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Kaempferol (KP), as a natural anti-inflammatory compound, has been reported to have curative effects on alleviating senile
osteoporosis (SOP), which is an inflammation-related musculoskeletal disease, but the molecular mechanisms remain unclear due
to scanty relevant studies. We predicted the targets of KP and SOP, and the common targets of them were subsequently used to
carry out PPI analysis. Moreover, we adopted GO and KEGG enrichment analysis and molecular docking to explore potential
mechanisms of KP against SOP. -ere were totally 152 KP-related targets and 978 SOP-related targets, and their overlapped
targets comprised 68 intersection targets. GO enrichment analysis showed 1529 biological processes (p< 0.05), which involved
regulation of inflammatory response, oxidative stress, regulation of bone resorption and remodeling, osteoblast and osteoclast
differentiation, etc. Moreover, KEGG analysis revealed 146 items including 44 signaling pathways (p< 0.05), which were closely
linked to TNF, IL-17, NF-kappa B, PI3K-Akt, MAPK, estrogen, p53, prolactin, VEGF, and HIF-1 signaling pathways. By means of
molecular docking, we found that kaempferol is bound with the key targets’ active pockets through some connections such as
hydrogen bond, pi-alkyl, pi-sigma, pi-pi Stacked, pi-pi T-shaped, and van der Waals, illustrating that kaempferol has close
combination with the key targets. Collectively, various targets and pathways involve in the process of kaempferol treatment
against SOP through regulating inflammatory response, oxidative stress, bone homeostasis, etc. Moreover, our study first reported
that kaempferol may regulate core targets’ expression with involvement of inflammatory response, oxidative stress, and bone
homeostasis, thus treating SOP.

1. Introduction

Senile osteoporosis (SOP) is an inflammation-related
musculoskeletal disease with serious complications includ-
ing spine deformation, osteoporotic fracture, and bone pain
[1, 2]. Osteoporotic vertebral fracture (OVF) is the worst-
affected complication in SOP patients with about 1.8 million
vertebral fractures estimated happening every year in China,
and the number of vertebral fractures is predicted to increase
to 3 million in 2050 [3]. SOP poses serious threats to senior

citizens' life and health, which adds to social and family
burdens. -e treatment of SOP involves the use of drugs
inhibiting bone resumption clinically, but long-term use of
these drugs can result in some complications, which limit
their clinical application [4]. Recently, more and more
scholars attach increasing attention to the osteoprotective
effect of traditional Chinese medicine on treating SOP [5].

Kaempferol (KP, PubChem CID: 5280863) is a flavonoid
identified in various natural products and traditional Chi-
nese medicine like Drynariae Rhizoma [6]. KP has been
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reported to have the curative effect of treating SOP by acting
on both osteoblasts and osteoclasts, which may exert oste-
ogenic and antiosteoclastic effects [7]. -e current study has
illustrated that KP could influence adipogenesis [8], in-
flammation [9], oxidative stress [10], osteoblastic apoptosis
[11], and osteoclastic apoptosis [12], resulting in osteo-
protective effects. -erefore, KP could serve as a comple-
mentary and alternative medicine with a good prospect for
clinical application on treating SOP.

In our prevent study, we performed bioinformatics
analysis including network pharmacology and molecular
docking so as to carry out systematic analysis on numerous
pathways and targets involved in the function of KP on
treating SOP.

2. Materials and Methods

Figure 1 describes the flow chart of study design.

2.1. Obtaining KP-Related Structure and Targets. We ob-
tained the KP-related structure and targets through the
following steps: first, we conducted data retrieval on the
TCMSP database (https://tcmsp-e.com/) [13], which pro-
vides comprehensive information of KP including its
structure and target information; second, by searching the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/),
the KP structure was stored as an “SDF” file, which was
imported into the SwissTargetPrediction database (http://
new.swisstargetprediction.ch/) [14] to get the targets asso-
ciated with KP; and third, we adopted the UniProt database
(http://www.uniprot.org/uniprot/) to standardize the KP-
related target proteins with “popular organisms” limited to
humans, which were described as gene symbols.

2.2. SOP-Related Genes and Corresponding Proteins. -e key
word “Senile Osteoporosis” was searched in the two data-
bases, including GeneCards (https://www.genecards.org/)
[15] and Online Mendelian Inheritance in Man (OMIM,
https://omim.org/) [16], with the species set as “Homo sa-
piens.” -e UniProt database was adopted to standardize the
corresponding proteins of SOP-related genes.

2.3. Overlapped Target Proteins (OTPs). R (v3.6.1) software
was used to take the overlap of KP- and SOP-related target
proteins to get OTPs.

2.4. Protein Interaction Analysis of OTPs. -e STRING da-
tabase (https://string-db.org/) [17] was retrieved to get the
protein-protein interaction (PPI) data of OTPs. Next, the
PPI information of OTPs was input into Cytoscape (v3.7.2)
software (https://www.cytoscape.org/) [18] to construct the
PPI network and calculate the degrees of targets in the
network through network topology analysis. We determined
the target proteins with degree above average to be core
target proteins. Afterwards, we generated a KP-OTPs-SOP
network via Cytoscape.

2.5. GO Enrichment Analysis and KEGG Pathway Analysis.
We conducted GO and KEGG analysis of the overlapped
targets by means of clusterProfiler package (R3.6.1) and
extracted the enrichment results with p< 0.05.

2.6. Molecular Docking between Key Targets and KP. -e top
5 proteins in terms of degree were chosen for molecular
docking, which were considered the key targets in the process
of KP treating SOP. In order to explore interaction activity
between KP and its key targets, we utilized AutoDock Vina
(v1.1.2) software [19] to carry out molecular docking simu-
lations. We searched the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) for the 3D structure of KP. We
used AutoDock Tools (v1.5.6) to distribute charge and
combine nonpolar hydrogen for KP and converted the results
into a PDBQT file. We downloaded the crystal structures of
target proteins from the RCSB PDBwebsite (https://www.rcsb.
org/). -en, the target protein was separated from its ligand,
added polar hydrogen, and distributed charge via AutoDock
Tools, which would be subsequently stored as a PDBQT file.
AutoDock Tools were also utilized to calculate the center and
size of the docking box. Molecular docking simulations
among KP and the target proteins were performed with
every affinity calculated. Afterwards, Discovery Studio
(https://www.3ds.com/products-services/biovia/products/
molecular-modeling-simulation/biovia-discovery-studio/)
was used to draw and analyze the docking results of KP.

3. Results

3.1. KP-Related Structure and Target Proteins. From TCMSP
and SwissTargetPrediction databases, we got 152 targets of
KP. With them imported into the UniProt database, we
obtained KP-related target proteins called gene symbols.
Supplementary Tables S1 and S2 show the KP-related
structure and target information.

3.2. Target Information of SOP and Overlapped Target
Proteins (OTPs). -rough the retrieval of GeneCards and
OMIM databases, we obtained a total of 978 target proteins
of SOP. We took the overlap of KP- and SOP-related targets
as OTPs, which included 68 overlapped targets, as dem-
onstrated in Table 1 and Figure 2(a).

3.3. PPI Network Construction and Core Target Protein
Screening. OTPs were imported into the STRING database
with the targets having no interactive connections with others
hidden. And then we imported the PPI data into Cytoscape
(v 3.7.2) to draw PPI network in Figure 2(b). -ere were 28
target proteins predicted to be the core target proteins
(Table 2), whose degrees were above average degree (20.59).

3.4. KP-OTPs-SOP Network Plotting. Figure 2(c) shows the
KP-OTPs-SOP network with 70 nodes and 136 edges in-
cluded. In Figure 2(c), the red circular nodes stand for the
overlapped target proteins (OTPs). -e orange diamond
node stands for “kaempferol.” -e yellow round rectangle
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Figure 1: -e flowchart of this study.
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node stands for “senile osteoporosis.”-e edges stand for the
interactive relationships among kaempferol, senile osteo-
porosis, and the overlapped targets.

3.5. GO Enrichment Analysis. We got 1529 items of bio-
logical process (BP). -e top 20 items are shown in
Figure 3(a). Noteworthily, we have filtrated 20 entries mainly
related to inflammatory response, oxidative stress, angio-
genesis, bone remodeling and resorption, and osteoblast and
osteoclast differentiation, which have a close association
with bone homeostasis as demonstrated in Figure 3(b).
Additionally, we input 68 OTPs into Cytoscape for GO.BP
enrichment analysis with p value set to 0.00001. Figure 3(c)
illustrates the enrichment results mainly involved in the
following four aspects: (i) inflammation-associated activi-
ties, such as regulation of reactive oxygen species metabolic
process, reactive oxygen species biosynthetic process, and
cellular response to oxidative stress; (ii) cell cycle, such as
negative regulation of apoptotic signaling pathway and
negative regulation of extrinsic apoptotic signaling pathway;
(iii) angiogenesis, such as regulation of blood vessel endo-
thelial cell migration; and (iv) physiological process, such as
female gonad development and mammary gland
development.

3.6. KEGG Pathway Analysis. -e KEGG enrichment
analysis of 68 target genes was performed using R software.
We finally got a total of 146 items including the 44 key
signaling pathways listed in Table 3. We conducted network
visualization via Cytoscape as plotted in Figure 3(d).

3.7.Molecular Docking Analysis. Among 28 core targets, the
top 5 target proteins in terms of degree were chosen for
molecular docking, including AKT1, TNF, SRC, CASP3, and
JUN, which were considered the key targets in the process of
KP treating SOP. To verify how KP binds to the key targets,
we adopted molecular docking using AutoDock Vina to
predict their docking interactions. Table 4 shows the docking
results including affinity and interaction information.

According to Figure 4(a), KP combined with AKT1 by
forming one hydrogen bond with the residue Gln-47 and six
van der Waals interactions with Gln-43, Arg-41, Glu-40,
Tyr-38, Lys-39, and Leu-52 (binding affinity: −6.0 kcal/mol).
In addition, there were pi-alkyl interactions upon KP with
Pro-42 and Ala-50.

Table 1: Potential target genes of KP in the treatment of SOP.

Number Gene
1 NOS2
2 PTGS1
3 AR
4 PPARG
5 PTGS2
6 HSP90AA1
7 PIK3CG
8 PRKACA
9 DPP4
10 PGR
11 F2
12 NOS3
13 RELA
14 AKT1
15 BCL2
16 BAX
17 TNF
18 JUN
19 CASP3
20 MAPK8
21 XDH
22 MMP1
23 STAT1
24 HMOX1
25 CYP3A4
26 CYP1A1
27 ICAM1
28 VCAM1
29 ALOX5
30 AHR
31 INSR
32 GSTM1
33 SLPI
34 NOX4
35 AKR1B1
36 TYR
37 CA2
38 ABCB1
39 GLO1
40 SYK
41 GSK3B
42 MMP9
43 MMP2
44 CDK5
45 CCNB1
46 ESR2
47 TTR
48 CYP19A1
49 EGFR
50 IGF1R
51 MPO
52 PIK3R1
53 CA1
54 SRC
55 PTK2
56 KDR
57 MMP13
58 MMP3
59 MET
60 BACE1

Table 1: Continued.

Number Gene
61 AKR1A1
62 APP
63 PARP1
64 MMP12
65 ESR1
66 CFTR
67 TERT
68 MAPT
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According to Figure 4(b), the combination affinity of KP
on TNF was −7.6 kcal/mol.-e residues containing Leu-120,
Gln-61, and Tyr-59 interacted with KP by forming 5 van der
Waals interactions. Moreover, KP combined with TNF by
forming four hydrogen bonds with the residues Gly-121,
Ser-60, and Tyr-151. Notably, there were pi-pi stacked and
pi-pi T-shaped interactions between KP and Tyr-119.

According to Figure 4(c), the combination affinity of
KP on SRC was −5.9 kcal/mol. -ere existed pi-alkyl in-
teraction and pi-donor hydrogen bond, respectively, pro-
vided by the Lys-62 and Arg-14 residues in the interactions
with KP. Moreover, KP was bound with the residues Ser-36,

-r-38, Arg-14, and His-60 by hydrogen bonds and Glu-37,
-r-39, Cys-44, and Tyr-61 by van der Waals.

According to Figure 4(d), the combination affinity of KP
on CASP3 was −8.4 kcal/mol. -ere were 6 van der Waals
interactions provided by the Gly-122, Ser-120, Ala-162, Ser-
205, Phe-256, and Trp-206 residues in the interactions with
KP. -ere existed pi-alkyl interaction and pi-donor hy-
drogen bonds provided by the Cys-163, Tyr-204, and Arg-64
residues in the interactions with KP. Additionally, KP
combined with CASP3 by forming three hydrogen bonds
with the residues Arg-207, His-121, and Tyr-204 and an
unfavorable donor-donor interaction with Gln-161.

SOP

KP

910 68 84

(a)

Node Size: Degree

1.0 56.042.314.8 28.5

291 42 5615

Node Fill Color Degree

EGFR

CCNB1

SLPI

AKR1B1

MMP13

MMP12
CASP3

NOX4

GSTM1

TYRHSP90AA1

IGF1R

CYP3A4

APP

PTGS2

BAX

JUN

VCAM1

SRC

MMP3

CYP1A1

INSRMAPK8

F2

RELA

TERT

TNF

BACE1

ESR1

MMP1

AKT1

GSK3B

AHR
NOS2

HMOX1

MAPT

PGR

PTK2

CYP19A1

PIK3CG

PPARG

PTGS1

ESR2
PARP1

AR

MMP9

STAT1

ALOX5

AKR1A1

BCL2

GLO1

PIK3R1

ICAM1

SYK

DPP4

TTR

CA1

CDK5

XDH

PRKACA

NOS3

MET

ABCB1

MMP2

CA2

KDR

MPO

CFTR

(b)

MET

ICAM1

MMP3

CYP1A1

MMP13

CYP3A4

KDR

HMOX1

PTK2

STAT1

SRC

MMP1

CA1

XDH
PIK3R1 MAPK8

MPO

CASP3

IGF1R

JUN

EGFR

TNF

CYP19A1

BAX

TTR

BCL2

ESR2

AKT1

CCNB1RELACDK5

NOS3

MMP2

F2

MMP9

PGR

GSK3B

DPP4

SYK

PRKACA

GLO1

PIK3CG

ABCB1

HSP90AA1

Kaempferol

CA2

PTGS2 MAPT TYR
PPARG

TERT

AKR1B1

AR

CFTR

NOX4

PTGS1

ESR1

SLPI

NOS2

MMP12

GSTM1

Senile
Osteoporosis

PARP1

INSR

APP

AHR

AKR1A1
ALOX5BACE1

VCAM1

(c)

Figure 2: Venn diagram of OTPs (a), PPI network of OTPs (b), and KP-OTPs-SOP network (c).
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Notably, there were pi-cation and pi-pi T-shaped interac-
tions upon KP with Arg-207 and Tyr-204.

According to Figure 4(e), the combination affinity of KP
on JUN was −6.4 kcal/mol. -ere existed 3 hydrogen bonds
provided by the Asn-25, Glu-29, and Gln-33 residues in the
interactions with KP. Additionally, there were 3 van der
Waals interactions upon KP with Arg-28, Tyr-18, and Glu-
19. Notably, KP interacted with the Lys-11, Lys-14, and Ala-
15 residues by pi-sigma, pi-alkyl, and amide-pi stacked
interactions.

4. Discussion

KP, a flavonoid identified in Drynariae Rhizoma, has been
revealed to have beneficial effects on SOP via inhibiting
osteoclast formation and bone loss [12, 20]. Studies have
illustrated that KP exerts the antiosteoporotic function via
upregulating microRNA-101 and activating the Wnt/
β-catenin pathway, which promotes osteoblast differentia-
tion, proliferation, andmigration [21]. To further explore the
mechanisms of KP in treating SOP, we carried out a series of
bioinformatics analysis to screen potential targets and
pathways in the present study.

In our present study, we got 68 overlapped targets be-
tween KP and SOP, including 28 core targets listed in Ta-
ble 2. According to PPI network topology analysis, we
noticed that these targets were characteristics of inflam-
mation, oxidative stress, and bone homeostasis-associated
proteins. -e top five targets ranked by degree are AKT1,

TNF, SRC, CASP3, and JUN, which are all bound tightly
with KP according to molecular docking results, indicating
that they may play a key role in KP treatment for SOP.

AKT1 (RAC-alpha serine/threonine-protein kinase) is
identified as a unique signaling intermediate in bone ho-
meostasis that controls the differentiation of osteoblasts and
osteoclasts [22]. Some studies have verified that the inhi-
bition of AKT1 expression would enhance bone turnover
markers’ expression and extracellular matrix mineralization,
which consequently suppresses osteoporosis [23]. Moreover,
AKT1 plays an important role in the PI3K-Akt signaling
pathway, the involvement of which alleviates SOP pro-
gression by suppressing inflammatory response and osteo-
clast formation [24]. Moreover, evidence shows that
kaempferol could block AKT1 phosphorylation [25].
-erefore, we speculated that KP could reduce inflammatory
response and osteoclast formation by downregulating AKT1
expression levels in patients suffering from SOP, thus
exerting therapeutic effects on SOP.

TNF (tumor necrosis factor) is the earliest inflammatory
mediator produced in response to oxidative stress and
promotes the production of inflammatory mediators and
induces the expression of macrophage colony-stimulating
factor (M-CSF) [26]. TNF affects SOP healing by activating
NF-lB, promoting RANKL-induced osteoclast differentia-
tion, and increasing bone resorption [27]. TNF-α plays a
critical role in the development of osteoporosis via regu-
lating oxidative stress, bone homeostasis, and remodeling
[28, 29]. Moreover, the existing study reveals that KP could
significantly decrease the TNF expression and secretion [30].
-erefore, we speculated that KP could reduce oxidative
stress in inflammatory response by downregulating TNF
expression in SOP patients, so as to anti-SOP.

SRC (Proto-oncogene tyrosine-protein kinase Src) has
been reported to involve in the process of osteoblast dif-
ferentiation, which plays a vital role in advancing bone
maturation [31]. Further studies have revealed that SRC
plays a pivotal role in driving osteoblast proliferation and
extracellular matrix (ECM) remodeling, which influences
bone formation and remodeling [32]. Moreover, SRC is also
an osteoclast-specific gene, which is essential for osteoclast
function [33]. In general, the involvement of SRC exerts
important effects on bone metabolism, which participates in
the regulation of osteoblast and osteoclast activities [34].
Notably, sufficient evidence has revealed that KP regulates
anti-inflammatory responses by the direct suppression of
SRC [35]. However, research is needful to explore whether
KP could exert therapeutic effects on SOP by regulating the
expression of SRC and thus suppressing inflammatory
response.

CASP3 (caspase-3) gets involved in cell apoptosis [36].
Evidence has revealed that the downregulation of CASP3
mRNA can promote SOP healing [37]. Further studies have
demonstrated that the upregulation of CASP3 can activate
the p53 signaling pathway, destroy osteoblast maturation,
and inhibit chondrocyte differentiation, thus restraining
SOP healing [38]. It has been verified that CASP3 deletion
could alleviate inflammatory response [39]. Moreover, it has
been reported that KP treatment could remarkably decrease

Table 2: Core targets of KP in the treatment of SOP.

Number Core targets Degree
1 TNF 56
2 AKT1 52
3 SRC 47
4 CASP3 45
5 JUN 45
6 EGFR 43
7 PTGS2 43
8 HSP90AA1 41
9 MMP9 41
10 ESR1 39
11 PPARG 39
12 MAPK8 32
13 MMP2 32
14 NOS3 30
15 RELA 29
16 HMOX1 28
17 GSK3B 28
18 KDR 26
19 AR 26
20 ICAM1 26
21 IGF1R 26
22 STAT1 25
23 VCAM1 25
24 PGR 24
25 PTK2 24
26 APP 22
27 PIK3R1 22
28 MPO 21
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the CASP3 expression in vitro [40]. Nevertheless, there are
scanty research projects exploring the regulation of KP on
CASP3 expression to alleviate inflammatory response for
treating SOP.

JUN is a proinflammatory factor and forms a dimer
complex called AP-1 along with FOS, which accelerates the
transcription and expression of genes related to bone growth
and development containing AP-1 binding sites through
multiple mechanisms, thus regulating bone metabolism
[41, 42]. Numerous studies have confirmed that the acti-
vation of JUN promotes osteoclastogenesis [43]. Moreover,
JUN, as a regulatory factor in the JNK signaling pathway,
could activate inflammatory response and osteoclast for-
mation [44]. Notably, sufficient evidence has revealed that
KP regulates anti-inflammatory responses by the suppres-
sion of JUN [45, 46]. -us, JUN plays a key role in in-
flammatory response and osteoclastogenesis and KP might
treat SOP by suppressing JUN expression.

Similar to PPI analysis, GO enrichment results show
consistent results. Additionally, biological processes in-
volving the regulation of inflammatory response, oxidative
stress, and bone homeostasis make a key role in KP treating
SOP, as demonstrated in Figure 3(b). In recent years, reports
have revealed that inflammatory response plays an

important role in the pathogenesis of SOP, which could
disrupt bone homeostasis by accelerating bone resorption
and inhibiting bone formation, thereby triggering SOP [47].
Mounting evidence reveals the role of KP in attenuating
inflammatory response by encumbering the expressions of
inflammatory mediators in many signaling pathways like
MAPK [48]. For example, the MAPK signaling pathway
being activated would promote the expressions of inflam-
matory cytokines TNF-α and IL-1β in inflammatory re-
sponse, while the presence of KP could suppress this
pathway and exert protective effects on SOP [7, 49]. KP,
modulating the activities of proinflammatory enzyme, has
been reported to inhibit cyclooxygenase expression in nu-
merous inflammatory disorders [50]. KP also suppresses the
production of nitric oxide that triggers the activation of
TNF-α, thereby inhibiting inflammatory response [51].
-ere is growing evidence for the role of kaempferol in
attenuating inflammatory response mediated by NF-lB,
indicating its protective effects on bone loss in postmeno-
pausal osteoporosis by blocking TNF-α-induced nuclear
translocation of the NF-lB subunit p65 from the cytoplasm
to the nucleus [52]. And KP could suppress age-related NF-
lB activation by inhibition of NF-lB subunit p65 translo-
cation so as to restrain inflammatory response [53]. Some
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Figure 3: GO.BP enrichment analysis (a–c) and pathway-target network (d). (a, b) -e top and screened 20 items of biological processes in
terms of p value. (c) Different colors represent different biological process groups, and node size stands for term p value, while the edges
represent the connections between biological processes and targets. (d) A red V-shaped node represents a signaling pathway, a yellow
circular node represents a gene, and an edge represents a relationship between a pathway and a gene.
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evidence showed that there was a negative correlation be-
tween dietary intake level of KP and serum CRP level,
suggesting the key role of KP in reducing the risk of in-
flammation [54]. It has been verified that oxidative stress

makes key functions in SOP-related inflammatory response
[55]. Oxidative stress can alter bone homeostasis, accelerate
bone resorption, and reduce bone formation, leading to the
progression of SOP [56]. And some evidence has illustrated

Table 3: KEGG pathway enrichment analysis.

ID Signaling pathway Enriched gene number p value
hsa04933 AGE-RAGE signaling pathway 15 1.25E− 15
hsa04926 Relaxin signaling pathway 14 1.24E− 12
hsa04915 Estrogen signaling pathway 14 3.18E− 12
hsa04657 IL-17 signaling pathway 12 8.40E− 12
hsa04668 TNF signaling pathway 12 6.95E− 11
hsa04917 Prolactin signaling pathway 9 3.91E− 09
hsa04625 C-type lectin receptor signaling pathway 10 8.98E− 09
hsa04066 HIF-1 signaling pathway 10 1.42E− 08
hsa04151 PI3K-Akt signaling pathway 15 1.04E− 07
hsa04012 ErbB signaling pathway 8 3.64E− 07
hsa04370 VEGF signaling pathway 7 4.16E− 07
hsa04010 MAPK signaling pathway 13 5.19E− 07
hsa04211 Longevity regulating pathway 8 5.21E− 07
hsa04064 NF-kappa B signaling pathway 8 1.73E− 06
hsa04071 Sphingolipid signaling pathway 8 4.78E− 06
hsa04722 Neurotrophin signaling pathway 8 4.78E− 06
hsa04014 Ras signaling pathway 10 1.56E− 05
hsa04664 Fc epsilon RI signaling pathway 6 1.70E− 05
hsa04620 Toll-like receptor signaling pathway 7 1.94E− 05
hsa04660 T cell receptor signaling pathway 7 1.94E− 05
hsa04062 Chemokine signaling pathway 9 2.23E− 05
hsa04662 B cell receptor signaling pathway 6 4.96E− 05
hsa04919 -yroid hormone signaling pathway 7 5.18E− 05
hsa05235 PD-L1 expression and PD-1 checkpoint pathway 6 7.88E− 05
hsa04068 FoxO signaling pathway 7 8.60E− 05
hsa05022 Pathways of neurodegeneration 13 9.65E− 05
hsa04912 GnRH signaling pathway 6 0.000100782
hsa04213 Longevity regulating pathway 5 0.000138239
hsa04072 Phospholipase D signaling pathway 7 0.000184632
hsa04921 Oxytocin signaling pathway 7 0.000236022
hsa04015 Rap1 signaling pathway 8 0.000278775
hsa04152 AMPK signaling pathway 6 0.000406963
hsa04621 NOD-like receptor signaling pathway 7 0.000693065
hsa04910 Insulin signaling pathway 6 0.000822176
hsa04150 mTOR signaling pathway 6 0.001558955
hsa04024 cAMP signaling pathway 7 0.002012705
hsa04920 Adipocytokine signaling pathway 4 0.002323
hsa04115 p53 signaling pathway 4 0.002854606
hsa04371 Apelin signaling pathway 5 0.005314536
hsa04630 JAK-STAT signaling pathway 5 0.010013151
hsa04340 Hedgehog signaling pathway 3 0.010486159
hsa04020 Calcium signaling pathway 6 0.01301751
hsa04622 RIG-I-like receptor signaling pathway 3 0.019110112
hsa04550 Signaling pathways regulating pluripotency of stem cells 4 0.028737678

Table 4: Molecular interactions of key targets and KP.

Compound Target PDB ID Affinity
(kcal/mol) Interactions

Kaempferol AKT1 1UNQ −6.0 Hydrogen bond, pi-alkyl, van der Waals
Kaempferol TNF 2AZ5 −7.6 Hydrogen bond, van der Waals, pi-pi stacked, pi-pi T-shaped
Kaempferol SRC 1O41 −5.9 Hydrogen bond, pi-alkyl, van der Waals

Kaempferol CASP3 1NMS −8.4 Hydrogen bond, pi-alkyl, pi-pi T-shaped, pi-cation, unfavorable donor-donor, van der
Waals

Kaempferol JUN 5FV8 −6.4 Hydrogen bond, pi-alkyl, pi-sigma, van der Waals, amide-pi stacked
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the therapeutic effects of kaempferol on the damage induced
by oxidative stress and inflammation in osteoporosis [7, 57],
suggesting that kaempferol is a natural antioxidant for
treating osteoporosis. According to our present study,
kaempferol may be an antioxidant with a good prospect that
helps reduce inflammatory response and oxidative stress,
thus improving SOP. Moreover, accumulating studies have
revealed that the expressions of core targets, including AKT1
[58], TNF [29], SRC [35], CASP3 [59], JUN [44], etc., make
vital functions in regulating inflammatory response and
oxidative stress. -erefore, we speculated that KP could
regulate core targets’ expressions and bone homeostasis by
inflammatory response and oxidative stress in SOP patients,
so as to anti-SOP.

KEGG enrichment results revealed that PI3K-Akt,
MAPK, VEGF, prolactin, HIF-1, TNF, estrogen, IL-17, p53,
and NF-kappa B (NF-lB) signaling pathways may exert
regulatory functions on kaempferol against SOP.

-e involvement of PI3K-Akt signaling pathway alle-
viates SOP progression by suppressing inflammatory re-
sponse and osteoclast formation [24]. Moreover, some
studies have shown that the PI3K-Akt signaling pathway is
involved in the inhibition of osteoporosis through pro-
moting osteoblast proliferation, differentiation, and bone
formation [60, 61], -erefore, the PI3K-AKT signaling
pathway is essential in bone homeostasis.

Inflammatory pathways including IL-17 [62], TNF [63],
and NF-lB [64] signaling pathways participate in regulating
osteoclast differentiation. Moreover, the IL-17 signaling
pathway can stimulate the synthesis of TNF-α, IL-6, and NF-
lB, thereby promoting RANKL-induced osteoclast

differentiation [65]. -erefore, IL-17, TNF, and NF-lB
signaling pathways are speculated to exert important
functions in the process of KP treatment against SOP, which
needs further identification.

-e estrogen signaling pathway can exert regulatory
functions on osteoblasts’ and osteoclasts’ proliferation, ap-
optosis, and differentiation [66]. -e current study has
revealed that KP regulates osteoblastic differentiation via
estrogen receptor signaling [67]. Similar to the estrogen
signaling pathway, research on the prolactin signaling
pathway also indicates that KP has the function of estrogen
regulation, which is evidence for kaempferol in treating
postmenopausal SOP [68].

Evidence has confirmed that the activation of p53 sig-
naling pathway can disrupt osteoblast maturation and re-
strain chondrocyte differentiation [38]. -e inhibition of
MAPK signaling pathway suppresses osteoclastogenesis
[69]. -e activation of HIF-1/VEGF signaling pathway can
accelerate angiogenesis in bone tissues, which gets involved
in the pathological evolution of SOP [70, 71].

In summary, our results predict some potential thera-
peutic targets and pathways, providing reference for future
studies on KP treatment against SOP. However, one limi-
tation of this study is that further in vivo and in vitro ex-
periments are needed to confirm our findings.

5. Conclusion

Collectively, our results first reveal that KP may treat SOP
possibly via regulating inflammatory response, oxidative
stress, bone homeostasis, etc. -ese results will provide
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Interactions
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Figure 4: Simulated molecular docking of kaempferol on AKT1 (a), TNF (b), SRC (c), CASP3 (d), and JUN (e).
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theoretical basis for KP treatment against SOP. However, the
specific mechanism andmaterial basis still need to be further
verified in vivo and in vitro.
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