
����������
�������

Citation: Pascher, M.; Kronhardt, K.;

Franzen, T.; Gruenefeld, U.;

Schneegass, S.; Gerken, J. My

Caregiver the Cobot: Comparing

Visualization Techniques to

Effectively Communicate Cobot

Perception to People with Physical

Impairments. Sensors 2022, 22, 755.

https://doi.org/10.3390/s22030755

Academic Editors: Abolfazl Zaraki

and Hamed Rahimi Nohooji

Received: 30 December 2021

Accepted: 15 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

My Caregiver the Cobot: Comparing Visualization Techniques
to Effectively Communicate Cobot Perception to People with
Physical Impairments
Max Pascher 1,2,* , Kirill Kronhardt 1 , Til Franzen 1 , Uwe Gruenefeld 2 , Stefan Schneegass 2

and Jens Gerken 1

1 Human-Computer Interaction Group, Department of Media Informatics and Communication,
Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany;
kirill.kronhardt@studmail.w-hs.de (K.K.); til.franzen@studmail.w-hs.de (T.F.); jens.gerken@w-hs.de (J.G.)

2 Human-Computer Interaction Group, Paluno—The Ruhr Institute for Software Technology,
Faculty of Business Administration and Economics, University of Duisburg-Essen, 45127 Essen, Germany;
uwe.gruenefeld@uni-due.de (U.G.); stefan.schneegass@uni-due.de (S.S.)

* Correspondence: max.pascher@w-hs.de

Abstract: Nowadays, robots are found in a growing number of areas where they collaborate
closely with humans. Enabled by lightweight materials and safety sensors, these cobots are gaining
increasing popularity in domestic care, where they support people with physical impairments in
their everyday lives. However, when cobots perform actions autonomously, it remains challenging
for human collaborators to understand and predict their behavior, which is crucial for achieving
trust and user acceptance. One significant aspect of predicting cobot behavior is understanding their
perception and comprehending how they “see” the world. To tackle this challenge, we compared
three different visualization techniques for Spatial Augmented Reality. All of these communicate
cobot perception by visually indicating which objects in the cobot’s surrounding have been identified
by their sensors. We compared the well-established visualizations Wedge and Halo against our
proposed visualization Line in a remote user experiment with participants suffering from physical
impairments. In a second remote experiment, we validated these findings with a broader non-specific
user base. Our findings show that Line, a lower complexity visualization, results in significantly faster
reaction times compared to Halo, and lower task load compared to both Wedge and Halo. Overall,
users prefer Line as a more straightforward visualization. In Spatial Augmented Reality, with its
known disadvantage of limited projection area size, established off-screen visualizations are not
effective in communicating cobot perception and Line presents an easy-to-understand alternative.

Keywords: cobot; human–robot collaboration; visualization techniques; projection; virtual reality

1. Introduction

While robots were previously taught to perform simple repetitive tasks, they have
started to evolve into collaborators in our professional and personal lives [1,2]. As a result,
these so-called cobots support humans in various ways that were unimaginable just a
few years ago. One area that has seen drastic advances in human–robot collaboration is
domestic care, with cobots supporting people with physical impairments [3]. These assist
people in various ways [4], from activities of daily living (ADLs), including basic tasks such
as drinking, eating, and grooming, to leisure-time activities [5,6]. In domestic care, cobots
reduce the need for the constant presence of caregivers, empowering people previously
reliant on others for help to regain their independence. Our previous research on the needs
of people with physical impairments showed a strong desire for privacy and alone time,
which can undoubtedly be achieved with reliable robotic support [7].

However, new challenges arise when cobots are tasked with autonomous or semi-
autonomous actions, resulting in additional stress for end-users [8]. Close proximity
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collaboration between humans and cobots remains particularly challenging [9]. These
challenges include effective communication to the end-user of (a) motion intent and (b) the
spatial perception of the cobot’s vicinity [10]. Accurate communication increases our
understanding of the cobot while avoiding the unpredictability regarding impending
steps, motions, and sensed environment parameters. While visualizations of motion intent
have been extensively studied [9–14], communicating cobot perception has received less
attention [15]. We define cobot perception as the sensory information acquired to com-
putationally understand the surroundings, including the detection and identification of
objects of interest in the physical vicinity. In our work, we communicate these sensory
information acquired by the cobot using three different visualization techniques. Users
benefit from receiving information about and understanding a cobot’s spatial perception as
perception failures, including errors in computer vision and object perception, can occur.
Without communication, these are otherwise difficult to predict and to understand [16,17].
Accordingly, there is a clear need to accurately express cobot perception to their human
collaborators to improve the correct prediction of the cobot behavior [18].

Augmented reality (AR) technology is a promising medium to communicate cobot
perception, with the possibility to directly show relevant perceptual information in the
user’s line-of-sight whilst linking 3D with the physical world. In previous work, AR
technology has shown encouraging results for the visualization of motion intent [9,12].
Any visualization technique aiding users in understanding the cobot’s perception of its
surroundings needs to effectively communicate all objects both within the visible area
of the user and outside (or “off-screen”). The off-screen area is defined by the field of
view of the user but, more importantly, limited by the means of the AR systems spatial
visualization capabilities.

The release of the first Microsoft HoloLens resulted in an increased focus on approaches
relying on Head-Mounted Displays (HMDs) [9]. However, even state-of-the-art HMD-
AR such as the Microsoft HoloLens 2 (https://www.microsoft.com/de-de/hololens, last
retrieved 30 December 2021) have a restricted display area which limits the field of view
of the user [19]. Recent studies on the design preferences of people living with physical
impairments also revealed that these displays are often impractical or not usable at all
for the target population [20]. In addition, HMDs prevent direct information exchange
with secondary users such as caregivers, thereby excluding them from providing necessary
support. Similarly to HMDs, approaches using Mobile-AR (MAR) also limit the field of
view through their display size and orientation, rendering them potentially unusable for
people with physical impairments [21].

Spatial Augmented Reality (SAR) is another approach using projection techniques
to augment the surface in the environment [22]. While essentially limited to 2D, research
for motion intent has shown that SAR can be adapted to cover a dynamic workspace that
encompasses multiple surface areas [10,11], e.g., in our scenario, this refers to interacting
with objects “on a table” and “retrieving objects from shelves”. Due to the significant
decreases in the cost of projection technology and advances in pico-sized projectors, SAR
has garnered increased interest in recent years [23]. SAR can augment larger areas of the
surroundings, exceeding even the physical field of view of the user, and unlike HMDs,
can be observed by secondary users. However, the possible field of view depends on
the mounting position of the projection technique. While SAR may increase the visible
augmentation area, the problem for effectively communicating off-screen objects still exists
and is currently unsolved.

We investigated the potential visualization approaches that communicate the cobot’s
perception and particularly the information about detected objects in its physical surround-
ings. Information about physical objects are critical, as any breakdown in the successful
detection of such objects by a (semi-) autonomous cobot can result in errors in behavior
with the potential to harm the user, such as knocking over objects or even destroying them
in the process. We applied this scenario to a breakfast situation in which a cobot supports a
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person with physical impairments in performing basic tasks such as picking up a bottle
and pouring a glass of water.

We used two established off-screen visualization techniques from research on small
screens, namely Wegde [24] and Halo [25], where off-screen guidance is a well-explored
topic. We added a third visualization technique Line (see Figure 1), which aims to reduce the
potential drawback of visual clutter of Wegde and Halo as well as reduce the level of detail
encoded in the visualization. All three approaches are used to continuously communicate
the position of each object as they are perceived by the cobot. The user should immediately
recognize a failure in object detection as the visualization for the lost object ceases.

(a) (b) (c)

Figure 1. The compared visualization techniques to communicate the cobot’s perception are (a) Halo;
(b) Wedge; and (c) Line.

We conducted two remote user studies exploring the efficiency, effectiveness, and task
load of all three off-screen visualizations when communicating robot perception. First, we
provided an exploratory experiment with 12 participants from our target user group of
people with physical impairments. Second, we followed up with a validation experiment
with 116 participants without physical impairments. Both studies show that a simple
but clear visualization approach such as Line provides advantages for robot perception
communication, both in terms of user preferences as well as objective measures. The remote
nature of our study was adapted (a) to accommodate for social distancing guidelines during
the SARS-CoV-2 pandemic; and (b) to allow for a more controlled and risk-reduced setup
for target group participants.

2. Related Work

Previous literature has focused on (a) the usage of cobots for care support; (b) AR in
human–robot collaborations; and (c) visualization techniques for target localization. We
focus on ways cobots can effectively communicate their perception.

2.1. Cobots for Care

In 2021, the World Health Organization estimated that 15% of people live with some
form of disability. (WHO. Disability & Health Report. https://www.who.int/news-room/
fact-sheets/detail/disability-and-health, last retrieved 30 December 2021). Building on this,
7.9 million people are classed as severely disabled in Germany alone. (DESTATIS. Disability
Facts and Figures—Brief Report 2019. https://www.destatis.de/DE/Themen/Gesellschaft-
Umwelt/Gesundheit/Behinderte-Menschen/Publikationen/Downloads-Behinderte-Menschen/
sozial-schwerbehinderte-kb-5227101199004.html, last retrieved 30 December 2021). Over 58%
of these cases cover people with physical impairments and therefore we focused on this
group for our study. In particular, we concentrated on people with a permanent and signifi-
cant degree of compromised mobility of the extremities. Ample literature has examined
the impact of assistive robotic systems in supporting people with motor impairments. The
works of Chen et al. [5] for the Robots for Humanity project and Fattal et al. [6] looked into
the feasibility and acceptance of robotic systems as assistive technologies. Both found that
robotic devices are often designed to assist with several different activities of daily living,
often resulting in larger robotic devices that frequently require a robotic arm mounted on a
mobile unit. Drolshagen et al. investigated the acceptance of robots in sheltered workshops,
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finding that robots are quickly accepted and close proximity is preferred [26]. Currently, a
trend can be observed towards the research into cobots in domestic care to support people
in their everyday lives [27–32]. One elementary part of everyday tasks is the consumption
of food and drinks [7]. Based on this, the present study investigates cobot assistance for
people with physical impairments during a standard breakfast scenario.

2.2. Augmented Reality in Human–Robot Collaboration

In recent decades, AR technology has been frequently used for human–robot collab-
oration [33]. Previous work has mainly focused on the use of HMDs, MAR, SAR and
the visualization of the robot motion intent [9,34,35]. Rosen et al. showed that AR is an
improvement compared to classical desktop interfaces when visualizing the intended
motion of robots [34]. However, while visualizations of motion intent have been studied
extensively in previous work [9–14], communicating cobot perception remains an open
challenge. It is vital that the human user can recognize what the semi-autonomous robotic
system perceives explicitly (e.g., objects such as a glass or a bottle) because this enables
users to recognize any occurred error in the robot’s perception [16,17]. The non-perception
of objects can have especially drastic consequences, as often demonstrated in autonomous
driving. (Guardian. https://www.theguardian.com/technology/2018/mar/19/uber-self-
driving-car-kills-woman-arizona-tempe, last retrieved 30 December 2021.) In this paper,
we focused on the communication of cobot perception, and in particular, different methods
to make the cobot’s sensor-based detection of objects in its surroundings visible and clear
to the user.

2.3. Visualization Techniques for Object Localization

As discussed in Section 1, AR, and in particular HMD-AR or MAR, reduce the field of
view of the user as they either only display information in a small part in front of the user’s
eye (HMD) or on the available screen area. This means that they often require guiding the
users’ attention to an off-screen object of interest. For example, Biocca et al. proposed the
Attention Funnel to achieve this attention shift [36]. However, these mostly depend on the
possibility of MAR and HMD approaches to easily adjust the field of view by turning the
device or head. Adapting them to SAR might be difficult as the projection is often fixed. In
addition, these approaches are not usually meant to highlight and identify multiple objects
in the surroundings. They would likely overwhelm the user with too much visual clutter.

However, there is a large body of research in the context of off-screen visualization
techniques, originally addressing the challenge of small-screen devices, which could pose
a promising approach for this particular challenge. Halo is an early off-screen visualiza-
tion method proposed by Baudisch et al. and initially intended for small, rectangular
screens [25]. It uses circles with their center around off-screen objects and their radius just
large enough to cut the screen’s border. Using Halo, the distance information is encoded in
the arcs themselves and directly incorporates the scale of the scene, which was preferred by
the users. Furthermore, Halo can be extended to on-screen objects by drawing the circle
around the object. Wedge is another frequently used off-screen visualization technique pro-
posed by Gustafson et al. [24]. It visualizes off-screen objects by attaching isosceles triangles
to them. Two corners of the triangle are always on screen; the third is fixed to the point of
interest. This leads to an encoded distance information by an amodal completion as with
Halo. Similarly to Halo, Wedge can also be used to visualize in-view objects. Gruenefeld et al.
already demonstrated in two studies that both Halo and Wedge are transferable to AR;
however, they did not investigate SAR [37,38]. To address this, we applied off-screen
visualization techniques to SAR and investigated their effectiveness for conveying cobot
perception by visualizing all objects currently detected by the sensor system.

3. Experimental Approach

In this paper, we investigated how to communicate cobot perception in a scenario
related to activities of daily living (ADL). Our main target group are people with physical
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impairments. Our previous work—an ethnographic study to establish recommendations
for the development of a robotic drinking and eating aids—has shown a clear need for
(semi-) autonomous assistive technology during meal time [7]. Hence, we focused on a
breakfast situation at a kitchen table (see Figure 2a). Our goal is to help users understand
the cobot and its actions so that users are able to understand how the cobot works and
predict potential failures. Overall, this should contribute to better collaboration and foster
trust and acceptance.

Our research investigates the subjective experience, effectiveness, and efficiency of
different visualization approaches. We conducted two independent remote studies with
12 participants in the first and 116 participants in the second experiment, analyzing a total
of three different visualizations. In the first experiment (see Section 4), 12 people with
physical impairments—the target group—participated and delivered valuable quantitative
and qualitative insights. After this, we conducted a second experiment (see Section 5
Experiment II: Validation Study) with 116 participants without impairments to verify our
findings. We selected the established visualizations Halo and Wedge (see Section 3.2.3) and
compared them to a simplified line-based visualization—Line.

All visualizations served the purpose of optically highlighting and indicating each
object on a kitchen table that the sensory system of the cobot is currently detecting. The
challenge for the user is to understand a potential failure of the system, indicated by
the ceased highlighting of a previously perceived object. The studies required users to
recognize these failures and indicate the object no longer detected by the cobot.

We applied a SAR solution using a projector to display visualizations on the table sur-
face, as detailed in Section 3.2. This visualization technology enables a dynamic workspace
of the cobot with visual cues directly projected in the working area of the kitchen table.

3.1. Experimental Task

We wanted to determine which visualization technique allows users to recognize the
cobot’s perception errors quickly, accurately and with minimal effort. Therefore, users were
presented with a simple task (see Sections 4.4 and 5.4). They had to observe a virtual scene
where a robot arm was moving across a breakfast table containing multiple items. Initially
the current visualization technique shows each object as detected and perceived by the
cobot. After a randomized time in an interval of 5–15 seconds in experiment I (see Section 4)
and an interval of 3–15 seconds in experiment II (see Section 5), the cobot ceased to detect
a random object; indicated by a vanished visualization. The user had to a) recognize this
situation as quickly as possible and b) identify the no longer perceived object.

3.2. Apparatus

Here, we describe the developed apparatus of both experiments. In particular, we
(a) describe our 3D testbed environment; (b) compare different mounting settings of the projec-
tor and report the concluding setting; and (c) introduce the selected visualization techniques.

3.2.1. 3D Testbed Environment

We developed a simulation of the robot setup present in our laboratory using the
Unity3D Game Engine. ( https://unity.com/, last retrieved 30 December 2021) We used Bio
IK ( https://assetstore.unity.com/packages/tools/animation/bio-ik-67819, last retrieved
30 December 2021) to simulate the robot’s inverse kinematics. The project was exported
as a WebGL application and hosted online for easy access by the participants within
their particular web-browser environment. Any user interaction with the prototype was
performed through mouse clicks, enabling participants with motor impairments to use
their respective pointing devices.

For the virtual robot, we used a simulated KUKA LBR iiwa 7 R800 robot with a Robotiq
2-Finger 85 gripper module attached to the robot’s flange. A simulated projector connected
to the virtual flanch of the gripper/robot points towards the object of interest. Alternative
mounting positions of the projector are discussed in Section 3.2.2. A virtual plane with a cir-
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cular cutout restricts the simulated projection radius, creating a circular shape of projection
to ensure the same size of projection to every site (projection distance: 50 cm; projection ra-
dius: 15 cm). The robot is located in front of a table (dimensions: 120 cm × 60 cm × 75 cm)
with five items one might find in a hypothetical breakfast scenario (a box of cereals, a carton
of milk, a plate of fruits, a bowl and a mug). See Figure 2 for a glance at the setup and a
closeup on the projection.

(a) 3D testbed environment showing the breakfast setup. (b) Line visualization.

Figure 2. Screenshots of the 3D testbed environment. (a): showing the complete setup with the
five items placed on the table; (b): showing the Line visualization with one object on the table not
perceived by the cobot.

3.2.2. Different Mounting Settings of the Projector

As part of the projection-based cobot perception visualization development process,
we compared different potential mounting options for a pico-sized projector in a real-world
setting with a real robot. As illustrated in Figure 3, we compared a top-mounted projection,
e.g., from the ceiling, with a side-mounted projection, e.g., by using a tripod, with a cobot
flanch-mounted projection by attaching it next to the gripper.

Top-mounted projection: Because of the large distance between the projector and table
surface, a top-mounted projection has a large area. It can cover the whole workspace,
e.g., the surface of the table, to visualize cobot perception. However, as shown in Figure 3a,
objects in the vicinity of the cobot arm are not visualized. In addition, any visualization
trying to highlight objects directly beneath the gripper is not visible due to the shadow that
is cast by the cobot device itself.
Side-mounted projection: Attaching the projector at one side of the table tackles this issue
of visualizing the objects of interest beneath the gripper and also enables a quite large
projection area (see Figure 3b). However, a shadow can still hide the visualization related
to objects in the vicinity of the cobot’s arm due to the same reasons.
Cobot flanch-mounted projection: By mounting the pico-projector to the cobot’s flanch
next to the gripper, the cobot or its gripper do not cast a shadow within the projection
area. Because the light comes from above, the size of the objects’ shadows is reduced in
contrast to the other projector settings, as shown in Figure 3c. As a drawback, the projection
area is limited, and therefore, increases the need for visualization which can also highlight
off-screen objects, which are currently not placed within the projection area.
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(a) (b) (c)

Figure 3. For our work, we compared three different mounting-settings of a projector in the
cobot’s workspace to communicate cobot perception. The compared settings are (a) top-mounted;
(b) side-mounted; and (c) cobot flanch-mounted projection. The direction of the projection is indi-
cated by an arrow.

A top- or side-mounted setting leads to a large projection area but casts a shadow that
a visualization cannot overcome. Here, it is especially hard to take into account the shadow
cast by the robot arm and compensate for its’ impact on a presented visualization. Whereas
a flanch-mounted setting enables visualizing the objects that need the most attention in
the case of cobot failure—the objects right under the gripper—but reduces the projection
area. However, as discussed, we aim to explore whether this issue can be tackled by using
off-screen visualization techniques.

3.2.3. Selected Visualization Techniques

In our user study, we compare three different visualization methods: (a) Halo; (b) Wedge;
and (c) Line. Halo and Wedge are well-established off-screen visualization techniques taken
from previous work (see Section 2.3), while Line is proposed by us (see Figure 4).

Halo: Off-screen objects are visualized by attaching circles around objects, which any
person around the table can see as well. These circles are always drawn with a radius
as large as necessary to visualize part of the circle in the on-screen area. This means that
the user can (a) understand the direction of the target object in the off-screen area; and
(b) determine the distance, as this is encoded through the radius of the circle. For on-screen
objects, we kept the circle visualization and show the radius to be 5 cm larger than the
radius of the object’s footprint.
Wedge: While the approach works similarly to Halo, here, off-screen objects are visualized
by attaching isosceles triangles to them. Two corners of the triangle are always on-screen;
the third is fixed to the point of interest. The distance is encoded via an amodal completion
of the triangle, which avoids overlapping and leads to a reduced visual clutter. This allows
a more accurate determination of the object’s distance compared to Halo. For on-screen
objects, we decided to keep the triangle attached to the corner of the object, pointing
towards its center. The on-screen triangles point from the projection center to the object’s
center, comparable to arrow-based techniques [37].
Line: While Halo and Wedge try to encode distance information quite accurately, they
also lead to visual clutter when many off-screen objects are visualized at the same time.
Therefore, as a baseline, we propose a reduction to a simple line-based visualization
technique. Here, a line connects the center of the projection to each object’s center. Several
lines—for each object one—are “shining” in a manner resembling a beam from the center
in every direction (see Figure 2b). We still encode some distance information through the
light intensity of the Line visualization.
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(a) (b)

(c) (d)

Figure 4. A detailed overview of (a) the setup highlights the different parts as (1) on-screen object;
(2) off-screen object; and (3) the projection area. The (4) main features are highlighted for the selected
visualization techniques (b) Halo, (c) Wedge, and (d) Line.

As previous research shows that both Wedge and Halo work well within the realm of
small-screen devices, we wanted to explore whether this can be adapted to the presented
SAR off-screen problem. Visual complexity, in general, could cause problems when rapid
judgments are necessary. Given that users need to recognize errors quickly and accurately,
we wanted to add a visually less complex visualization method with Line. Still, all visual-
izations allow the user (a) to see that an object is recognized and (b) to infer its position
relative to the projection center.

4. Experiment I: Target Group

The first experiment compared different visualization techniques following our experi-
mental approach (see Section 3). We involved participants of the target group—people with
physical impairments. Our goal was to explore how to best communicate cobot perception
feedback to potential users for such essential tasks such as having breakfast to enable a
more independent and self-determined life.

4.1. Study Design

To evaluate the performance of different visualization techniques for conveying cobot
perception, we conducted a within-subjects remote user study with an counterbalancing
order of the visualization techniques. Our independent variable was the visualization
technique with three levels (Line vs. Wedge vs. Halo).
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As dependent variables, we used a mixed-methods approach. As quantitative mea-
sures to evaluate task performance, we took into account recognizability, accuracy, reaction
time, task load and individual Likert-scaled items. Furthermore, we collected qualitative
data in the form of subjective feedback from our participants.

The recognizability describes the percentage of how often the simulated cobot failure
was correctly recognized. To analyze this, we counted the number of trials on which a
participant clicked—to interrupt the trial—only after an actual cobot failure happened. We
acknowledge that this measure only gives an indication of recognizability, as we cannot
be sure whether the participants really recognized the failure or simply thought that it
should already have happened. Still, it excludes those clicks that happened before a failure
occurred, where we can be sure that participants did not correctly judge the situation.

The accuracy describes the percentage of how often the correct affected object was
identified. To determine the accuracy, we compared the selected object by the participants
that they thought was no longer perceived by the cobot with the correct one. The result
could either be correct or incorrect (0, 1).

For the reaction time, we measured the time from which a cobot’s perception error
happened to the point in time when the participant performed a mouse click (or equivalent
input device). To reduce the impact of individual differences on reaction time, which can
be quite large given not just cognitive differences but also differences in input devices and
physical abilities, we measured a baseline reaction time for each participant and subtracted
the median of this testing from the individual measurement. The resulting reaction time is:
timereaction = timeclicked − time f ailure − median(treactionPreTest).

We used the mean of the task load scores by dimensions as measured by the NASA
Raw-Task Load Index (Raw-TLX) [39] to determine the participants’ perceived task load
during the trials.

After each visualization, we asked three 7-point Likert-items (1 = strongly agree,
7 = strongly disagree) to determine participants’ ability to detect which objects were
perceived by the cobot and which were not, that neither the cobot itself nor the number of
objects made it hard to observe the scenario, and if visualizations were understandable. We
reported the mean values of each 7-point Likert-item.

We asked our participants to sign up for post-test interviews if they were interested.
Unfortunately, only two of the participants did so. We conducted a 25-min telephone
interview with these two participants on the same day that they participated in the remote
experiment. Here, eleven open-ended questions were asked about the following topics:

• Status quo and acceptance of technology support;
• Appearance and implications;
• Trust and understanding;
• Preference and reason;
• Importance of a perceptual feedback;

4.2. Research Questions

To explore the suitability of the three selected visualizations, our research was guided
by the following set of research questions:

RQ1 Do Wedge and Halo—because of their more detailed integrated distance information—
enable the more accurate identification of failure objects or does the extra visual
clutter disturb the user?

RQ2 Do the different visualization techniques have an influence on the reaction time,
i. e., are certain visual features quicker to recognize, process and thereby identify
when they vanish?

RQ3 How do users recognize the task load of different visualizations? Is the extra vi-
sual clutter of Wedge and Halo considered a problem or does the integrated dis-
tance information actually help reduce the task load?
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4.3. Participants

Twelve volunteers participated in this experiment: three females, three males and
six who preferred not to say. They fell into four age groups: two participants were aged
between 30 and 39 years; three participants were aged between 40 and 49 years; two
participants were aged between 50 and 59 years; and one participant was aged between 60
and 69 years. Four participants preferred not to state their age. All participants suffered
from complex motor impairments caused by spinal cord injuries and required assistance
in everyday life. Only one participant had prior experience with cobots, while three
participants mentioned some experience with toy robots.

Participants were recruited via announcements in different social media communities
regarding assistive technology (e.g., Paraplegie.ch, Assistive Technology Community. https:
//community.paraplegie.ch/de/forum/hilfsmittel-technologie, last retrieved 30 December
2021) and social media discussion communities for people suffering from multiple sclerosis
(MS) (e.g., mein.ms-life, Community for people suffering from multiple sclerosis (MS).
https://mein.ms-life.de/ms-community/, last retrieved 30 December 2021) among other
more local announcements. Participants did not receive any monetary compensation.

4.4. Procedure

Before the experiment started, participants were informed about the study and the
experimental setup. This was implemented as a landing page for the study’s URL. Par-
ticipants had to give their informed consent by enabling a checkbox. Through another
checkbox, they gave us the permission to use their anonymized recorded data. After a short
demographic questionnaire, participants performed a reaction time test. We measured their
reaction time when clicking on a screen as soon as a change in display color occurred. Ten
repetitions allowed us to define the median time needed for the participant to react to a
stimulus. We used this datum to determine the actual reaction time after recognizing a
cobot perception error, thus reducing variability between subjects because of individual
differences (e.g., latency of input devices, differences in physical abilities).

Participants then viewed a screen describing the first visualization method. We used
images highlighting and describing any part of the visualization and a full text which gave
step-by-step instructions. In a subsequent trial run, they watched the cobot perform a set of
movement paths—which differed from those in other trials. Participants were instructed to
click anywhere on the screen as soon as they noticed the disappearance of a visualization
connected to an object. Right after they did click on such a case, a screen appeared which
showed all potential target objects next to each other. The participants could then choose
the item they thought the cobot did no longer perceive without any time constraints. Once
this trial run was completed, the cobot performed twelve different movement paths as
repetitions of this task, counting towards the data analysis. Participants viewed the twelve
pre-programmed paths in random order. Six paths had an on-screen object disappear and
six paths had an off-screen object disappear. Objects disappeared after a random time of
between 5 and 15 s.

Once they completed all twelve paths for one visualization, participants filled out a
NASA Raw-TLX questionnaire to report their workload. They also answered three addi-
tional questions specifically tailored to the respective experiment to evaluate their preferred
visualization. The entire process was repeated with the two remaining visualization meth-
ods. The order in which the three visualization types were shown was counterbalanced
using a Latin-square design. This experiment lasted an average of 40 min. The two partici-
pants who volunteered for the post-test interview did take part in this, as stated, on the
same day as participating in the online study.

4.5. Results

During the Line technique run, one participant did not generate valid reaction times,
as they performed mouse clicks before the cobot failure actually happened in every single
trial. While this may be caused by an ineffective visualization, the fact that this hap-

https://community.paraplegie.ch/de/forum/hilfsmittel-technologie
https://community.paraplegie.ch/de/forum/hilfsmittel-technologie
https://mein.ms-life.de/ms-community/
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pened in each trial and usually instantaneously after the start led us to the conclusion
that the participant did not follow the test protocol. Consequently, this participant was
excluded, which resulted in 11 remaining valid participant responses. We did not assume
normality for the statistical analysis of our quantitative data and therefore we relied on
non-parametric tests. Given the within-subject design with three conditions, we first ap-
plied a Friedman test as omnibus test followed by Wilcoxon tests as post hoc pairwise
analysis with Bonferroni–Holm correction applied. Overall, the experiment resulted in 396
(11 participants × 3 visualization techniques × 12 trials) measured trials excluding train-
ing trials. Used abbreviations and symbols are:

• SD: Standard deviation;
• χ2(2): Chi-squared with two degrees of freedom;
• p: p-value as expression of the level of statistical significance (p: ≤0.05 *, ≤0.01 **,

and ≤0.001 ***);
• N: Sample size;
• W: Minimum sum of ranks;
• Z: Normalized minimum sum of ranks;
• r: Effect size (r: >0.1 small, >0.3 medium, and >0.5 large effect).

4.5.1. Recognizability: Percentage of Correctly Recognized Cobot Failures

In each trial, the cobot failed after 5–15 seconds. Participants had to respond with
a mouse click to verify that they recognized the failure. However, in certain trials, par-
ticipants did not click at all (Wedge = 3 trials; Halo = 2 trials; Line = 0 trials) or clicked
before the object disappeared (Halo = 11 trials; Wedge = 3 trials; Line = 1 trials). From the
reaction test at the beginning of the experiment, we calculated a median of the reaction
time for each participant. This was taken into account to count those trials as unsuccessful,
when the individual reaction to a cobot failure was faster than the median reaction time
(Line = 12 trials; Halo = 11 trials; Wedge = 8 trials). The mean percentage of correctly recog-
nized trials per participant for each visualization are (in descending order): Line = 90.2%
(SD = 19.7%); Wedge = 89.4% (SD = 10.6%); and Halo = 81.8% (SD = 17.8%). A Friedman
test showed no significant main effect of percentage of recognized failures on visualization
(χ2(2) = 4.71, p = 0.095, N = 11).

Moreover, we can distinguish between correctly recognized on-screen and off-screen
objects. The mean percentage of correctly recognized on-screen objects for each visualiza-
tion are (in descending order): Line = 92.4% (SD = 20.2%); Wedge = 87.9% (SD = 15.1%); and
Halo = 78.9% (SD = 27.0%). A Friedman test showed no significant differences (χ2(2) = 4.26,
p = 0.119, N = 11). The mean percentage of correctly recognized off-screen objects for
each visualization are (in descending order): Wedge = 90.9% (SD = 11.5%); Line = 87.9%
(SD = 19.8%); and Halo = 84.8% (SD = 13.9%). A Friedman test again showed no significant
differences (χ2(2) = 1.19, p = 0.552, N = 11).

4.5.2. Accuracy: Percentage of Correctly Identified Failure Objects

For the percentage of correctly identified objects that the cobot failed to perceive
during the trial, we only considered all trials for which participants responded after the
cobot failure happened (n = 345) and therefore had a chance to select the correct object.
The mean percentage per participant of correctly identified failure objects per visualization
are (in descending order): Line = 94.4% (SD = 7.1%); Wedge = 77.8% (SD = 15.9%); and
Halo = 72.5% (SD = 19.9%). A Friedman test showed a significant main effect (χ2(2) = 8.72,
p = 0.012 *, N = 11). Post hoc pairwise comparisons using a Wilcoxon signed-rank with
Bonferroni correction showed a significant difference between Halo and Line, but not
between any other pairs (see Table 1).
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Table 1. Pairwise comparisons of accuracy for the visualization techniques: Wedge, Halo, and Line.

Comparison W Z p r

Wedge vs. Halo 33 1.39 0.563 0.30
Wedge vs. Line 2 −2.25 0.070 0.48
Halo vs. Line 1 −2.55 0.023 * 0.54

* p ≤ 0.05.

4.5.3. Reaction Time

For the reaction time, we only considered trials for which participants correctly re-
sponded, meaning that participants clicked after the failure happened, responded before
the trial ended (10 seconds after the cobot failure happened) and clicked on the correct
object (n = 282; Line = 112, Wedge = 92, Halo = 78). We measured the time from the
failure of the cobot visualization to the participant’s mouse click. Again, we considered
the median reaction time from the reaction test during the beginning of the study. The
mean reaction time per visualization without extreme outliers (≥3 × IQR) was calculated
for each participant.The mean reaction times for each visualization calculated over the
means of the participants (without values ≥3 × IQR) are (in ascending order): Line = 1.11 s
(SD = 1.05 s); Wedge = 2.51 s (SD = 1.47 s); and Halo = 4.26 s (SD = 2.63 s). The reaction
times are plotted in Figure 5.

Figure 5. Comparison of the reaction times for the three different visualization techniques: Wedge;
Halo; and Line.

A Friedman test revealed a significant main effect of reaction time on visualization
(χ2(2) = 11.64, p = 0.003 **, N = 11). Post hoc pairwise comparisons using a Wilcoxon
signed-rank with Bonferroni correction showed a significant difference between Halo and
Line, but not between any other pairs (see Table 2). Concerning reaction times, we can
conclude that Line has a significant lower reaction time than Halo.

Table 2. Pairwise comparisons of reaction times for the visualization techniques: Wedge; Halo;
and Line.

Comparison W Z p r

Wedge vs. Halo 8 −2.22 0.073 0.47
Wedge vs. Line 59 2.31 0.056 0.49
Halo vs. Line 64 2.76 0.009 ** 0.59

** p ≤ 0.01.
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4.5.4. Task Load

The mean of the task load ratings as measured by the NASA Raw-Task Load In-
dex (Raw-TLX) [39] are (in ascending order): Line = 22.89 (SD = 16.47); Halo = 40.83
(SD = 17.28); and Wedge = 47.13 (SD = 22.89). A Friedman test revealed a significant main
effect of task load on visualization (χ2(2) = 7.09, p = 0.029 *, N = 11). Post hoc pairwise
comparisons using a Wilcoxon signed-rank with Bonferroni correction showed a significant
difference between Wedge and Line (W = 60, Z = 2.40, p = 0.041 *, r = 0.51) and Halo and
Line (W = 56, Z = 2.04, p = 0.042 *, r = 0.44), but not between Wedge and Halo (W = 44,
Z = 0.98, p = 0.730, r = 0.21). Concerning the task load, we can conclude that Line has
a significantly lower task load than Wedge and Halo. The resulting task load scores per
individual dimension of the TLX are presented in Figure 6.

Figure 6. Comparison of the task load dimensions for the three different visualization techniques:
Wedge; Halo; and Line.

Mental demand: A Friedman test revealed no significant main effect of mental demand on
visualization (χ2(2) = 15.69, p = 0.058, N = 11);
Physical demand: A Friedman test revealed no significant main effect of physical demand
on visualization (χ2(2) = 5.43, p = 0.066, N = 11);
Temporal demand: A Friedman test revealed no significant main effect of physical demand
on visualization (χ2(2) = 4.89, p = 0.087, N = 11);
Performance: A Friedman test revealed a significant main effect of physical demand on
visualization (χ2(2) = 8.79, p = 0.012 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Halo and Line (W = 66, Z = 2.93, p = 0.003 **, r = 0.63), but not between Wedge and Halo
(W = 21.5, Z = −1.03, p = 0.668, r = 0.22) and Halo and Line (W = 39, Z = 1.20, p = 0.744,
r = 0.26);
Effort: A Friedman test revealed no significant main effect of physical demand on visual-
ization (χ2(2) = 3.21, p = 0.201, N = 11);
Frustration: A Friedman test revealed a significant main effect of physical demand on
visualization (χ2(2) = 7.39, p = 0.025 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Halo and Line (W = 45, Z = 2.82, p = 0.012 *, r = 0.60), but not between Wedge and Halo
(W = 17, Z = -0.76, p = 0.977, r = 0.16) and Halo and Line (W = 26, Z = 0.99, p = 0.703,
r = 0.21).
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4.5.5. Individual Likert-Items

After each visualization, we asked 3 7-point Likert-items (1 = strongly agree–7 = strongly
disagree). Participants stated that the visualization helped them understand the position of
the objects on the table for Line (Md = 2, IQR = 2.5) while they slightly disagreed for Wedge
(Md = 5, IQR = 1.5) and Halo (Md = 5, IQR = 1.5). A Friedman test showed a significant
main effect (χ2(2) = 6.45, p = 0.040 *, N = 11). Post hoc pairwise comparisons using a
Wilcoxon signed-rank with Bonferroni correction showed a significant difference between
Wedge and Line (W = 53.5, Z = 2.69, p = 0.018 *, r = 0.57, but not between Wedge and Halo
(W = 20, Z = 0.18, p = 0.891, r = 0.04) and Halo and Line (W = 55.5, Z = 2.02, p = 0.146,
r = 0.43).

Moreover, participants voiced that they could easily notice the cobot failure for Line
(Md = 2, IQR = 2), while they slightly disagreed Halo (Md = 5, IQR = 2) and Wedge (Md = 6,
IQR = 2). A Friedman test revealed a significant main effect (χ2(2) = 9.5, p = 0.009 **,
N = 11). Post hoc pairwise comparisons using a Wilcoxon signed-rank with Bonferroni
correction showed a significant difference between Wedge and Line (W = 45, Z = 2.83,
p = 0.012, r = 0.60), but not between Wedge and Halo (W = 11.5, Z = 0.09, p = 0.969, r = 0.02)
and Halo and Line (W = 49, Z = 2.19, p = 0.094, r = 0.47).

Furthermore, participants stated that for them, the cobot itself does not interfere with
the recognition of the visualizations for Line (Md = 3, IQR = 2). In contrast, they slightly
disagreed for Wedge (Md = 4, IQR = 1) and Halo (Md = 5, IQR = 1.5). A Friedman test
revealed a significant main effect (χ2(2) = 7.09, p = 0.029 *, N = 11). Post hoc pairwise
comparisons using a Wilcoxon signed-rank with Bonferroni correction showed a significant
difference between Halo and Line (W = 43.5, Z = 2.55, p = 0.035 *, r = 0.54), but not between
Wedge and Halo (W = 2.5, Z = −1.98, p = 0.234, r = 0.42) and Wedge and Line (W = 29.5,
Z = 0.90, p = 0.867, r = 0.19).

4.5.6. Qualitative Insights

We applied open coding, followed by a thematic analysis of our interview data. We did
this to find patterns of two participants’ opinions and thoughts about the cobot assistance
and presented visualizations. Once all the interviews were completed, two researchers
transcribed all audio recordings and open coded the transcriptions. We then conducted
an online affinity diagram of the open codes and organized the codes into groups, using
Miro (https://miro.com, last retrieved 30 December 2021)—an online whiteboard [40].
During the telephone interview, we asked 11 open questions covering the status quo, a
need for assistive technology, trust against such a cobot, if visualizations can increase this
trust and understandability of cobot’s perception, and which visualization technique they
would or would not prefer and why. Because we asked open questions, we could identify
further insights from the participants in addition to the one related to the visualizations.
We identified four main themes, which we outline below.

Scenario and Technology Support

Both participants relied on assistance during breakfast from their caregivers and
were interested in the concept of a cobot-supported breakfast routine. P2: “I am entirely
open-minded and always interested in trying new things.” However, several concerns
were voiced, including the worry about the cost of a robotic aid and replacing the hu-
man caregiver, thus resulting in decreased social interaction. One additional design fea-
ture was frequently requested: the ability to mount the robotic arm to a wheelchair to
increase flexibility.

Trust and Understanding

From the onset, the overall trust towards a robotic aid was high. However, the
same principles as with humans apply; trust has to be earned. Participants indicated
that their confidence in a cobot increased when they observed the cobot’s perception and
communicated with it. P1: “I understood the cobot’s perception visualization, which helped

https://miro.com
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me trust the system because I could see which objects were perceived by the cobot”. Easy-
to-understand visualization methods can help address this concern by clearly displaying
the cobot’s perception, allowing for a greater level of user oversight.

Positive Feedback

Post-experiment feedback was positive. Participants were generally happy with the
overall look and appearance of the cobot, a frequent concern of potential users. The
off-screen visualization helped increase trust and user acceptance by increasing the collabo-
rative effort between the human and cobot. Participants preferred the proposed new Line
type over traditional visualization methods. P1: “I liked Line the most because there was
always a clear reference, and I could see when something was out of order, even when I
was looking somewhere else”.

Problems and Drawbacks

When designing for non-tech-savvy users and physically vulnerable people, great care
must be taken that the technology works consistently before releasing it for general use.
P1: “I assume that any teething problems have been removed beforehand. That is why I
already have a certain basic trust”. This also increases end-user acceptance and addresses
frequently mentioned reservations concerning the cobot making more mistakes than a
human caregiver. P2: “I only have my caregivers as a reference. So if the cobot does not
knock something over more often than my caregivers, I would be happy. However, even if
the cobot would make a few more mistakes, I could forgive the cobot”.

Participants voiced several issues concerning possible communication methods. Both
Wedge and Halo were regarded as excessively complex and difficult to understand. P1: “I
had problems recognizing Wedge because it was difficult to interpret the truncated arrows
correctly”. P2: “I did not prefer the visualization with the circles [Halo]. I really could
not distinguish anything, and when something was gone, I could only guess which object
it was”.

4.6. Discussion

The results show a clear overall preference for a simple visualization technique such
as Line to communicate which objects are recognized by the cobot. More complexly shaped
visualizations, such as Wedge and Halo, lead to a comparatively higher task load in detecting
unperceived objects.

4.6.1. Performance of Visualizations

No statistically significant results were found concerning correctly perceived cobot
failures with overall high detection rates. This indicates that all three visualizations were
effective in communicating the failure states.

However, there were differences in efficiency, with Line showing a significantly lower
reaction time than Halo but not Wedge. Interestingly, the same results apply for accuracy, as
Line shows a significantly higher accuracy compared to Halo. This indicates that the simple
coding of Line has benefits even when the user has to understand which object is affected.
The added information of the distance coding of Halo does not seem to overcome potential
limitations due to visual clutter. While descriptive data do show differences between Line
and Wedge, statistical tests do not confirm this, potentially due to low statistical power in a
study with only twelve participants.

In our study, we were unable to confirm the advantages of Wedge in contrast to Halo in
error rate and completion time as mentioned by Gustafson et al. [24]. While the descriptive
data do show differences, another reason might be the round projection area. One potential
advantage of Wedge compared to Halo is to overcome the corner-density problem of the
latter [25], which is not applicable to round shaped-screens. This is in line with findings
from Gruenefeld et al., who also found that with a round visualization area, the advantage
of Wedge over Halo is less strong [37].
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4.6.2. Task Load

We found that Line could significantly reduce participants’ task load compared to
the more complex Wedge and Halo. We believe this to be due to the simpler shape of Line,
resulting in less visual clutter. In contrast to the other visualizations, with Line, users’ focus
of attention is on the gripper and center of the projection, which allows them to directly
observe any changes. Using Line does not require the user to observe the periphery, making
the visualization easier to interpret. Special consideration must be given to design an
easy-to-view visualization, with objects and paths large enough to be identified at a glance.

4.6.3. Usefulness and Trust

Qualitative insights showed a clear preference for Line, mainly due to its avoidance
of overlapping visualizations as with Halo and the amodal completion of the triangle
as in Wedge. Although initial confidence in the robot’s abilities is high, this needs to be
maintained through constant and consistent correct behavior and clear communication.
Our participants noted that higher levels of trust develop whereas failures happen rarely.
Participants highlighted that a higher rate of mistakes compared to a human caregiver
would result in lower acceptance and trust in the cobot.

4.6.4. Limitations

One of the main issues we faced when conducting this experiment was the small
sample size. This limitation highlights the difficulty of designing for and involving people
suffering from severe disabilities. The ongoing SARS-CoV-2 pandemic amplifies the prob-
lem as access to people is further restricted. Nonetheless, we believe that the remote nature
of our study enabled us to gain valuable insights while granting access to participants
from a wider geographic range. In addition to the low number of participants, even fewer
participants were willing to participate in interviews via telephone, resulting in a limited
number of qualitative data.

In our experiment, we did not measure trust with standardized questionnaires.
Nonetheless, during our interviews, participants reported insight into how they would trust
the cobot in this scenario. Hence, we did not address trust in-depth, i. e., with standardized
measures, and thereby, our results can only be the foundation for further hypotheses and
research concerning trust in cobots.

While this experiment was able to explore the potential benefits and drawbacks of
the three selected visualization techniques, it did not provide clear statistical evidence
in several cases. In particular, the differences between Line and Wedge did not show
statistically significant effects, although Wedge is conceptually quite similar to Halo. Two
difficulties can account for this, one being the overall small sample size and the second being
the higher level of individual differences in the target group, potentially overshadowing
smaller effects.

5. Experiment II: Validation Study

Based on the limitations of experiment I (see Section 4), we conducted a second experi-
ment open to a non-specific user group, aiming to gain statistical evidence on particular
hypotheses gained from this first experiment. Therefore, we also opted to exclude Halo from
this second experiment, as results regarding this technique were already quite clear in the
first. While the absolute results of such a second experiment with a non-specific user group
may not be applicable to the target user group of people with physical impairments, we are
confident that the relative results are. The main reasoning here is that the experimental task
only requires very little physical interaction and the kind of physical interaction (mouse
click) is kept constant for both tested visualizations Line and Wedge.

5.1. Study Design

Based on the study design of experiment I (see Section 4.1), we designed the second
experiment as a within-subjects remote user study. Here, we changed, based on the results
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of experiment I (see Section 4.5), our independent variable to visualization technique with
two levels (Line vs. Wedge). The order of the visualization techniques was counterbalanced.
We used the same quantitative measures to evaluate task performance (recognizability,
accuracy, reaction time, task load, and individual Likert-scaled items).

5.2. Hypotheses

Based on the results of experiment I, which showed the potential advantages of Line,
we developed the following set of hypotheses:

Hypothesis 1 (H1). We hypothesize that Line can select the failure object with higher accuracy
than Wedge. Results in experiment I already point in this direction. It seems that the user is mostly
focused on the gripper and thereby the center of the projection, which benefits Line, as any change in
the visualization can be directly seen in the center. While this should first benefit the recognizability
of the failure, it also seems to have a positive effect on the accuracy, as the target object can usually
be inducted from the vanishing line. Thereby, this should outweigh the better distance encoding
of Wedge.

Hypothesis 2 (H2). We expect that Line allows quicker reaction times when the cobot’s sensors
lose track of an object compared to Wedge. We believe this to be the case because with Line, as
before, the focus of attention is on the gripper and center of the projection, which allows the user
to directly observe any changes in the Line visualization. In contrast, Wedge requires the user to
observe the periphery.

Hypothesis 3 (H3). As a consequence of prior hypotheses, we also hypothesize that Line will lead
to a lower task load. The Line visualizations that are characteristically displayed beneath the gripper
and thereby in the center of the projection require less attention shifts from the user—which should
be visible in task load measures.

5.3. Participants

In total, we collected data from 209 participants. Since the experiment was conducted
as an online study, the data of those participants were checked with regard to plausibility.
We wanted to make sure that we did not include data from participants who simply ”clicked
through” the study without actually following the task protocol. Therefore, as a reasonable
limit, we decided to remove participants whose median time of the mouse click (timeclicked)
was less than three seconds. The limit of three seconds was chosen as the task scenario was
designed in such a way, that it took at least three seconds for a cobot failure to happen.

This check led to the exclusion of 93 participants. The remaining 116 participants were
categorized into four age groups: 85 of them were between 18 and 29 years old; 21 of them
were aged between 30 and 39 years; one was between 40 and 49 years old; and four of them
were 50–59 years old; and another three were 50–59 years old. Two participants preferred
not to state their age.

In total, 63 participants had used a robot before the experiment, while 53 participants
had no prior experience using robots. The remaining ten participants did not mention
their prior experience using robots. Among all participants, 49 had previous experience
using robots in the form of toy robots. In addition, 15 participants had used drones, eight
had used service robots and another seven had used industrial or humanoid robots before.
Furthermore, six participants had experiences with robots other than those mentioned.

Participants were recruited via SurveyCircle (https://www.surveycircle.com/, last
retrieved 30 December 2021)—an open platform for survey submissions among other more
local announcements. Participants did not receive any monetary compensation, but earned
“survey ranking points” for their own study on SurveyCircle.

https://www.surveycircle.com/
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5.4. Procedure

The experiment followed the same procedure as described in Section 4.4, with the
only difference being that, in all twelve pre-programmed paths, only off-screen objects
disappeared after a random time between 3 and 15 seconds. We changed the focus onto
off-screen targets, as here lie the main conceptual differences between the visualizations.

5.5. Results

For the analysis, we did not assume the normality of our quantitative data, especially
since the measure reaction time was not normally distributed but generally right-skewed.
Other measures, such as accuracy, are dichotomous by nature and therefore not on a
metric scale. As a result, we applied non-parametric statistical tests. Given the within-
subject design of our evaluation, we applied Wilcoxon signed-rank tests. Overall, we had
2784 (116 participants × 2 visualization techniques × 12 trials) measured trials, excluding
training trials.

5.5.1. Recognizability: Percentage of Correctly Recognized Cobot Failures

The cobot failed after 3–15 seconds in each trial. Participants responded with a mouse
click to verify that they recognized the failure. However, in certain trials, participants
did not click at all (n = 189; Line = 105 trials and Wedge = 84 trials) or clicked before the
visualization disappeared (n = 1111; Wedge = 601 trials and Line = 510 trials). From the
reaction test at the beginning of the experiment, we calculated a median for the reaction
time of each participant. This was taken into account to count those trials as unsuccessful,
when the individual reaction to a cobot failure was faster than the median reaction time
(n = 22; Wedge = 15 and Line = 7). The mean percentage of correctly recognized trials for
each visualization are (in descending order): Line = 64.8% (SD = 29.8%) and Wedge = 59.5%
(SD = 31.0%). A Wilcoxon signed-rank test showed no significant difference between the
Wedge and Line (W = 1559, Z = −1.56, p = 0.120, r = 0.10, N = 116).

5.5.2. Accuracy: Percentage of Correctly Identified Failure Objects

For the percentage of correctly identified objects that the cobot failed to perceive during
the trial, we again only considered all trials for which participants responded after the cobot
failure happened (n = 1462). The mean percentage per participant of correctly identified
failure objects per visualization are (in descending order): Line = 72.7% (SD = 27.9%) and
Wedge = 64.4% (SD = 30.1%). A Wilcoxon signed-rank test showed a significant difference
between Wedge and Line (W = 1561.5, Z = −2.34, p = 0.019 *, r = 0.15, N = 116).

5.5.3. Reaction Time

For the reaction time, we only considered all trials in which participants correctly
responded, meaning participants clicked after the failure happened, responded before
the trial ended (10 seconds after the cobot failure happened) and clicked on the correct
object (n = 1100; Line = 608, Wedge = 492). We measured the time from the failure of the
cobot visualization to the participant’s mouse click. Again, we considered the median
reaction time from the reaction test during the beginning of the experiment. The mean
reaction time per visualization without extreme outliers (≥3 × IQR) was calculated for each
participant. The mean reaction times for each visualization calculated over the means of the
participants (without values ≥3 × IQR) are (in ascending order): Line = 1.72 s (SD = 1.51 s)
and Wedge = 2.07 s (SD = 1.81 s). The reaction times are plotted in Figure 7.
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Figure 7. Comparison of reaction times for the two different visualization techniques: Wedge and Line.

A Wilcoxon signed-rank test showed no significant difference between Wedge and Line
(W = 2254, Z = 1.44, p = 0.151, r = 0.11).

However, it appears that there is a potential interaction effect between the order vari-
able (start visualization) and the independent variable (visualization). When participants
started with Line, the means are (in ascending order): Wedge = 2.11 s (SD = 1.94 s) and
Line = 3.32 s (SD = 3.11 s). A Wilcoxon signed-rank test showed a significant difference
between Wedge and Line (W = 413, Z = −2.17, p = 0.030 *, r = 0.22).

Looking at Wedge as the start visualizations, the means are (in ascending order):
Line = 1.24 s (SD = 1.02 s) and Wedge = 2.01 s (SD = 1.64 s). A Wilcoxon signed-rank test
showed a significant difference between Wedge and Line (W = 904, Z = 2.57, p = 0.009 **,
r = 0.25).

This effect shows that the mean of Wedge is relatively stable, independently of it being
the first or second condition participants encountered (first condition: M = 2.11 s; SD = 1.94
s and second condition: M = 2.01 s; SD = 1.64 s). A Wilcoxon signed-rank test showed
no significant difference (W = 725; Z = 0.84; p = 0.404; r = 0.08). However, the mean of
Line depends on the ordering of the condition (first condition: M = 3.32 s; SD = 3.11 s
and second condition: M = 1.24 s; SD = 1.02 s). A Wilcoxon signed-rank test showed this
difference to be statistically significant (W = 1062, Z = 4.10, p ≤ 0.001 ***, r = 0.41).

5.5.4. Task Load

The mean of the task load ratings as measured by the NASA Raw-Task Load Index
(Raw-TLX) [39] are (in ascending order): Line = 42.39 (SD = 15.02) and Wedge = 47.19
(SD = 16.03). A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 4483.5, Z = 3.19, p = 0.001 ***, r = 0.21). Concerning the task load, we can
conclude that Line has a significantly lower task load than Wedge. The resulting task load
scores per dimension are presented in Figure 8.
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Figure 8. Comparison of task load dimensions for the two different visualization techniques: Wedge
and Line.

Mental demand: A Wilcoxon signed-rank test showed a significant difference between
Wedge and Line (W = 3068, Z = 2.52, p = 0.011 *, r = 0.17);
Physical demand: A Wilcoxon signed-rank test showed no significant difference between
Wedge and Line (W = 1498.5, Z = 1.25, p = 0.211, r = 0.08);
Temporal demand: A Wilcoxon signed-rank test showed a significant difference between
Wedge and Line (W = 2900, Z = 2.24, p = 0.025 *, r = 0.15);
Performance: A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 3618, Z = 2.35, p = 0.018 *, r = 0.15);
Effort: A Wilcoxon signed-rank test showed no significant difference between Wedge and
Line (W = 3158.5, Z = 1.92, p = 0.055, r = 0.13);
Frustration: A Wilcoxon signed-rank test showed a significant difference between Wedge
and Line (W = 3783.5, Z = 2.67, p = 0.007 **, r = 0.18).

5.5.5. Individual Likert-Items

After each visualization, we asked 3 7-point Likert-items (1 = strongly agree–7 = strongly
disagree). Participants voiced that the visualization helped them to understand whether an
object on the table was not detected by the cobot for Line (Md = 4, IQR = 2), while they
slightly disagreed for Wedge (Md = 5, IQR = 3). Post hoc pairwise comparisons using a
Wilcoxon signed-rank showed a significant difference (W = 2857, Z = 2.28, p = 0.022 *,
r = 0.15).

Moreover, participants stated that the number of objects on the table did not disturb
them for Line (Md = 3, IQR = 3) and Wedge (Md = 3, IQR = 3). Post hoc pairwise
comparisons using a Wilcoxon signed-rank showed a significant difference (W = 1808,
Z = 2.31, p = 0.021 *, r = 0.07).

Then, in the last question, participants mentioned that the visualization was always
understandable for Line (Md = 3, IQR = 3), while they slightly disagreed Wedge (Md = 4,
IQR = 3). Post hoc pairwise comparisons using a Wilcoxon signed-rank showed no
significant difference (W = 2654, Z = 3.31, p ≤ 0.001 ***, r = 0.22).

6. Discussion

Results from experiment II are in line with those from experiment I (see Section 4.6).
Both highlight the advantages of using a straightforward visualization such as Line to
show off-screen objects recognized by the cobot. Complex visualizations, such as Wedge,
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appear to lead to a higher amount of errors in detecting perception failures, identifying the
corresponding object, and a perceived higher task load.

6.1. Performance of Visualizations

Both experiments found no statistically significant results concerning correctly rec-
ognized cobot failures. All visualizations appear effective in communicating the cobots’
failures. However, the recognition percentage dropped in the second experiment, as even
with Line, participants were only able to correctly recognize cobot failures in 64.8% of the
trials, compared to 90.2% in the first experiment. Potentially, the small but intrinsically
motivated participant group in the first experiment did try to follow the protocol more
closely. An alternative explanation might be an excessively conservative exclusion criteria
(median response time smaller than 3 seconds) in experiment II.

When cobot failures were correctly recognized, a significant difference between Line
and Wedge regarding accuracy became apparent. The percentage of correctly identified
failure objects was highest with the Line (72.7%) visualization. This mirrors the results
from experiment I, where the difference between Halo and Line was significant in favor of
Line, with descriptive data showing an advantage also compared to Wedge. Hence, we can
accept Hypothesis 1.

Regarding the reaction time, the overall trend resembles the first experiment, with
Line having the lowest mean reaction time. However, the difference was again not statisti-
cally significant. Thus, we cannot accept Hypothesis 2. Interestingly, due to the simpler
experimental design with only two conditions, we observed an interaction between the
order of the conditions and the two different visualization techniques.

When participants worked with Line as the second visualization, the reaction time
significantly improved compared to those cases in which participants started with Line—
which, in turn, was not the case for Wedge). We concluded that Line might need a longer
learning phase for participants to fully benefit from it. Why this is the case, however,
remains an open question for future research.

6.2. Task Load

We found that Line significantly reduces participants’ task load compared to the
visually more complex Wedge technique. Therefore, we can accept our Hypothesis 3. We
attribute this to Line not requiring attention shifts but rather allowing the user to focus
on the gripper at all times. It also does not require amodal completion to decode the
distance information, which, as the accuracy results show, is not necessary to understand
and identify which object is affected.

6.3. Individual Likert-Items

The results of the individual Likert-items show that Line received better scores than
Wedge. The simpler design of Line ensures that cobot failure and the corresponding object
can be better detected, making this visualization more obvious than Wedge. For both
visualizations, the number of objects in the experiment, five, did not disturb participants.
This might, of course, change with a larger amount of objects, which could be necessary for
more complex scenarios.

6.4. Limitations

The high number of excluded participants (93) infer that a remote study setup has
less oversight, potentially enticing participants not to follow the study protocol. This issue
required the need for careful data cleaning. One reason could be that further guiding of the
participants was not possible.

Since participants could not be observed during the experiment, we cannot say
whether they ran the experiment on a suitable device and whether their full attention
was on the trials. Based on the reduced level of control, we expect additional noise in our
data which may overshadow certain effects. This is a common problem with remote stud-
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ies, as one cannot ensure, for example, identical technical conditions for each participant.
Nonetheless, we do not believe that there has been a systematic bias in our data due to this
reduced level of control.

Based on the experiences from experiment I, we deliberately did not include more
open-ended questions or even an interview apart from the 7-point Likert-scale items.
Experience shows that with a remote online study, the longer it takes, the higher the chance
of participants dropping out. Therefore, we decided to keep the study as short and concise
as possible and focused on quantitative data.

In addition to projection orientation, special considerations regarding ambient light
and background effects have to be taken into account when using SAR. Our investiga-
tion neglected these external factors as they are present independently of the projection
orientation. Nevertheless, more research is required to better understand their influence.

7. Conclusions

We investigated the performance differences of three visualization techniques in com-
municating cobot perception for a Spatial Augmented Reality setup, specifically focusing on
people with physical impairments as potential end-users. We were particularly interested
in comparing well-established off-screen visualization techniques to a reduced and straight-
forward line-based visualization for perceived objects inside and outside the projection
area. The first experiment focused on 11 target group participants, while 116 non-specific
respondents participated in the second experiment. Both experiments analyzed and com-
pared the effectiveness, efficiency, subjective satisfaction and task load of the visualization
techniques Halo, Wedge and Line. While the reaction times showed only minimal differences
between Line and the established off-screen visualization techniques, Line did significantly
improve the percentage of correctly identified failure objects and persistently lowered
participants’ task load. This result is mirrored by qualitative feedback from two target
group participants, each highlighting the importance of an easy-to-understand visualiza-
tion of the cobots’ perception. Overall, our results stress that communicating the cobots’
perception, including identification failures, is invaluable for assessing the overall situation
and improving end-user trust. Our results generalize to similar pick-and-place workbench
situations but may have limited applicability for more complex scenarios without a clearly
defined environment. Overall, our findings add to a growing body of user-centered HRI
literature with the overarching goal of increased user acceptance and confidence in cobots.
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