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Abstract

A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of
samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining
experimental data using independent technologies to illuminate the same biological trends, as well as complementing each
other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating
proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could
enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The
brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma - GBM)
through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in
the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of
individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both
performed better in terms of significance measure of its findings compared to individual analyses, as well as providing
independent verification of the individual results. Thus a better context for overall biological interpretation of the data can
be achieved.
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Introduction

The rapid progress in technology development for assessing

information from multiple angles about genes, proteins and

metabolites, has resulted in a growing expectation of a large

potential for new discoveries in the understanding of cellular

molecular activities. Individual monitoring technologies have been

marketed to reveal a holistic picture by capturing information

about most entities of a type, as for instance all transcribed genes

encoded in the genome or a large number of proteins present in a

prepared sample. Obviously, a natural extension is the combina-

tion of several types of data to reveal more information about

biological processes at the molecular level. To reap from this

expected potential of discoveries, several fundamental challenges

have to be faced. High throughput datasets have by nature a large

imbalance between number of samplings and number of variables

measured, leading to challenges regarding interpretation and

confidence estimates of analysis results. And the interpretation of

several datasets assessing samples from different angles in

combination requires a new theoretical model which can assess

biological questions and significance of predicted answers. A

successful integrated model should assess relevant biological

questions with higher confidence in predicted answers compared

to methods for individual dataset types, despite the increased

complexity of the model. In this work we present a combined

analysis approach for interpreting high throughput microarray

and proteomics datasets on two different tumor phenotypes

obtained by serial transplantations of human GBMs in the CNS of

rats [1,2].

GBM represents a heterogeneous group of malignant brain

tumors [3] and is one of the most fatal forms of cancers in humans.

The average survival of affected patients has only improved from

an average of 12 months to 14.5 months after diagnosis in the last

5 years due to improvements in standard of care [4]. To address

the complex issue on the molecular background of human GBMs,

a human GBM model was developed in immunodeficient rats

[1,2,5], which partially uncouples two major phenotypic charac-

teristics and landmarks of this tumor, i.e. invasion and angiogen-

esis. These two characteristics render GBM difficult to treat by

available therapies. The model is based on serial xenotransplan-

tation of human GBM spheroids into the brain of immunodefi-

cient rats, where they initiate the growth of primary GBMs. The
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phenotype of the first generation tumor shows a highly invasive

nature in the rat brain whereas by serial passaging in the animals,

the tumor evolves into a faster growing angiogenic tumor, with

abundant vasculature, and less invasion. The model and brain

tissue phenotypes are illustrated in Figure 1.

As already mentioned, data analysis and biological interpreta-

tion of high-throughput technology generated data sets at the scale

of genomes and proteomes is in general a challenge, due to the

large imbalance between the number of samples and the number

of molecules being tested. To identify a statistical significant

change in expression level for a single gene at the level of change

that is interesting for biological interpretation, many independent

replicates are required in the experiment. The intricate nature of

the GBM xenotransplantation serial passage rat model, and the

naturally limited availability of tumor material donors, have

resulted in a limited set of matched sample pairs with the invasive

and angiogenic phenotype to be screened by microarrays and

proteomics. In addition, a high level of individual variance

between samples is expected and has been observed when

addressing the transcriptomics data set in earlier work [1,6]. The

molecular background of the phenotype switch was addressed at

the levels of differential expression of RNA [1] and proteins [7–9],

where extensive validation including large numbers of GBM

patients and functional analyses led to novel candidate biomarkers

of a particular phenotype [7–9]. The challenge however remains

to pinpoint particular molecular pathways reflected by enrichment

of particular gene sets, which would lead to a better biological

understanding of the underlying pathology.

Two general strategies to counter weigh the dimensionality

challenges of high-throughput data analysis are (i) to analyze sets

of a priori defined biologically related molecules at the time instead

of individual molecules and (ii) to integrate results from several

independent analyses possibly from different high-throughput

experiments, both to find evidence supporting the same biological

trends and to complement each other for a richer interpretation.

The common analysis of Gene Ontology terms overrepresented in

a list of differentially expressed genes compared to the full data set

is an early example of strategy (i), while the Gene Set Enrichment

Analysis – GSEA [10] and the large number of variants of

enrichment based methods [11,12] represents later developments.

Several methods of meta-analysis of independent experiments on

the same samples exist, from simple Rank Product based

combining of individual list results [13] to more complex multi-

variate analysis based methods to identify similar trends across the

data sets such as Co-Inertia Analysis (CIA) [14,15]. Multi-variate

analysis methods require a minimum number of samples in a

dataset, and CIA requires the exact same samples to be present

across the datasets, often making them unsuitable in practice, such

as in our GBM case. Subramanian et al demonstrated the

flexibility of GSEA as a tool for co-analyzing several independent

micorarray experiments on biologically related samples. Here we

extend this line of thought to cross the barrier between different

high throughput technologies.

In this work we applied the Gene Set analysis approach to co-

interpret the two datasets in the context of each other. The

annotation of the identified genes and proteins are interpreted

with respect to the invasive and angiogenic phenotypes, and

compared with the regular Gene Ontology analysis results of the

individual datasets. This approach highlights how they support

and strengthen each other in our combined interpretation, as well

as complement each other in a better detailed picture of the

phenotypic differences in the brain cancer model’s invasive and

Figure 1. Orthotopic Xenograft Brain Tumor Model. A schematic representation of the tumor model and the phenotypes obtained after
transplantation in nude rats. The first transplantation into nude rats often resulted in an invasive phenotype, while serial transplantation of the
tumors resulted in angiogenic phenotype after several generations.
doi:10.1371/journal.pone.0068288.g001
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angiogenic phases. The results display a strong statistical support

between the proteomics and microarray results, which also is

reflected in the biological interpretation of the data through a high

concordance with the individual analysis results. To further

demonstrate the validity of the suggested approach, the results

are contrasted with Rank Product meta-analysis of the same two

datasets. We also applied the method to an earlier published

independent pair of microarray and proteomics data sets,

successfully rediscovering the main findings from the original

publication.

Materials and Methods

Experiment Design
Five pairs of corresponding invasive and angiogenic samples

from the xenograft models, originating from five individual

patients, were used in total in the microarray and proteomics

experiments. Four sample pairs were prepared for microarray

analysis and were hybridized to eight Applied Biosystems Human

Genome Survey Microarrays v.2.0 (Array Express accession A-

MEXP-503) in one hybridization run, as described in [6]. Two

sample pairs were prepared for proteomics analysis and processed

in three iTRAQ experiments as described in [9]. One sample pair

overlapped between the two technologies.

Preprocessing and Normalization
The microarray data were imported into the data analysis suite

J-Express 2012 [16] (http://jexpress.bioinfo.no), for preprocessing

and normalization. The raw signal intensities were extracted,

controls filtered out, and the data quantile normalized [17].

Further the data were log2 transformed and each sample pair was

combined to a single log-ratio column. The proteomics data were

preprocessed from raw data to quantified peptides as described in

[9], including annotation on origin of peptide from either host

cells, tumor cells or unknown origin, based on sequence homology

to rat and human databases. In this work we use the full

proteomics dataset of 3359 protein profiles.

Differential Expression Statistics
The Rank Product (RP) statistics [13] was used both for the

transcriptomics and proteomics data sets to rank genes and

proteins according to differential expression between the invasive

and angiogenic samples. RP was also used on the reduced datasets

containing only the uniquely mapping transcripts and proteins

used for the integrated analysis of the data from the two

technologies. RP was implemented in the J-Express 2012 analysis

suite.

Gene Ontology Over-representation Analysis
J-Express uses a Fischer’s exact test to assess statistical

overrepresentation of genes annotated with a given Gene

Ontology (GO) term (www.geneontology.org, [18]) in a smaller

list of interest compared to a reference data set. In this work we

compared the top lists of the RP differential expression analysis at

a given significance level (q-value) against the full dataset the RP

analysis was performed on. Listed p-values for the GO terms in the

result table are nominal, i.e. not adjusted for multiple testing, and

should be evaluated with this in mind. Gene Ontology OBO file

used was dated 2010 Dec 3rd, filtered Homo sapiens Gene

Ontology mapping file used was dated 2011 Nov 29th. Only GO

terms present in the OBO file are included in the analysis.

Gene Set Enrichment Analysis
As an alternative to the GO overrepresentation analysis, the

Gene Set Enrichment Analysis (GSEA) [10] was also applied to

evaluate and rank GO terms annotating the two datasets. In

contrast to the over-representation analysis, GSEA and related

approaches do not operate with a fixed limited list of interest to

evaluate. Instead they evaluate the distribution of genes annotated

with a given GO term across the reference data set. In GSEA the

distribution is used to define a natural subset of the annotated

genes called the Leading Edge (LE) that contributes to the score of

the gene set (GO term in this case), and that can be followed up for

a closer biological interpretation. The analyses were performed

with the GSEA implementation in J-Express 2012. As the Rank

Product metric is intrinsically incompatible with the default

weighted scoring scheme of GSEA, we opted for a log-fold scoring

metric for evaluating gene-sets on our paired samples. This is the

most comparable metric to the one used by the Rank Product

method when sorting logratios of paired samples before combining

them into a Rank Product. Other parameters were used with

default settings: permutation method: genes, min number of

members: 10, max number of members: 500.

Trend Descriptions Based on Gene Ontology
Each dataset was analyzed independently by Rank Product, GO

over-representation analysis and GSEA. The same procedure was

first performed with focus on upregulation in invasive samples over

angiogenic samples, then with focus on upregulation in angiogenic

samples over invasive samples. The GO Terms and gene

annotations of the top lists were manually screened for terms

functionally relevant to angiogenesis and invasion, and the top list

trends summarized from this.

Mapping of Transcript and Protein Identifiers between
Datasets

The human Entrez Gene ID for the targeted genes on the ABI

microarray was used as the common identifier between the

transcriptomics and proteomics data sets. Using the online ID

converter service at BioMart Central Portal (http://central.biomart.

org), the identified protein SwissProt IDs from the proteomics

dataset was first mapped to their corresponding human or rat Entrez

Gene IDs. The rat Entrez Gene IDs for the proteins identified as of

host origin, were further mapped to the human Entrez Gene IDs for

their homologous genes using BioMart’s gene retrieval service, with

Ensembl transcript IDs as the linking identifier.

After completing the mapping, it was then possible to analyze

the transcripts corresponding to the top differentially expressed

proteins as a gene set in the transcriptomics data, as illustrated in

Figure 2B. The blue horizontal bars represent protein corre-

sponding transcripts and how they distribute in the microarray

data. The same analysis is done reversely for transcript

corresponding proteins in the proteomics data.

Public Availability of Data
The microarray data have been annotated according to

MIAME [19] and are deposited in ArrayExpress (http://www.

ebi.ac.uk/arrayexpress), accession no E-MTAB-1185. The nor-

malized data matrix for the quantitative proteomics data is

available in File S2.

Rank Product Meta-analysis
The matching subsets of proteins and transcripts from the

microarray and proteomics datasets were first identified. Then

they were ranked individually according to differential expression

Integrated Omics Data Analysis in Brain Cancer
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between the invasive and angiogenic samples using the Rank

Product (RP) statistics [13]. The resulting ranks were then used as

the input to RP in a second meta-analysis step to identify protein-

transcript pairs highly ranked in both individual analyses.

Independent Microarray and Proteomics Dataset
Validation Analysis

The CIA approach [15] discussed their method’s performance

on the published mixorarray and proteomics data available for the

life cycle of Plasmodium falciparum, a malaria parazyte [20]. We used

the same published data sets, available as Tables S1 and S2 in File

S1 from their publication, and log2 transformed the linear

expression values for both datasets before proceeding with GSEA

analysis. The datasets contain 4 consecutive asexual lifestages:

merozoite, ring, trophozoite and schizout. We made a rough

definition of expressed transcripts in a lifestage as the transcripts

having a minimum expression value of 1000, yielding gene sets in

the size range of 97–203, and for proteins, a minimum expression

value of 50, yielding gene sets in the size range of 10–77 (gene sets

are listed in File S3). The transcript based gene sets were analyzed

for enrichment in all 4 life stages in the proteomics data using

GSEA in J-Express (single class, weighted logfold scoring), and the

protein based gene sets similarly in the microarray data.

Results

Analysis Results on Individual Data Sets
Table 1 summaries the results of the individual analysis,

elucidating the trends that can be found in the brain cancer

model proteomics and transcriptomics data sets individually using

traditional analysis methods in combination with the Gene

Ontology (www.geneontology.org, [18]). Figure 2A illustrates the

proportions of the total gene lists that the different methods report

findings from.

Although there are several GO terms/trends found overlapping

between the individual proteomics and transcriptomics results,

they seem to be highlighting some general terms for the angiogenic

tumors. For the invasive phenotype there is more consistency in

GO terms overlapping between proteomics and microarray results

and the highlighted consensus trends of Table 1, than for the

angiogenic type.

Gene Set Based Integrated Data Analysis Approach
We suggest a new integrated analysis approach for the co-

analysis of data sets with only a partial set of corresponding

entities. By mapping the transcripts to the corresponding proteins

(see M&M) we can assess how the top differentially expressed

transcripts distribute as a set of proteins in the proteomics data,

and how the top differentially expressed proteins distribute as a set

of transcripts in the microarray data. See Figure 2B. We first

identify the top up-regulated proteins using RP on the set of

mapped proteins at a given significance level, both upregulated in

invasive (I) and angiogenic (A), and screen the corresponding sets

of transcripts using GSEA in the full microarray data set. Similarly

we identify the top up-regulated transcripts using RP on the set of

mapped transcripts at a given significance level, both in invasive

and angiogenic samples, and screen the corresponding sets of

proteins using GSEA in the full proteomics data set.

Figure 2. A: The datasets were analysed for differential expression independently using Rank Product, Gene Ontology over-representation (GO ORA)
and GSEA. The methods evaluate different fractions of the datasets as biologically relevant when sorted for differential expression, as illustrated for
the transcriptomics data set (TR). RP and GO ORA in our case only identified the top ,1% of the overall sorted gene list as relevant, both for the
transcriptomics and proteomics analysis. GSEA on the other hand identified Leading Edge (LE) subsets spanning ,20% of the overall gene list. B:
GSEA based approach for integrating partially overlapping proteomics and transcriptomics data sets. The top differentially expressed entities from
one dataset is mapped into corresponding entities from the other dataset and evaluated as a gene set in GSEA. PR: Proteomics dataset, TR:
Transcriptomics dataset.
doi:10.1371/journal.pone.0068288.g002
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Microarray RP results support proteomics data in

invasive samples. As seen in Figure 3A, left panel, there is a

significant enrichment in the proteomics data of the proteins

corresponding to the differentially expressed transcripts up-

regulated in the microarray data. The enrichment in invasive

samples is consistent with the up-regulation of transcripts in

invasive samples in the microarray data. The right panel shows for

comparison, that there is no such significant trend for proteins

corresponding to the transcripts up-regulated in the angiogenic

samples.

The leading edge consisting of 47 transcript/protein combina-

tions from this gene set is displayed in Table 2, and represents the

starting point of biological interpretation of this integrated co-

analysis.

Proteomics RP results support microarray data in

angiogenic samples. Figure 3B, right panel, displays the

significant enrichment in the microarray data of the transcripts

corresponding to the differentially expressed proteins in the

proteomics data. The enrichment in angiogenic samples is

consistent with the up-regulation of proteins in angiogenic samples

in the proteomics data. The left panel shows for comparison that

there is no significant trend for transcripts corresponding to

proteins up-regulated in the invasive samples.

The leading edge consisting of 43 transcripts backed up by

protein data, is listed in Table 3, and plain inspection of the list

reveals many genes previously found related to angiogenesis.

Comparison to Standard Method and Independent Data
Validation

A straightforward meta-analysis of the brain cancer model

microarray and proteomics datasets revealed no significant

corresponding transcript and protein pairs being differentially

expressed between invasive and angiogenic samples. (Invasive vs

angiogenic top 20 pairs, q = 83.9%, angiogenic vs invasive top 20

pairs, q = 78.1%, see File S4).

The GSEA results from evaluating the top expressed proteins in

the different life cycle stages of Plasmodium falciparum against the

transcriptomics datasets for the same life cycle stages are collected

and presented in File S3. Likewise are the results for the top

expressed transcripts analyzed against the proteomics datasets of

the different stages. These are contrasted with the results in Table 2

of the original work [20].

Discussion

Gene-set based methods often elude more than straightforward

gene-by-gene differential expression analysis, and have received

some focus in the recent years. Another alternative to strengthen

the statistical power within an experiment; say a microarray

experiment, through adding more samples (replicates) for the

statistical test to compute from, is to combine results from several

independent experiments, that together display a trend as

significant. Sometimes this is referred to as a meta-analysis,

depending on level of abstraction from the original data, and

sometimes as an integrated approach. Common to both is the

necessity to map entities from different datasets to each other and

the use of a suitable statistical test to evaluate the combined model.

As demonstrated for the brain cancer model datasets, a regular

Rank Product meta-analysis fails in this case to identify significant

support between the datasets, and alternative ways of relating the

datasets in an integrated approach is called for.

As seen in Table 1, the different traditional analysis approaches

have difficulties finding truly statistically significant results on their

own. The trends discovered are meaningful in terms of the general

difference between the invasive and angiogenic phenotype, but are

neither very specific nor associated with convincing confidence

levels.

Based on the results of manual analyses (resumed in Table 1) we

can conclude that the invasive type of the experimental tumors is

connected with Gene Ontology terms indicating sets of genes

involved in central nervous system development, it’s processes and

regulation, as assessed by GO over-representation analysis in the

transcriptomics data and by the GSEA approach in both the

proteomics and transcriptomics data. This is in agreement with the

phenotypic appearance and behavior of invasive tumors, which

resemble a more immature stem-like cell, capable to infiltrate

Table 1. Overview of trends and statistical significance from the individual analyses of the proteomics and transcriptomics
datasets.

Analysis (Data set) Invasive phenotype - early generation Angiogenic phenotype - late generation

Trend description Stat sign, list length Trend description Stat sign, list length

Rank Product (PR) No trends observed
(Table S1 in File S1)

q = 30%, 11 proteins
(q = 50%, 28 proteins)

Some proteins related to
angiogenesis (Table S2 in File S1)

q = 30%, 59 proteins (q = 50%,
132 proteins)

Rank Product (TR) No trends observed
(Table S3 in File S1)

q = 30%, 272 genes
(q = 50%, 655 genes)

No trends observed
(Table S4 in File S1)

q = 30%, 23 genes (q = 50%, 170
genes)

GO Over-representation (PR) No trends observed
(Table S5 in File S1)

p,0.02, 44 GO gene
sets

Some proteins indicating
late/angiogenic phenotype
(Table S6 in File S1)

p,0.02, 75 GO gene sets

GO Over-representation (TR) Central nervous system
development and processes
(Table S7 in File S1)

p,0.02, 298 GO gene
sets

No trends observed
(Table S8 in File S1)

p,0.02, 102 GO gene sets

GO GSEA (PR) Neural development and
regulation (Table S9 in File S1)

FDR = 50%, 7 GO gene
sets

Increase in mitochondrial related
gene sets (Table S10 in File S1)

FDR = 50%, 20 GO gene sets

GO GSEA (TR) Neuron system development
and regulation, biosynthetic
processes (Table S11 in File S1)

FDR = 50%, 630 GO
gene sets

Cell Cycle, Growth and
Proliferation signature,
blood vessel development
(Table S12 in File S1)

FDR = 50%, 743 GO gene sets

PR: Proteomics, TR: Transcriptomics, GO: Gene Ontology, GSEA: Gene Set Enrichment Analysis, FDR: False Discovery Rate.
doi:10.1371/journal.pone.0068288.t001
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neighboring structures, much like neural stem cells do in the

developing brain. The angiogenic phenotype however, is connect-

ed with the genes related to angiogenesis as assessed by RP

analysis, GO over-representation analysis in proteomics as well as

GSEA in transcriptomics which also included the representation of

terms linked to cell cycle, growth and proliferation.

In contrast to the analyses of the individual datasets, the

integrated analysis shows two important statistically significant

trends: 1) up-regulated transcripts in the invasive phenotype

evaluated together is found as a set of proteins significantly up-

regulated together in the invasive phenotype, 2) up-regulated

proteins in the angiogenic phenotype evaluated together is found

as a set of transcripts significantly up-regulated together in the

angiogenic phenotype. As Figure 3 shows, the leading edges of

these sets are spanning roughly 20% of the full background list.

Hence our co-analysis approach identifies significant gene sets in

the same background gene lists all the individual analyses in

Table 1 were evaluating.

A strong consistency between the integrated analysis results in

Table 2 and the weaker individual analysis results from Table 1 is

confirmed by plain inspection of the protein names in Table 2 and

the dominance of neuronal development and activity related

descriptions. In addition we have listed the most relevant Gene

Ontology terms the 47 proteins in Table 2 are annotated with, and

these are clearly matching the scope of the terms identified by

individual analyses (in particular Table S9 in File S1). In the case

of the invasive phenotype of this experimental GBM model the

tumor cell (human) infiltration of the host (rat) brain tissue is so

vast that it is virtually impossible to isolate or surgically remove the

pure tumor by surgical means, which is also one of the major issues

in the poor success of the surgical treatment alone for human

GBMs. Therefore the tumor tissue samples of this phenotype are

‘contaminated’ to a large extent by host (rat) brain tissue. The

proteins identified by the integrated analysis as differentially

expressed as a set, upregulated in the invasive phenotype, as well

as the results of GSEA of proteomics (Table S9 in File S1) and

manual cross comparisons using the Ingenuity Pathway Analysis

and Human Protein Atlas confirmed this situation at the level of

proteins. Almost half (17 of 36 unique proteins – Table 2) are in

fact proteins linked to the brain cellular localization (cellular

component) and are either of neural (Synapse, Neuromuscular

junction, Postsynaptic density, Synaptic vesicle, Presynaptic vesicle

membrane, Presynaptic active zone, Neuronal cell body etc.) or

glial origin (Myelin sheath, Compact myelin, etc.) and mostly host

proteins or sharing protein sequence homology with the host.

In addition both the GO over-representation analysis (Table S7

in File S1) and GSEA (Table S11 in File S1) of the transcriptomics

data are strongly dominated by brain related terms indicating host

origin rather than tumor cells.

Table 3 lists the up-regulated set of transcripts in the angiogenic

samples which are supported by the proteomics data, the most

dominant trend overlapping with the individual analysis results are

developmental process and blood vessel formation. In particular

the presence of the concrete term angiogenesis annotating three

genes (vav3, anxa2 and anxa2p2) in Table 3 is very interesting.

This is the first time we by molecular level assays were able to

indicate the term reflecting de facto angiogenesis in late generation

tumors (Figure 1), as being one of the most important phenotypic

characteristics of the late generation glioma animal model as well

as one of the hallmarks of the high grade glioma in patient.

Moreover the expression of anxa2 was thoroughly validated at the

level of immunohistochemistry in additional tissue samples of

GBM xenograft models as well as on large number of more than

200 clinical gliomas samples of various grades in a form of a tissue

microarray as shown in our previous research. Indeed we

confirmed a strong up-regulation of Anxa2 in angiogenic

xenografts compared to invasive ones, as well as a significant

Figure 3. The results of the GSEA integrated analysis. A: left – transcript corresponding proteins enriched in invasive samples, right – transcript
corresponding proteins enriched in angiogenic samples. B: left – protein corresponding transcripts enriched in invasive samples, right – protein
corresponding proteins enriched in angiogenic samples.
doi:10.1371/journal.pone.0068288.g003
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Table 3. The set of genes supported by corresponding proteins as differentially expressed and upregulated in the angiogenic
samples.

Probe ID Gene Symbol Gene Name
Human Entrez
Gene ID Cell Comp Biol Proc

167807 A2M alpha-2-macroglobulin 2

226560 CALU calumenin 813 blood coagulation, platelet
activation

213714 VAV3 vav 3 oncogene 10451 cell periphery developmental process,
angiogenesis, blood
coaculation, platelet
activation

185731 CALD1 caldesmon 1 800 cell periphery

164486 KIAA0152 KIAA0152 9761 membrane

209540 ANXA2P2 annexin A2 pseudogene 2 302 cell periphery developmental process,
angiogenesis

162321 SCARB2 scavenger receptor class B, member 2 950 membrane, cell periphery

158386 EPN2 epsin 2 22905

175324 GAPDH glyceraldehyde-3-phosphate dehydrogenase 2597 membrane

127943 PRKCSH protein kinase C substrate 80K-H 5589

203857 GANAB glucosidase, alpha 23193

186473 SLC16A1 solute carrier family 16 (monocarboxylic acid
transporters), member 1 (MCT1)

6566 membrane, cell periphery blood coagulation

184288 CALU calumenin 813

211060 – unassigned 483

100826 ANXA2 annexin A2 302 cell periphery developmental process,
angiogenesis

218154 – unassigned 483

125960 CRIP2 cysteine-rich protein 2 1397

235868 – unassigned 2597

184373 PDIA4 protein disulfide isomerase family A, member 4 9601

207626 ANXA2 annexin A2 302 cell periphery developmental process,
angiogenesis

217860 KLC3 kinesin light chain 3 147700

168192 DNAJB11 DnaJ (Hsp40) homolog, subfamily B, member 11 51726

178526 PDIA6 protein disulfide isomerase family A, member 6 10130 cell periphery

137362 CANX calnexin 821 membrane developmental process

122012 PDIA6 protein disulfide isomerase family A, member 6 10130 cell periphery

211546 P4HB procollagen-proline, 2-oxoglutarate 4-dioxygenase
(proline 4-hydroxylase), beta polypeptide (protein
disulfide isomerase-associated 1)

5034 cell periphery

163592 YBX1 Y box binding protein 1 4904

135268 KIAA1271 KIAA1271 protein 57506 membrane

201478 MCCC2 methylcrotonoyl-Coenzyme A carboxylase 2 (beta) 64087

119206 SCARB2 scavenger receptor class B, member 2 950 membrane, cell periphery

197538 BHLHB2 basic helix-loop-helix domain containing, class B, 2 8553

104131 PDIA3 protein disulfide isomerase family A, member 3 2923

139743 C1orf43 chromosome 1 open reading frame 43 25912 membrane

182757 – unassigned 4904

214214 ANXA5 annexin A5 308 blood coagulation

129188 MSN moesin 4478 membrane, cell periphery

144383 – unassigned 4904

174598 – unassigned 7726

147730 RBM19 RNA binding motif protein 19 9904 developmental process

139584 HLA major histocompatibility complex, class I, A 3105

119283 PYCR1 pyrroline-5-carboxylate reductase 1 5831

134467 CKAP4 cytoskeleton-associated protein 4 10970 membrane
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increase in Anxa2 expression in high grade gliomas (grade III and

IV) compared to low grades (grade I and II) [9].

The over-representation of membrane localized proteins

(plasma membrane, ER, GA and in some instances the Mt) seen

in Table 3, can be explained by the experimental setup of the

proteomics experiment which included an enrichment step for

membrane proteins. Hence the integrated analysis also will have a

bias towards transcripts with gene products in these cellular

compartments. This may also explain the fact that we do not see

support for the signature of cell cycle, growth and proliferation

that was seen as a major trend in the individual analyses (Table

S12 in File S1 in particular). Upon closer examination of the

cellular localization of the underlying transcripts for the trend in

Table S12 in File S1, a majority of these were annotated as located

in the nucleus, and corresponding proteins will thus less likely be

picked up in the membrane targeted fraction in the proteomics

experiment.

Individual analyses pointing towards cell adhesion terms (Table

S11 in File S1) are supported by the integrated approach (Table 3,

MSN) and are in accordance with the invasive phenotype where

cell adhesion appears to may be disrupted.

In addition to providing support for the different individual

analyses and contributing to a more holistic interpretation of the

two datasets, the integrated analysis results in a focused list of

transcripts and proteins found up-regulated in the two phenotypes

for further analysis. It is clear from Table 3 that many of these

have previously been identified as related to angiogenesis and that

this set in combination with the other results is an excellent starting

point for further investigation of this brain cancer model.

As an independent test of the integrated approach to identify

support of a trend in one dataset from another dataset on related

samples, we tried to rediscover a main result of Le Roch et al [20].

Between the four asexual life cycle stages of Plasmodium falciparum in

their data, they identified a stronger relationship between the

trancriptomics expression level in one stage and the protein

expression levels in the following life cycle stage, than directly

within in the same stage. For protein gene sets evaluated in the

microarray data using GSEA, we find the next life cycle stage as

the most enriched protein gene-set in three out of three transitions,

compared to two out of three in the original work. For the reversed

direction, the previous life cycle stage transcript gene-set was

among the two top ranked sets in all three transitions, two times

out-competed by the corresponding life cycle stage at rank 1.

These results emphasize the potential of the integrated approach

to detect and evaluate relationships between multiple datasets on

related samples.

Future work should include a follow up on the focused lists of

Tables 2 and 3, as well as the individual analyses results

strengthened by the integrated analyses, in the context of

functional experiments work in the brain cancer model. In

addition since the integrated results focused on overlapping entities

only between the proteomics and transcriptomics datasets, a study

of how the core set of overlapping proteins and transcripts can be

extended based on functional annotation is warranted.

Supporting Information

Files S1 Tables S1–Table S14. Table S1 in File S1 - Rank

Product analysis in proteomics dataset, enriched in invasive

phenotype (early generation). Table S2 in File S1 - Rank Product

analysis in proteomics dataset, enriched in angiogenic phenotype

(late generation). Table S3 in File S1 - Rank Product analysis in

transcriptomics dataset, enriched in invasive phenotype (early

generation). Table S4 in File S1 - Rank Product analysis in

transcriptomics dataset, enriched in angiogenic phenotype (late

generation). Table S5 in File S1 - GO Overrepresentation analysis

in proteomics dataset, enriched in invasive phenotype (early

generation). Table S6 in File S1 - GO Overrepresentation analysis

in proteomics dataset, enriched in angiogenic phenotype (late

generation). Table S7 in File S1 - GO Overrepresentation analysis

in transcriptomics dataset, enriched in invasive phenotype (early

generation). Table S8 in File S1 - GO Overrepresentation analysis

in transcriptomics dataset, enriched in angiogenic phenotype (late

generation). Table S9 in File S1 - GO GSEA in proteomics

dataset, enriched in invasive phenotype (early generation). Table

S10 in File S1 - GO GSEA in proteomics dataset, enriched in

angiogenic phenotype (late generation). Table S11 in File S1 - GO

GSEA in transcriptomics dataset, enriched in invasive phenotype

(early generation). Table S12 in File S1 - GO GSEA in

transcriptomics dataset, enriched in angiogenic phenotype (late

generation). Table S13 in File S1– Expression signal log2 ratios for

identified proteins in Table 2. Table S14 in File S1– Expression

signal log2 ratios for identified transcripts in Table 3.

(XLS)

File S2 Preprocessed and normalized Rat Brain Model
proteomics data set.
(TXT)

File S3 Gene sets and results for the integrated
approach applied to an independent Plasmodium falci-
parum pair of proteomics and transcriptomics data
sets.
(XLS)

File S4 Rank Product meta-analysis results of proteo-
mics and transcriptomics data for the Rat Brain Model
samples.
(XLS)
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Table 3. Cont.

Probe ID Gene Symbol Gene Name
Human Entrez
Gene ID Cell Comp Biol Proc

136724 TMEM16E transmembrane protein 16E 203859 membrane

Table 3 consist of the 43 transcript measurements in the leading edge of the gene set found to be clearly enriched in the angiogenic samples (Figure 3). The gene set
was defined as the set of transcripts matching the the proteins found differentially expressed in the Rank Product analysis of the proteomics dataset. Signal log2 ratios
are listed in Table S14 in File S1.
doi:10.1371/journal.pone.0068288.t003
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