, while decreased population size

(through higher death rates) reduces persistence. Other model

parameters have less impact on changes in persistence. The

optimal fraction of activators as any of these parameters are

changed individually is between 40%–70%, again above the value

observed experimentally.

We also explore in text S1 how changes in the model structure,

specifically the assumption of exponentially distributed natural

lifespans, affect our results. We find that it shifts the persistence

curve shown in figure 2 slightly, without affecting the overall

results and still giving an optimal fraction of activators around

50%.

The deterministic persistence measure is well
reproduced with a stochastic model

Our persistence measure, P, is derived from a deterministic

model. Of course, non-persistence, i.e. extinction, is an inherently

stochastic process. While it is generally well known that larger

population sizes lead to less chance of extinction [59–61], it is

useful to directly test our deterministic measure with a stochastic

model. To that end, we implemented the differential equations as

a compartmental stochastic model, with transition rates of the

deterministic model becoming transition probabilities [25,68]. We

simulated the stochastic model using an efficient form of the

Gillespie algorithm (the adaptive-t leap method as implemented in

the R package adaptivetau [69,70]). Starting at the deterministic

equilibrium state, we simulated the stochastic model for a fixed

number of years and record the fraction of simulations for which

at least one infectious or latent individual was still present at the

end of the simulation. For the stochastic model, there is no

discounting of the latent hosts by a factor a. Instead, persistence or

extinction is a binary event, with extinction defined as no more

latent or diseased infected hosts present and persistence if at least

one of these hosts was still present. Figure 4 shows that despite this

difference between P and the stochastic simulation, the fraction of

simulations for which persistence was found in the stochastic

model has a very similar functional shape as our deterministic

persistence measure, P, with the optimum, P0, occurring at more

or less the same rate of activation.

In Text S1, we use the stochastic model to investigate how

population growth or decline influence P. We find that persistence

improves in the presence of a growing population and worsens if

the population declines. The shape of the persistence curve does

not change in any important way.

Persistence during epidemic cycles
We have so far focused on MTB persistence at the endemic

state. Equally important for pathogens is the ability to persist after

Figure 2. Persistence as function of activation. A) Persistence, P, as a function of activation rate. B) Latent and infectious hosts, L̂L and ÎI , and the
fraction of activation, a, as a function of activation rate. The left axis applies to L and I, the right axis to a. C) Persistence as function of fraction of hosts
that activate. Also indicated in the figures is the optimal level of persistence, P0, and the values for activation rate and fraction of activators at which
this optimum occurs, a0 and a0 . All parameters are as given in table 1.
doi:10.1371/journal.pone.0105721.g002

Figure 3. Uncertainty analysis of model results. Impact of model parameter variations on A) optimal persistence, P0, B) optimal rate of
activation, a0, and C) optimal fraction of activation, a0. Model parameters were sampled in a range of 0.5–2 times the base parameters listed in
table 1. Sampling was done using a latin hypercube approach with 1000 samples. Samples for which parameter combinations lead to a biologically
unreasonable scenario, specifically natural mortality rate above birth rate, were discarded. For each sample, persistence as function of activation rate
and activation fraction was determined (as shown in figure 2) and from this the optimal values for persistence and activation were obtained.
doi:10.1371/journal.pone.0105721.g003
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introduction to a newly susceptible population. During TB’s

evolutionary history, it likely got introduced and re-introduced

repeatedly into small susceptible subpopulations (e.g. new tribes/

villages). In the evolutionary context, persistence upon introduc-

tion into a fully susceptible population might therefore have played

an important role. Nowadays, many areas of the world where TB

is very rare consist of largely susceptible individuals – though for

those groups the persistence idea explored here is likely not too

important. Upon entering a fully susceptible population, patho-

gens usually cause an epidemic outbreak, depleting the number of

susceptibles. The outbreak is often followed by a fade-out of the

disease once most susceptibles have been depleted. Extinction

often occurs during this fade-out. For the pathogen to not go

extinct, it needs to persist long enough until the number of

susceptibles has built up again, usually leading to consecutive

smaller outbreaks until the endemic state is reached [71,72]. We

can quantify persistence during epidemic cycles by evaluating our

expression for persistence not at the steady state but instead at the

overall minimum occurring between introduction of the disease in

a susceptible population and eventual attainment of the endemic

equilibrium, i.e. we determine the overall minimum

Pm~ mint½P(t)�. Figure 5 shows the distribution of optimal

persistence, optimal activation rate and optimal fraction of

activating hosts for Pm, using the same parameter sampling

Figure 4. Comparison of persistence with results from a stochastic model. The solid line shows persistence, P, as determined from the
deterministic model, symbols show result from a stochastic model. For the stochastic simulation, we started at the deterministic steady state,
simulated the model 10,000 times for 1000 years each and counted the numbers of simulations for which at least one latent or infectious host was
still present after 1000 years. A population of size 100 was used, all parameter values are as reported in table 1. Note that because the absolute
magnitude of P is arbitrary and scales with population size, Nm, to allow comparison with the stochastic model we rescaled P to be between 0 and 1.
doi:10.1371/journal.pone.0105721.g004
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approach as for figure 3. Comparing the results with those found

earlier for P at the steady state (figure 3), one sees that the results

are very similar. The main reason for the similarity is that TB has

a relatively ‘‘slow’’ disease dynamics [73], without pronounced

outbreak peaks and minima. Therefore, for most parameter

values, the disease reaches the steady state without a large

contraction after the first outbreak, leading to essentially the same

results as for the steady state.

Again, as for P above, we show additional results for Pm as

function of individual parameters in Text S1. The results are

almost identical to those obtained for P, for the reason just

explained.

Discussion

Recent in-depth studies of MTB genetic sequences have shown

a wide diversity between strains [17]. While harder to determine,

there is also accumulating evidence that this genetic diversity

results in phenotypic diversity [17,74], suggesting that MTB

evolution is shaped by local selection pressures. A recent study

indicates that disease activation rate differs between lineages,

suggesting that this phenotype is under evolutionary selection [75].

We used a mathematical model to investigate the role of activation

rate and latency duration on the ability of MTB to persist in a host

population. Our results support the previously proposed idea that

the prolonged latency observed for TB infections might provide

MTB an evolutionary advantage, namely improved persistence in

a host population [23,41]. We found that an intermediate rate of

disease activation is optimal for persistence.

Interestingly, our model suggests that for optimal persistence,

the fraction of hosts that eventually become cases is in the 20%–

80% range with approximately 50% as the most likely value. This

range is higher than the <10% generally seen for TB, suggesting

that the host immune response plays some role in keeping TB

disease in check, lowering activation rate below what would be the

evolutionary optimal level for the pathogen. It is likely that some

level of co-evolution between pathogen and host occurred and that

humans who have been exposed to MTB for a long time evolved

some level of resistance that potentially prevents MTB from

reaching its evolutionary optimal activation rate [12]. This also

agrees with the observation that upon contact with novel MTB

strains, some populations have been shown to experience much

higher rates of disease than the usually observed 10% [76]. It is

further interesting to note that the optimal rate of activation we

find in our study is similar to values reported for HIV positive TB

patients [77–79]. While the simplicity of our model is a caveat in

interpreting this agreement too quantitatively, we believe our

results provide another suggestive indication that the host immune

response is responsible for keeping MTB activation rates below a

value that would be optimal for MTB, and once the immune

protection fails, as in HIV infected hosts, MTB activates at rates

close to its optimum value.

In summary, our results suggest that an intermediate level of

activation from latency to disease is optimal for MTB persistence,

that the optimal level depends on the detailed pathogen, host and

environment characteristics, and that it tends to be higher than the

observed value, suggesting an important role for the immune

response to keep MTB in check. While increasing activation rates

beyond the optimum to reduce MTB persistence is not a suitable

goal from a public health perspective, a reduction in activation

rate is much more promising. This would lower the number of

hosts with disease, and thereby reduce incidence and prevalence

for TB cases and at the same time reduce persistence potential.

Potential TB vaccines currently under consideration might help us

to achieve such a reduction in activation rate [80].

Supporting Information

Text S1 Additional results and explanations.

(PDF)
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