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Molecular characterization 
of Fe‑acquisition genes 
causing decreased Fe uptake 
and photosynthetic inefficiency 
in Fe‑deficient sunflower
Ahmad Humayan Kabir1*, Sharaban Tahura1, Mona M. Elseehy2 & Ahmed M. El‑Shehawi3

Iron (Fe) deficiency in plants hinders growth and yield. Thus, this study aims to elucidate the responses 
and molecular characterization of genes in Fe‑deficient sunflower. The study was conducted on 
14 days‑old sunflower plants cultivated in hydroponic culture under Fe‑sufficient and Fe‑deficient 
conditions. The Fe‑starved sunflower showed substantial decrease in plant biomass, SPAD score, 
quantum yield efficiency of PSII (Fv/Fm), photosynthetic performance index (Pi_ABS). Further, Fe 
shortage reduced Fe and Zn concentrations in roots and shoots, accompanied by a marked decrease 
of HaNramp1 and HaZIP1 expression in roots, suggesting the association of Zn status contributing 
to photosynthetic inefficiency in sunflower. The ferric chelate reductase (FCR) activity, along with 
HaFRO2 and HaIRT1 transcripts, were constitutively expressed, suggesting that sunflower plants can 
regulate FCR activity, although the lack of bioavailable Fe in the rhizosphere strongly corresponds 
to the limited Fe uptake in sunflower. The substantial increase of proton extrusion in roots and the 
localization of Fe‑related genes in the plasma membrane are also evident in sunflower as common 
responses to Fe‑deficiency by this Strategy I plant species. Analysis showed that three motifs of 
Fe‑related proteins were linked to the ZIP zinc transporter. The interactome map revealed the close 
partnership of these Fe‑related genes in addition to FRU gene encoding putative transcription factor 
linked to Fe uptake response. The cis‑regulatory analysis of promoter suggested the involvement of 
auxin, salicylic acid, and methyl jasmonate‑responsive elements in the regulatory process in response 
to Fe deficiency. These findings may be beneficial to develop Fe‑efficient sunflower plants through 
breeding or genome editing approaches.

Iron (Fe) deficiency negatively affects the growth and yield of plants. Fe-deficiency causes a stunted root growth 
and poor maturation of  fruits1,2. In alkaline soil, the problem most commonly occurs due to low Fe solubility at 
high  pH1,3. In plants, photosynthesis, respiration, and protein formation are closely related to the Fe  status4,5. In 
the photosynthesis process, photosystem II (PS-II), a Fe-containing protein complex, loses its activity because 
of low photosynthetic electron supply to Fe-starved  plants6,7. Furthermore, the synthesis of Fe-S clusters and 
heme-containing proteins is severely affected in mitochondria of Fe deficient  plants8. Thus, how Fe-deficiency 
affects Fe nutrition and growth is crucial for future genome editing strategies to improve plants.

A strategy-I plant acquires Fe by the reduction-based mechanism. In Strategy-I plants, ferric chelate reductase 
(FCR) is an enzyme that converts ferric ion to ferrous in roots to make existing Fe  available9. This FCR activity 
and the upregulation of its candidate gene (FRO) have been mainly reported to confer Fe-deficiency tolerance 
in many dicot  plants5,10. Also, the induction of acidification in the rhizosphere through proton  (H+) extrusion 
enhances the mobilization of ferric  Fe11,12. Although there have been few controversies on the role of phenolics 
increasing Fe availability in the rhizosphere, a few reports support that phenolics alter microbial community 
that in turn favors plant Fe  uptake13.
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Transporter genes are directly related to metal transport in plants. Further, the interactions of Fe with other 
mineral elements, such as zinc and sulfur, are often linked to the overall response of plants under Fe  deficiency4. 
The most common Fe transporter is the IRT1 gene (Fe-regulated transporter protein) that is known to transport 
ferrous Fe in several plants, including  tomato14, field  peas15,  Arabidopsis16, etc. In plants, Fe and Zn homeostasis 
are complements to each other. IRT gene families are expressed in epidermal cells to mediate Zn transport in 
Fe-deficient  roots16,17. Further, Nramp1 (natural resistance-associated macrophage protein) also plays a role in 
 Fe2+ transport in Fe-deprived  plants17,18. Several ZIP proteins have been characterized in plants, usually showing 
modulation subjected to Fe/Zn  deficiency19. The relation of Fe and S is of great importance in response to Fe 
deficiency as most active Fe in Fe-S protein clusters is tied to S in the chloroplast and cytochrome  complex20–23. 
The molecular characterization of genes and their interactions linked to Fe uptake is still limited. Many criti-
cal biological pathways and gene families related to Fe uptake and transport remain unexplored in sunflower.

Sunflower (Helianthus annuus L.) is an important crop for edible oil production affected due to Fe-deficiency. 
However, the responses of Fe-deficient sunflower are not yet studied. Therefore, we investigated how Fe defi-
ciency lessens growth and development in sunflower plants. Along with the morphophysiological evidence, a 
broad range of cellular and molecular responses were studied that trigger deficiency symptoms in Fe depleted 
sunflower. We further performed in silico analysis of Fe-related genes of sunflower to interpret the motifs, regu-
latory networks, and association of genes linked to Fe-deficiency.

Materials and methods
Plant cultivation system. Seeds of sunflower were sterilized with 70% ethyl alcohol for 3 min, followed 
by distilled water washing. The seeds were then germinated at room temperature for 2 days on a tray before 
transferring to solution culture (pH 6.0) in a 5 L plastic pot as previously  described24,25. Sunflower seedlings were 
supplemented with two different concentrations of ferric Fe-EDTA (ethylenediaminetetraacetic acid): 25 µM Fe-
EDTA (+Fe) and 1.0 µM Fe-EDTA (−Fe). The seedlings were cultivated in the growth cabinet having a 14/10 h 
light/dark photoperiod (550–560 µmol  s−1 per µA). Plants were harvested for analysis after 2 weeks.

Morphological and photosynthesis features. A digital caliper (Neiko 01407A Electronic Digital Cali-
per, United States) was used to measure the length of the roots and shoots. The dry weight of roots and shoots 
was taken after drying for 3 days at 80 °C in an electric oven. The leaf chlorophyll score was measured on a 
young leaf by a SPAD meter (Minolta, Japan). Furthermore, photosynthesis biophysics through chlorophyll 
fluorescence kinetic (OJIP), such as Fv/Fm (quantum efficiency of photosystem II), and Pi_ABS (photosynthesis 
performance index) were recorded on young leaves kept for 1 h in the dark using FP 100 PHOTON SYSTEM 
INSTRUMENT (CHECH REPUBLIC).

Analysis of Fe and Zn concentration in roots and shoots. Briefly, fresh roots were washed with 
Milli-Q water and subsequently incubated at 4 °C in the first (10 mM MES) solution and in the second (10 mM 
MES + 1 mM EDTA), followed by washing 2–3 times in Milli-Q water. After surface cleaning, roots and shoots 
were kept on a falcon tube, keeping the lid open to dry at 70 °C for 3 days. Dried samples were subsequently 
digested with  HNO3/HClO4 (3:1 v/v) and made volume up to 10 ml. The solution was then used for elemental 
analysis based on standard curves by Atomic absorption spectroscopy (SHIMADZU, JAPAN).

Analysis of stress indicators. The standard curve for bovine serum albumin (BSA) was generated to esti-
mate the total soluble protein, according to the Bradford  assay26. Briefly, protein extraction was carried out by 
grinding the tissue samples with tris–HCL-buffer (50 mM, pH 7.5), 0.04% (v/v) β-mercaptoethanol, and 2 mM 
EDTA. The crude samples were centrifuged for 10 min at 12,000 rpm. The transparent fluid part was then mixed 
with 1 ml of Coomassie Brilliant Blue (CBB) before measuring the absorbance at 595 nm (60S UV–Visible Spec-
trophotometer, THERMO SCIENTIFIC, UNITED STATES). The concentration of unknown samples was then 
calculated based on the standard curve of different concentrations of BSA.

The electrolyte leakage demonstrating the loss of the cell membrane integrity were analyzed by a conductivity 
meter (HI98303, HANNA, UNITED STATES)27,28. Surface components of roots and shoots were dispensed fre-
quently with deionized water. Thereafter, the freshly harvested samples were transferred into a beaker filled with 
20 ml deionized water and kept at 25 °C for 2 h. Later, the solution’s electrical conductivity (EC1) was calculated. 
Afterward, the samples were heated in a water bath for 20 min at 95 °C then soothed at 25 °C before recording the 
final electrical conductivity (EC2). The electrolyte leakage was then determined as follows: = (EC1/EC2) × 100 (%).

The cell death percentage was estimated using Evans blue (SIGMA-ALRICH, UNITED STATES)29,30. The 
freshly harvested root and shoot were washed with MilliQ water. The tissue samples were then incubated in 
2 ml Evan’s blue mixture for 15 min at room temperature. Afterward, 1 ml of the 80% ethanol was added to 
the mixture and incubated for 10 min at room temperature. The tubes with solutions were then incubated for 
15 min at 50 °C in a water bath and then centrifuged for 10 min at 12,000 rpm. The absorbance of the supernatant 
was recorded at 600 nm. Finally, the percentage of cell death in the root or shoot tissue was evaluated based on 
sample fresh weight.

Fe chelate reductase activity. Fe (III)-FCR activity was determined in roots by ferrozine  testing5. Briefly, 
the roots were washed once with 0.2 mM  CaSO4 and 2–3 times with Milli-Q water to eliminate the surface 
contaminants. The root samples were then homogenized with 1 ml of assay mixture (100 mM Fe(III) EDTA, 
0.10 mmol MES-NaOH (pH 5.5), 300 mM ferrozine). The samples and blank tubes (without assay mixture) were 
incubated in the dark for 20 min at 25 °C. Finally, aliquots were read at 562 nm. The FCR activity was determined 
by using the ferrozine molar extinction coefficient (1.50 × 103  M−1  cm−1).
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Estimation of rhizosphere acidification. The secretions of  H+ from roots is known as proton extrusion. 
Briefly, the pH of the cultivation medium was maintained by 0.1 M HCl or 0.1 M KOH by a digital pH meter. 
The  H+ efflux was measured by calculating the titrated quantity of acid or base to return pH to its starting point 
as follows: (amount of acid × concentration of acid) ÷ (fresh weight × time)15.

Estimation of total phenolics. The total phenolics concentration in roots was measured as previously 
 described29,30. In short, the root extracts were mixed with 80% of Folin-Ciocalteu reagent and the solution of 20% 
of  Na2CO3. The optical density of the solution was read at 765 nm. The unknown samples were calculated on the 
basis of the gallic acid calibration curve.

The qRT‑PCR analysis. The total RNA was isolated from the fresh roots as described by SV total RNA 
isolation system (Promega, USA). The quantified RNA was then converted to cDNA using the cDNA synthesis 
kit (Promega, USA) before performing real-time PCR analysis in an Eco real-time PCR system (ILLUMINA, 
UNITED STATES) using gene-specific primers (Supplementary Table S1). The PCR reactions were set as fol-
lows: 95 °C for 3 min, followed by 40 cycles at 95 °C for 10 s, 56 °C for 30 s. The relative expression of candidate 
genes was calculated considered Actin as an internal control by the dd −∆Ct  method31.

Bioinformatics analysis. NCBI Blast program was run to retrieve the mRNA and protein sequences of 
HaIRT1, HaNramp1, HaZIP1, and HaFRO2. The CELLO (http://cello .life.nctu.edu.tw) server predicted the sub-
cellular localization of  proteins27,28. The MEGA (V. 6.0) developed the phylogenetic tree with the maximum 
likelihood (ML) method for 100 bootstraps using 11 HMA3 homologs from 11 plant  species32. Furthermore, the 
ten conserved protein motifs of the proteins were characterized by MEME Suite 5.1.1 (http://meme-suite .org/
tools /meme) with default parameters, but five maximum numbers of motifs to  find33. The interactome network 
of HMA3 protein was generated using the STRING server (http://strin g-db.org) visualized in  Cytoscape34. The 
PlantCare was used for scanning of cis-elements present in promoter regions of these  genes35.

Statistical analysis. At least three independent biological replications were considered for each sample in 
a randomized block design. The significance between +Fe and –Fe conditions was tested by t-test in Microsoft 
Excel 2007. In preparing graphic figures, GraphPad Prism 6 was used.

Ethical approval and permission. Formal ethical approval is not required for this experimental work as 
the sunflower line used in this work is a cultivated genotype. In addition, the seeds were collected from the local 
market; hence, permissions and/or licences for collection of seed specimens are not required complying with 
relevant institutional, national, and international guidelines and legislation.

Results
Plant growth, photosynthetic efficiency and elemental concentration. Along with the visual 
evidence, root and shoot morphological features (dry weight and length) significantly decreased owing to Fe-
deficiency in the hydroponic solution compared to Fe-sufficient sunflower plants (Fig. 1a–e). In addition, the 
parameters associated with photosynthesis, such as SPAD score, Fv/Fm ratio, and Pi_ABS in young leaves, sig-
nificantly declined due to Fe depletion relative to Fe-sufficient sunflower plants (Fig. 1f–h). Results showed that 
Fe and Zn concentration significantly reduced in roots and shoots under Fe-deficiency compared to Fe-sufficient 
controls (Table 1).

Changes in stress indicators. Fe-deficiency is known to induce stress in plants. In this study, the total 
soluble protein concentration in roots significantly reduced, although it remained unchanged in shoots due to 
Fe-deprivation compared to Fe-sufficient controls (Fig. 2a). Fe-depletion demonstrated a significant enhance-
ment in electrolyte leakage and cell death (%) in both roots and shoots relative to controls (Fig. 2b,c).

Changes in strategy I responses in roots. Fe-depletion caused no significant changes in root FCR activ-
ity in comparison with Fe-sufficient plants (Fig. 2d). In contrast, the proton extrusion activity in roots was signif-
icantly induced owing to Fe-shortage in comparison with Fe-sufficient plants (Fig. 2e). On the other hand, total 
phenolics secretion in roots remained unchanged between Fe-sufficient and Fe-deficiency controls (Fig. 2f).

Changes in the expression of Fe transporter and Strategy I genes. The expression of the HaIRT1 
gene remained unchanged under Fe-depletion relative to Fe-sufficient controls (Fig. 3a). However, HaNramp1 
and HaZIP1 were significantly downregulated in roots owing to Fe-deprivation in comparison with Fe-sufficient 
plants (Fig. 3a). However, the expression of HaFRO2 showed no substantial changes between Fe-sufficient and 
Fe-deficient conditions (Fig. 3a). The CELLO localization predictor showed that corresponding proteins of these 
genes are localized in the plasma membrane of roots (Fig. 3b). According to the phylogenetic tree, HaIRT1 and 
HaZIP1 are clustered together, while HaNramp1 and HaFRO2 are placed within-cluster, although all these genes 
are originated from the same ancestor (Fig. 3c).

In silico analysis of Fe‑related genes/proteins. MEME motif analysis tool searched for the most con-
served motifs identified in HaIRT1, HaNramp1, HaZIP1, and HaFRO2. Most of these ten motifs are located at 
site two and contain 6–50 residues (Fig. 4). Four out of ten motifs matched to particular domains are as follows: 
motif 1 (NPDNDJFFLIKAFAAGVILGTGFIHILPDAFDCLASKCLPEKPWGKFPF), motif 2 (HQFFEGIGLG-

http://cello.life.nctu.edu.tw
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
http://string-db.org
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GCILQADYERKAKAIMVFFFSLTTPFGIAJGIGJSKIYRE), motif 3 (YMALVDLLAADFMGPKLQNDLKLQL-
GANFALJLGAGCMSFLAIWA), and motif 4 (QLRRHRIIAQVLELGIIVHSVIIGLSLGASDNICTIK). Motif 1, 2 
and 3 correspond to ZIP zinc transporter, while motif 4 attaches PTS_EIIC type-4 domain profile (Fig. 4). Other 
motifs show no information (Fig. 4).

Interactome analysis was performed on the STRING server. The HaIRT1 shows functional partnership with 
FRO2 (ferric reduction oxidase 2) and FRU (a putative transcription factor) that regulates Fe uptake responses 
belonging to CL:28,152 local network cluster associated with siderophore-dependent Fe import into the cell 
(Fig. 5a). Functional enrichment of the network links to several biological functions, including cellular response 
to nitric acid, response to bronchodilator, Fe ion transport, cellular response to Fe ion, and Fe ion homeostasis. 
The HaNramp1 links to IRT1 (Fe-regulated transporter 1) and FRO2 (ferric reductase oxidase 2) partners under 
two local network clusters (siderophore-dependent Fe import into the cell and transition metal ion transmem-
brane transporter). The HaFRO2′s partners are IRT1 and FRU that regulated Fe uptake responses connected to 
CL:28,152 cluster (siderophore-dependent Fe import into the cell), having the same partner linked to the same 
biological processes observed for HaIRT1 (Fig. 5d). This gene cluster is related to several biological processes, 
which include Fe ion transmembrane transport, Fe ion transport, Fe ion homeostasis, divalent metal ion trans-
port, and response to a bacterium (Fig. 5b). Further, the functional partners of HaZIP1 are RCK (ATP binding; 

Figure 1.  Plant phenotype (a), root length (b), root dry weight (c) shoot height (d), shoot dry weight (e), SPAD 
(f), Fv/Fm (g) and Pi_ABS (h) in sunflower cultivated under Fe-sufficient and Fe-deficient conditions. Different 
letters in each column indicate significant differences between means ± SD of treatments (n = 3) at a P < 0.05 
significance level.

Table 1.  Determination of Fe and Zn concentrations (µg  g−1 DW) in roots and shoots of sunflower cultivated 
under Fe-sufficient and Fe-deficient conditions. Data represent means ± SD of three independent biological 
samples. Different letters indicate significant difference at P < 0.05 level.

Nutrients

Roots Shoots

+Fe −Fe Fold change +Fe −Fe Fold change

Fe 116.8 ± 13.4a 70.5 ± 16.6b 1.6 fold 54.9 ± 10.1a 38.4 ± 9.2b 1.4 fold

Zn 132.5 ± 14.1a 63.7 ± 15.4b 2.0 fold 63.2 ± 4.7a 30.7 ± 4.6b 2.0 fold
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ATP-dependent helicases; DNA helicases, etc.) and MSH4 (DNA mismatch repair protein MSH4) under CL:7350 
local cluster involved in chiasma assembly and meiosis protein (SPO22/ZIP4 like) linked to the chiasma assembly 
biological process (Fig. 5c).

Versatile cis-regulatory elements correlated with studied genes were found through PlantCare tool. (Table 2). 
The HaIRT1 promoter showed 1 ABRE (involved in the abscisic acid responsiveness), 1 ARE (essential for the 
anaerobic induction), 1 AuxRR-core (involved in auxin responsiveness), 8 CAAT-box (common elements in 
promoter and enhancer regions), 2 G-Box (involved in light responsiveness), 1 LTR (involved in low-temper-
ature responsiveness), 1 MBS (MYB binding site involved in drought-inducibility), 1 RY-element (involved in 
seed-specific regulation), 2 TATA-box (core promoter element around − 30 of transcription start) and 1 TATC-
box (involved in gibberellin-responsiveness). However, HaNramp1 promoter showed 5 CAAT-box (element in 
promoter and enhancer regions), 6 TATC-box (involved in gibberellin-responsiveness), 1 CAT-box (related to 
meristem expression), 1 GATA-motif (part of a light-responsive element), and 1 HD-Zip 1 (involved in differ-
entiation of the palisade mesophyll cells). The HaZIP1 promoter revealed 1 ABRE (involved in the abscisic acid 
responsiveness), 1 ARE (essential for the anaerobic induction), 6 CAAT-box (promoter and enhancer regions), 
23 TATA-box (core promoter element around − 30 of transcription start), 1 TATC-box (involved in gibberellin-
responsiveness), 1 GATA-motif (part of a light-responsive element), 1 ATCT-motif (part of a conserved DNA 
module involved in light responsiveness), 4 Box 4 (part of a conserved DNA module involved in light responsive-
ness), 1 CGTCA-motif (involved in the MeJA-responsiveness), 1  O2-site (involved in zein metabolism regulation), 
1 SARE (involved in salicylic acid responsiveness), 2 TCA-element (involved in salicylic acid responsiveness), 1 
TGA-element (auxin-responsive element), 1 TGACG-motif (involved in the MeJA-responsiveness) and 1 chs-
CMA2b (part of a light-responsive element). The HaFRO2 promoter showed numerous cis-acting elements which 
include 1 ABRE (involved in the abscisic acid responsiveness), 6 ARE (essential for the anaerobic induction), 
15 CAAT-box (promoter and enhancer regions), 2 G-Box (involved in light responsiveness), 1 LTR (involved in 
low-temperature responsiveness), 24 TATA-box (core promoter element around − 30 of transcription start), 2 

Figure 2.  Total soluble protein (a), electrolyte leakage (b), cell death % (c), root FCR activity (d), root  H+ 
extrusion (e) and root total phenol (f) in sunflower cultivated under Fe-sufficient and Fe-deficient conditions. 
Different letters in each column indicate significant differences between means ± SD of treatments (n = 3) at a 
P < 0.05 significance level.
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TATC-box (involved in gibberellin-responsiveness), 1 CAT-box (related to meristem expression), 1 GATA-motif 
(part of a light responsive element), 1 HD-Zip 1 (involved in differentiation of the palisade mesophyll cells), 
1 CGTCA-motif (involved in the MeJA-responsiveness), 1  O2-site (involved in zein metabolism regulation), 1 
TGA-element (auxin-responsive element), 1 TGACG-motif (involved in the MeJA-responsiveness), 1 AACA_
motif (involved in endosperm-specific negative expression), 1 AE-box (part of a module for light response), 1 
AuxRR-core (involved in auxin responsiveness), 1 Box II (part of a light responsive element), 1 CCAAT-box 
(MYBHv1 binding site), 3 GT1-motif (light responsive element), 2 I-box (part of a light responsive element), 
1 LAMP-element (part of a light responsive element), 3 P-box (gibberellin-responsive element), 2 TCT-motif 
(part of a light responsive element) and 1 circadian (involved in circadian control). CAAT-box (promoter and 

Figure 3.  Quantitative expression (a), CELLO subcellular localization prediction (b) and phylogenetic tree of 
Fe-related genes (c) in roots of sunflower cultivated under Fe-sufficient and Fe-deficient conditions. Different 
letters in each column indicate significant differences between means ± SD of treatments (n = 3) at a P < 0.05 
significance level. Trees were constructed by MEGA 6 software with the maximum likelihood (ML) method for 
100 bootstrap values.
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enhancer regions) and TATA-box (core promoter element around − 30 of transcription start) are shared among 
the four Fe-related genes of sunflower (Table 2).

Discussion
Plant growth and photosynthesis under Fe deficiency. Although Fe-deficiency causes damages in 
plants, a clear understanding of this nutritional stress in sunflower was hazy. In this study, Fe deficiency caused 
a severe reduction in length and biomass of roots and shoots in sunflower. In addition, the SPAD score dramati-
cally dropped due to Fe starvation, suggesting that chlorophyll degradation in sunflower leaves are associated 
with the damages in photosynthetic apparatus due to Fe-deficiency. This was further supported by the decrease 
in the efficiency of photosystem II and photosynthesis performance index in Fe-starved leaves of sunflower. 
The reduction in the quantum yield of photosystem II is often associated with the Fe-deficient  leaves36. Several 
studies also documented that a chlorotic leaf is closely correlated with photosystem II efficacy in plants under Fe 
 deficiency37,38. A study demonstrated that the redox state of photosystem II acceptors was negatively affected due 
to Fe deficiency in sugar  beet39. Moreover, proteins linked to the reaction center and light-harvesting antenna 
usually decline in Fe-starved  leaves40. It implies that Fe-deficiency appears to inhibit the uptake of Fe but is also 
closely linked to photosynthetic inefficiency in sunflower. Furthermore, the changes in photosystem II parame-
ters due to Fe-deficiency may be linked to damage in the reaction center or various elements of the energy trans-
fer path in the photosystem II system in Fe-deficient sunflower plants. This message can be useful to strengthen 
the knowledge to avoid damage to the photosynthetic machinery in sunflower.

Changes in Fe concentration and transporter genes. In this study, the HaIRT1 showed no changes 
in roots owing to Fe-deficiency, suggesting that this transporter is possibly not involved in Fe-deficiency toler-
ance in sunflower. In plants, a dual pattern of IRT1 expression was reported in Fe-depleted  Arabidopsis41. Thus, 
it may be possible that the expression is highly dependent on the genotypic background of the cultivar/species 
and the duration of stress exposed to plants. In contradiction to the expression studies on Fe transporters, stud-
ies showed that the expression of IRT1 was induced in Fe-starved  tomato42. Another study showed the role of 
Nramp1 in Fe  mobilizing42, but it also cooperates with IRT1 to take up Fe in response to Fe-deficient conditions 
in  Arabidopsis43. In this study, the HaNramp1 significantly downregulated in roots due to Fe-deprivation, sug-
gesting that HaNramp1 is directly associated with the decreased Fe uptake along with its long-distance transport 
of Fe that eventually resulted in severe growth reduction and photosynthesis damages in sunflower. Also, ZIP 
proteins are involved in the uptake and transport of Fe and Zn in  plants14,16. This is very much consistent with 
the decrease in Zn concentration and HaZIP1 expression in Fe-deficient sunflower roots. In general, the expres-
sion of ZIP genes is induced when plants get deficient in Zn, which facilitates cell Zn influx and Zn movement 
between organisms and also when plants become deficient in Fe or  Mn44,45. Our results imply that HaZIP1 is 
also involved, at least in part, with Fe acquisition or fully dedicated to Zn uptake in sunflower plants or highly 
interacting with the Fe status of the sunflower plants. Furthermore, Fe-deficiency is also occurred due to exces-
sive manganese in plants, inhibiting  photosynthesis46. Consequently, photoinhibition of PSII may be the ulti-
mate consequence of Mn  exposure47. We, therefore, suggest that Fe-deficiency-induced reduction of Fe is tightly 
linked with the status of other essential elements, leading to the overall sensitivity to stress in sunflower plants. 
Moreover, the decreased Fe uptake and subsequent translocation largely attributed to the downregulation of 
several transporters (HaNramp1 and HaZIP1) involved in the uptake of Fe and Zn in roots, which agree with the 
severe chlorosis and photosynthesis damage in Fe-depleted sunflower.

Figure 4.  Schematic representation of the 10 conserved motifs in Fe-related proteins (HaIRT1, HaNramp1, 
HaZIP1, and HaFRO2). Scale bar corresponds to 0.1 amino acid substitution per residue. Different motifs, 
numbered 1–10, are displayed in different colored boxes.
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Figure 5.  Gene interaction partners and gene network analysis of HaIRT1 (a), HaNramp1 (b), HaZIP1 (c) and 
HaFRO2 (d). Interactome was generated using Cytoscape for STRING data.
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Changes in Strategy I responses. In this study, we assessed the status of Strategy I responses in Fe-
deprived sunflower plants. The FCR activity and its responsible HaFRO2 gene were consistently stable following 
Fe-starvation in the roots of sunflower. The constitutive expression or upregulation of the FRO1 in Fe-deficient 
plants, was reported in other  plants48,49. However, the variations in FCR activity in response to Fe starvation were 
also reported in several Strategy I  plants15,50. Studies also underscored the importance of FCR in Fe metabolism 
and photosynthetic efficiency in  plants51. Not only that, the degradation of soluble proteins and the occurrence 
of the cell membrane damages in plants are often related to Fe-deficiency5, which was also evident in Fe depleted 
sunflower. Taken together, our findings confirm that the induction of FCR is a key factor in withstanding Fe-
deficiency in sunflower. Thus, the expression HaFRO1 is one of the strategies that can be modulated to improve 
Fe-efficiency in sunflower.

Computational prediction suggests that HaIRT1, HaNramp1, HaZIP1, and HaFRO2 genes are localized in 
the plasma membrane. The Nramp and ZIP transporters are mainly distributed in the plasma membrane in 
 mulberry52. Besides, IRT1 located in the plasma membrane has been established as one of the key plant model 
proteins for studying Fe acquisition and endomembrane  trafficking53. We also constructed a phylogenetic tree 
in which HaIRT1 and HaZIP1 are clustered together while HaNramp1 and HaFRO2 are located in another 
cluster, but all these four genes are originated from the same evolutionary ancestor. The coordination of Fe and 
Zn transporters are widely known in Fe-deficient plants because of the similarities of these metal  elements54.

Fe becomes unavailable to plants if the cultivation conditions have a pH higher than 8.015. As a result, plants 
release  H+ in the rhizosphere to reduce the pH  level5,51. This is a common Strategy I trait, enabling Fe acquisi-
tion that showed a substantial increase as evident from the proton extrusion activity in roots of sunflower. The 
proton extrusion involvement in Fe-depleted conditions was reported in other dicot  plants15,55. Although the 
proton extrusion can contribute to Fe uptake of sunflower, this adaptive trait was a game-changer to maintain the 
overall Fe uptake system in Fe-deprived sunflower. Moreover, overcoming Fe-deficiency-induced is a complex 
process involving cumulative biochemical and molecular induction of Strategy I responses in sunflower plants. 
Further, the phenolic compounds released by roots responsible for Fe-chelating under Fe deficiency, as previously 
 reported56,57, appear to be not involved with Fe homeostasis in sunflower plants.

In silico characterization of Fe‑related genes. In recent years, in silico characterization of candidate 
genes before the wet-lab experiment is routinely performed to narrow down the target of studies. Conserved 
motifs are identical sequences of plant species that are maintained by natural selection. A highly conserved 
sequence has functional roles in plants and can be a useful start point for researching a particular topic of 
 interest58. In this study, three motifs of HaIRT1 and HaZIP1 proteins are linked to ZIP zinc transporter. Several 
members of the Zn-regulated transporters and Fe-regulated transporter-like Protein (ZIP) gene family have 
shown to be involved in metal uptake and  transport59. In maize, ZIP proteins are localized in cells playing impor-
tant roles in the uptake of divalent  ions60. Also, several ZIP genes are highly induced in roots and are involved 
in Zn uptake under Zn deficient conditions in  barley61 and  bean62. In the light of these findings, it suggests that 
sunflower ZIP transporter might play a role in Fe and Zn uptake and distribution under low Fe availability.

The interaction network of a specific gene provides information about associations that may affect the regu-
lations in response to particular stress in plants. The interactome map analyzed in the String platform showed 
a close partnership of FRO2 and FRU genes with sunflower with HaIRT1, HaNramp1, HaZIP1, and HaFRO2 
genes generally linked to Fe uptake system in plants. Mutant studies showed that plants overexpressing FRO2 
grew at a much higher rate than wild-type during Fe-deficient  conditions63. Besides, the FRU gene is a mediator 
in inducing iron mobilization responses, indicating that iron uptake regulation is preserved in dicot  species64. 
Thus, the biological functions of these sunflower Fe-related genes are involved in Fe ion transport and Fe ion 
homeostasis. Overall, this interactome finding might provide essential background for functional genomics 
studies of Fe uptake and transport in sunflower and related plant species.

Besides, promoter analysis reveals the involvement of cis-acting elements in HaIRT1, HaNramp1, HaZIP1, 
and HaFRO2 commonly associated with cis-acting elements in promoter and enhancer regions (CAAT-box) 
along with core promoter element around − 30 of transcription start (TATA-box). Other than HaNramp1, the 
Fe-related genes of sunflower are predominantly linked to cis-acting elements involved in the abscisic acid 
responsiveness, gibberellin-responsiveness, GATA-motif (part of a light-responsive element) and anaerobic 
induction. Abscisic acid is known to contribute to the response to oxidative damage in Arabidopsis thaliana65. 
In this study, the HaIRT1 promoter is linked to auxin and salicylic acid elements, while HaZIP1 and HaFRO1 
promoters are generally attached to methyl jasmonate-responsive elements in sunflower. Auxin signaling affects 
Fe signaling and the Fe deficiency response in  plants66. A recent study revealed that auxin plays systemic action 
on the expression of FRO1 in  tomato67. Further, Fe deficiency induces salicylic acid signaling, thereby activating 
Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe  genes68. Gibberellin 
signaling controls the expression of transcription factor regulation iron-uptake machinery  genes69, while jas-
monate signaling is involved in the expression of Fe-deficiency induced genes in  plants70. Studies demonstrated 
that promoter is anaerobically induced in plant tissues resulted in the synthesis of a new set of polypeptides or 
anaerobic stress proteins, but its connection with Fe-deficiency still needs to be established  plants71. Altogether, 
our analysis implies that some hormones can be targeted to improve Fe-efficiency in sunflower.

Conclusion
This study gives new insights into the mechanical basis for Fe-deficiency responses in sunflower. Fe deprivation 
caused severe physiological and photosynthetic damage in sunflower. Further Fe-deficiency in sunflower resulted 
in a simultaneous decrease in Fe and Zn status of the plants. This physiological evidence was further supported 
by the downregulation of HaNramp1 and HaZIP1 transcripts in Fe-starved sunflower roots. Fe-related genes 
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(HaIRT1 and HaZIP1) are localized in the plasma membrane and are predominantly linked to motifs linked to 
ZIP zinc transporter. Interestingly, FRO2 and FRU partners showed a close association with HaIRT1, HaNramp1, 
HaZIP1, and HaFRO2 genes in sunflower in addition to the presence of cis-regulatory elements in promoters 
associated with auxin, salicylic acid, gibberellin, and methyl jasmonate-responsive elements. These results explore 
our understanding of Fe-starvation responses in the sunflower that can be further utilized in genome-editing or 
breeding programs to develop Fe-efficient genetic lines.
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