
Retinitis pigmentosa (RP, OMIM 268000) is the most 
common and highly heterogeneous genetic group of heredi-
tary retinal degeneration diseases, affecting one in about 
3,500–5,000 individuals worldwide [1-3]. So far, mutations in 
over 60 genes have been reported to be responsible for about 
half of nonsyndromic RP [4-6]. Phenotypic and molecular 
genetic overlap has been observed in different forms of retinal 
degeneration [7,8]; for example, RP might be the main sign of 
syndromic RP or other related diseases [9-11]. Mutations in a 
few genes have been shown to cause different forms of retinal 
dystrophy [7], while a few genes originally held responsible 
for other forms of retinal dystrophy have been found to cause 
RP as well [12]. Systematic analysis of all genes responsible 
for other forms of retinal dystrophy in patients with RP is 
limited, especially in Chinese cohorts [13,14]. Therefore, 
systemic evaluation of the frequency of mutations in all genes 

responsible for other forms of retinal dystrophy, apart from 
known RP genes, would be valuable.

Our previous whole exome sequencing study detected 
potential pathogenic mutations in 73 known genes in 86 of 
157 patients with RP [15-17]. Due to the highly heterogeneous 
and genetically and clinically complicated features of RP, 
mutations in the genes related to more severe or syndromic 
diseases might be ignored, and mutations in previously 
analyzed genes might be mistakenly used in molecular diag-
nosis and clinical evaluation. Therefore, it might be interested 
to know if mutations in genes associated with other forms of 
retinal dystrophy may also contribute to RP. In the present 
study, variants in 129 genes responsible for other forms of 
retinal dystrophy were analyzed based on the exome data set 
of the same cohort of 157 patients.

METHODS

This study conformed to the tenets of the Declaration of 
Helsinki and was approved by the Institutional Review Board 
of the Zhongshan Ophthalmic Center. Written informed 
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consent was obtained from the participants or their guardians 
before the collection of their clinical data and preparation 
of genomic DNA from their peripheral venous leukocytes. 
The cohort of 157 probands with RP, including 34 autosomal 
dominant RP, 27 autosomal recessive RP, 10 X-linked RP, and 
86 sporadic RP, were the same as described in our previous 
study [15]. All 157 probands were initially diagnosed as non-
syndromic RP. The criteria for defining RP in the families 
was based on the oral descriptions of the features by the 
probands and their family members, such as poor vision and 
night blindness, or the clinical examination of the other RP 
patients; the clinical features of RP patients were similar to 
those of the probands and included attenuated retinal artery 
and pigment abnormality in the mid-peripheral retina. Whole 
exome sequencing was performed by the NimbleGen SeqCap 
EZ Exome (44M) array and Illumina Genome Analyzer II 
platform with a sequencing depth of 60-fold, as described 
previously [15,18,19].

A total of 221 genes were listed in RetNet, accessed on 
January 27, 2014. Of these, 60 of the 62 genes with known 
association with RP had been analyzed in our previous study; 
the remaining two were not analyzed because EMC1 was not 
captured and FSCN2 (MIM: 607643) was confirmed not to be 
an RP gene [20]. Of the remaining 159 genes, the following 
30 were not included in this study: 1) nine genes associated 
with age-related macular degeneration, since no evidence 
shows that these genes were associated with monogenetic 
retinal diseases; 2) seven genes encoded by mitochondrial 
DNA that were not captured by the NimbleGen SeqCap EZ 
Exome (44M) array; and 3) CHM (MIM: 300390), CYP4V2 
(MIM: 608614), and 12 genes associated with Leber congen-
ital amaurosis (LCA) that were independently analyzed in 
our previous studies [16,17,21]. Ultimately, 129 genes were 
included in this study. All genes screened in the earlier 
studies and in the current study are listed in Appendix 1.

Variants in the 129 genes were selected based on the 
data set from whole exome sequencing. Candidate variants 
were filtered out with the following multiple-step bioinfor-
matics analysis: 1) the SNPs and short indels in the exome 
region were filtered against data from dbSNP132, the 1000 
Genome Project, HapMap, the YH project, and the Exome 
Variant Server, removing minor allele frequency (MAF) 
values that were greater than 0.01, the frequency based on the 
incidence of RP (1/4000), and the fraction of heterozygotes in 
Hardy–Weinberg equilibrium; 2) excluded non-coding vari-
ants without altering splicing sites predicted by BDGP; 3) 
excluded the synonymous variants without altering splicing 
sites in the genes; 4) excluded missense variants predicted 
to be benign by both Polyphen-2 and SIFT in autosomal 

dominant and X-linked genes; and 5) compared with the 
whole exome sequencing data of 633 individuals in ethnic-
matched regions without retinal degeneration.

Sanger sequencing was used to confirm the candidate 
variants with primer pairs targeting the fragments encom-
passing the candidate variants. Primers (Appendix 2) were 
designed using Primer3 [22]. The procedures used for ampli-
fication, sequencing, and analysis of the target fragments 
were as previously described [18,19]. Segregation analysis 
of potential pathogenic variants were performed in available 
family members. Candidate causative mutations were vali-
dated in 192 normal Chinese individuals.

RESULTS

Multiple-step bioinformatics analysis was used to select 90 
candidate variants from the 129 genes from the whole exome 
sequencing of the 157 patients. Of the 90 variants, 83 (92%) 
were confirmed by Sanger sequencing, while the other 7 (8%) 
with the low sequencing depth were false-positives. Of the 83, 
76 (Appendix 3) were considered as unlikely causes of RP 
for the following reasons: 1) mutations that are more likely 
to be pathogenic have already been detected in one of the 
72 genes related to RP and LCA or CHM in our previous 
studies [15-17]; 2) the genotype did not match the patterns of 
inheritance; 3) the variants did not segregate with the disease; 
4) the variants were found in controls or in the 1000 Genome/
Exome Variant Server database with a frequency higher than 
the prevalence rate of RP as causative mutations; 5) the vari-
ants were unlikely or less likely to be pathogenic mutations 
based on previous reports; 6) the phenotype did not match the 
genotype; and 7) the other allele for compound heterozygous 
variants if one of them was confirmed to be a false-positive. 
The remaining seven variants involved three genes: BBS2 
(MIM: 606151), INPP5E (MIM: 613037), and CACNA1F 
(MIM: 300110); these were considered to be potentially caus-
ative in five patients (Figure 1 and Table 1), including three 
patients with homozygous (1) or compound heterozygous (2) 
mutations in genes associated with an autosomal recessive 
trait, and two patients with hemizygous mutation in genes 
associated with an X-linked trait. Limited cosegregation 
analysis and family structure did not reject the association 
of the mutations with RP (Figure 1). The carriers with the 
heterozygous mutant alleles were evaluated as asymptomatic 
for the disease through follow-up examinations and revisits 
by phone calls. All 7 mutations were absent in the 192 normal 
individuals (Table 1).

Clinical data of the five patients with RP are summarized 
in Table 2. Ocular signs and symptoms in all five patients 
met the diagnosis of RP (Figure 2). Two patients (RP237 
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and RP240) had BBS2 mutations; one had RP alone with 
a missense mutation and a nonsense mutation, while the 
other one had BBS syndrome (misdiagnosed as RP) and a 

homozygous nonsense mutation. The patient (RP374) with 
INPP5E mutations had typical RP but without noticeable 
extraocular or systemic anomalies (unfortunately, a brain CT 

Figure 1. Pedigrees of the five families with mutations and sequence chromatography. The family members and their corresponding mutations 
are shown just above the pedigrees (+: wild-type allele). Sequence changes that were detected in the patients are shown (left column) and 
compared with corresponding normal sequences (right column).

http://www.molvis.org/molvis/v21/477
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scan was not available). The two patients (RP401 and RP403) 
with CACNA1F truncation mutations showed generalized 
retinal degeneration involving both rods and cones.

DISCUSSION

Seven putative pathogenic mutations in 3 of the 129 genes 
known to associate with other forms of retinal dystrophy 

Figure 2. Fundus photographs of five patients with the mutations identified in this study. The corresponding patient identification numbers 
and gene mutations are listed above each photo. Further clinical information about these patients is listed in Table 2. 
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have been detected in 5 of 157 (3%, Figure 3) patients with 
RP based on whole exome sequencing. These mutations are 
predicted to be causative based on bioinformatics analysis 
and comparison with previously reported mutations in BBS2, 
INPP5E, and CACNA1F. Ocular changes in the five patients 
with mutations are consistent with RP (Figure 2 and Table 
2). These findings suggest that a small portion of RP may be 
caused by mutations in genes responsible for other forms of 
retinal dystrophy.

Systematic analysis of genes responsible for other forms 
of retinal dystrophy in patients with RP has been limited. 
Previously, genotyping microarrays were used to analyze 
all known mutations in several genes associated with 
retinal dystrophy in patients with retinal dystrophy [23-25]. 
However, only a small subset of known mutations are covered 
by this technology, and the total diagnostic rate is less than 
15% [26,27]. Systematic analysis of most of these genes in 
patients with RP or hereditary retinal dystrophies has been 
conducted using targeted-capture sequencing. The frequen-
cies of detected mutations in these genes are from 4% to 11% 
[13,28,29]. Analysis of individual genes also revealed that 
mutations in a few genes known to associate with other forms 

of retinal dystrophy also cause a fraction of RP [12,30,31]. 
This suggests that the frequency of mutations in genes associ-
ated with other forms of retinal dystrophy in our cohort of RP 
is close to that reported previously.

Consistencies and inconsistencies were both evident 
in the associations between the phenotypes and the identi-
fied mutations in the five patients. The two patients with 
BBS2 mutations included one with nonsyndromic RP that 
has missense and nonsense mutations, while the other with 
Bardet-Biedl syndrome had a homozygous nonsense muta-
tion. A missense and a nonsense mutation in BBS2 have 
previously been reported to be responsible for Bardet-Biedl 
syndrome [32,33], and two missense mutations in BBS2 have 
been described recently in patients with nonsyndromic RP 
[34]. Comparisons of these findings suggest that the pheno-
types might be affected by the type of mutation. Further 
study is needed to clarify this interesting issue.

The patient (RP374) with INPP5E mutations had no other 
noticeable signs of systemic anomalies, although mutations 
in INPP5E have been identified in patients with MORM 
syndrome [35] and Joubert syndrome [36]. Unexpectedly, 
two patients (RP401 and RP403) with RP had hemizygous 

Figure 3. Proportions of mutations in 129 genes associated with other forms of retinal dystrophy in 157 unrelated patients with retinitis 
pigmentosa.

http://www.molvis.org/molvis/v21/477
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truncation mutations in CACNA1F; these kinds of mutations 
have been identified in patients with congenital stationary 
night blindness [37,38], cone-rod dystrophy [39], and Aland 
Island eye disease [40], but not in patients with RP. The 
association of CACNA1F mutations with RP in these two 
patients is uncertain, although the phenotype in the patients is 
consistent with RP, and mutations in CACNA1F are predicted 
to be null.

Overall, mutations in all known genes—including these 
129 genes associated with other forms of retinal dystrophy, 
72 genes related to RP and LCA, and CHM—could be identi-
fied in less than 58% of 157 patients with RP. In each of the 
disease categories, mutations were detected in 71% (24/34) 
autosomal dominant RP, 48% (13/27) autosomal recessive RP, 
80% (8/10) X-linked RP, and 53% (46/86) sporadic RP. Over 
42% of the patients without identified mutations might carry 
other pathogenic variants in the noncoding regions of the 
corresponding genes, or may have gross deletion involving 
whole exons that might be missed by whole exome sequencing 
and Sanger sequencing, or may be caused by mutations in 
novel genes yet to be identified. The information about these 
patients without identified mutations is a valuable resource 
for seeking out new genes that are responsible for RP.

APPENDIX 1. GENOMIC INFORMATION OF ALL 
THE GENES RESPONSIBLE FOR OTHER FORMS 
OF RETINAL DYSTROPHY IN THE EARLIER 
STUDIES AND THE CURRENT STUDY.

To access these data, click or select the words “Appendix 1”.

APPENDIX 2. PRIMERS USED IN SANGER 
SEQUENCING.

To access these data, click or select the words “Appendix 2”.

APPENDIX 3. OTHER VARIANTS DETECTED 
IN 129 GENES RESPONSIBLE FOR OTHER 
FORMS OF RETINAL DYSTROPHY FROM THE 
157 UNRELATED PATIENTS WITH RETINITIS 
PIGMENTOSA.

To access these data, click or select the words “Appendix 3”.
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