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Abstract

Meditation practice is believed to foster states of mindful awareness and mental qui-

escence in everyday life. If so, then the cultivation of these qualities with training

ought to leave its imprint on the activity of intrinsic functional brain networks. In an

intensive longitudinal study, we investigated associations between meditation practi-

tioners' experiences of felt mindful awareness and changes in the spontaneous elec-

trophysiological dynamics of functional brain networks. Experienced meditators were

randomly assigned to complete 3 months of full-time training in focused-attention

meditation (during an initial intervention) or to serve as waiting-list controls and

receive training second (during a later intervention). We collected broadband electro-

encephalogram (EEG) during rest at the beginning, middle, and end of the two train-

ing periods. Using a data-driven approach, we segmented the EEG into a time series

of transient microstate intervals based on clustering of topographic voltage patterns.

Participants also provided daily reports of felt mindful awareness and mental quies-

cence, and reported daily on four experiential qualities of their meditation practice

during training. We found that meditation training led to increases in mindful quali-

ties of awareness, which corroborate contemplative accounts of deepening mental

calm and attentional focus. We also observed reductions in the strength and duration

of EEG microstates across both interventions. Importantly, changes in the dynamic

sequencing of microstates were associated with daily increases in felt attentiveness

and serenity during training. Our results connect shifts in subjective qualities of medi-

tative experience with the large-scale dynamics of whole brain functional EEG net-

works at rest.
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1 | INTRODUCTION

The large-scale functional organization of the brain is reflected in the

synchronized activity of widely distributed neural populations (Varela,

Lachaux, Rodriguez, & Martinerie, 2001). These distributed brain net-

works fluctuate spontaneously according to dynamical patterns in

their activity, which are observable even in the absence of external

stimulation (Damoiseaux et al., 2006; Fox et al., 2005; Mantini,
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Perucci, del Gratta, Romani, & Corbetta, 2007). This spontaneous

activity provides a window into the functional organization of intrinsic

neurocognitive networks and their coordinated temporal dynamics.

However, the functional architectures of these networks are not static

over time: they reconfigure dynamically to support ongoing cognition

and behavior, and may demonstrate experience-dependent plasticity

in response to changing behavioral patterns and habits—including

engagement in meditation or mindfulness practice (e.g., Garrison,

Zeffiro, Scheinost, Constable, & Brewer, 2015; Hasenkamp & Barsalou,

2012; Taren et al., 2017).

The activity and dynamics of functionally defined brain networks

can provide insights into how long-term psychological changes

accompanying formal meditation practices are instantiated in the

brain. Shamatha (transl. calm abiding) is one such foundational medita-

tion practice of Buddhist contemplative traditions (Gethin, 1998;

Wallace, 1999). Shamatha practice is thought to strengthen atten-

tional capacities and calm the mind. During shamatha meditation,

practitioners selectively attend to an object of concentration, such as

the sensations of the breath or body, while monitoring and regulating

the quality of their ongoing awareness and states of arousal

(e.g., focused or distracted, alert or dull). With continued training,

shamatha meditation is thought to bring about lasting changes in

awareness and psychological functioning (Wallace, 1999, 2006; Wallace

& Shapiro, 2006).

Shamatha meditation is also thought to lead to deepening levels

of physical and mental relaxation with continued training. These quali-

ties, in turn, accompany increases in the felt stability and vividness of

one's attention (Wallace, 1999, 2006). Modern treatments of mindful-

ness frame this kind of mental stability as the degree to which one's

focus persists over time; and vividness as the phenomenal clarity or

salience of one's perceptual and mental experiences (Lutz, Jha,

Dunne, & Saron, 2015). As expertise in meditation grows, these quali-

ties are believed to pervade daily life and acquire a more trait-like con-

sistency, shaping one's ongoing experience in the world. A recent

phenomenological study supports the idea that practitioners experi-

ence their mind as being more focused and clear when actively medi-

tating than when at rest (Abdoun, Zorn, Poletti, Fucci, & Lutz, 2019).

However, few studies have examined how these mental qualities

develop over time with training, or whether they reflect stable cogni-

tive traits that generalize to situations outside of formal meditation

practice.

The spontaneous dynamics of the brain offer a framework for

investigating how the organization and activity of functional brain net-

works support these developing states of awareness. Correlational

and cross-sectional studies have used magnetic resonance imaging

(MRI) to describe patterns of functional connectivity during medita-

tion and rest. One goal of this work has been to characterize the activ-

ity and connectivity of intrinsic brain networks that contribute to

meditation-related differences in cognitive function (Bauer, Whitfield-

Gabrieli, Diaz, Pasaye, & Barrios, 2019; Brewer et al., 2011; Garrison

et al., 2015; Hasenkamp & Barsalou, 2012; Taylor et al., 2013). Several

recent studies have also examined longitudinal changes in the

organization and activity of structural and functional brain networks

during periods of quiet rest following weeks or months of mindfulness

training or meditation practice (Bauer et al., 2020; Kral et al., 2019;

Taren et al., 2017; Valk et al., 2017).

By contrast, few studies of meditation have emphasized the time-

varying dynamics of functional brain networks, or their associations

with the psychological transformations that accompany meditation-

based training (cf. Mooneyham et al., 2017). Instead, resting-state

studies of meditation have commonly employed functional MRI (fMRI)

to characterize so-called static functional network connectivity aver-

aged over minutes of recording. However, the synchronized activity

of the brain varies at much faster temporal scales; and importantly,

moments of conscious experience that form the basis of meditative

inquiry—such as fleeting perceptions, memories, and passing thoughts—

are presumed to transpire within fractions of a second (Varela, 1999).

Fortunately, the examination of these neurocognitive events and their

supporting cortical systems is well-suited to the millisecond time scale of

the scalp-recorded electroencephalogram (EEG).

One method for characterizing the spontaneous dynamics of

electrophysiological functional brain networks involves the segmenta-

tion of EEG time series into brain electric microstates. Topographic

patterns of EEG scalp voltage are known to vary over time in a

dynamic but organized manner. Over brief timescales, the spatial dis-

tributions of particular head-surface voltage topographies remain

quasi-stable for about 40–120 ms, before rapidly transitioning to

other momentary configurations (Lehmann, 1971). These moments of

topographic stability are known as microstates, and reflect topographi-

cally defined brain states of synchronized neuronal activity (for a

review, see Michel & Koenig, 2018). Any change in the strength-

normalized topographic configuration of the scalp electric field sug-

gests a change in the spatial distribution of active neural generators in

the brain (Murray, Brunet, & Michel, 2008; Vaughan, 1982). Conse-

quently, distinct topographic configurations of microstates reflect the

activity of different neuronal networks. This makes characterizing

moments of stability and change in scalp topography valuable because

it enables the activity of distinct functional brain networks to be

described in terms of their alternating temporal dynamics.

The decomposition of EEG time series into microstates has

shown that a substantial portion of the observed topographic variance

during periods of rest can be accounted for by four to seven data-

driven clusters, or configurations of distinct spatial topography.

Indeed, the relative homogeneity of microstate configurations across

studies of resting EEG is striking (Michel & Koenig, 2018), and is sug-

gestive of a common electrophysiological functional network architec-

ture in humans. Source localization and EEG-informed fMRI methods

have provided some indication of the brain generators that likely drive

the voltage topographies of resting EEG microstates (Brechet

et al., 2019; Britz, Van De Ville, & Michel, 2010; Custo et al., 2017;

Yuan, Zotev, Phillips, Drevets, & Bodurka, 2012), which broadly align

with the main hubs of fMRI-derived resting-state functional networks.

Microstate analysis affords a rich set of parameters for character-

izing the dynamics of these electrophysiological brain states. These
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include the average activation strength, duration, and frequency with

which microstates occur, among others. Past studies have associated

these measures of microstate activity with information processing

functions (e.g., Britz, Hernandez, Ro, & Michel, 2014), conscious cog-

nitive acts (e.g., Brechet et al., 2019; Milz et al., 2016; Seitzman

et al., 2017), states of alertness, arousal, perception, and meditation

(e.g., Brodbeck et al., 2012; Comsa, Bekinschtein, & Chennu, 2019;

Faber, Travis, Milz, & Parim, 2017; Zanesco, King, Skwara, & Saron,

2020), and spontaneous phenomenal experiences (e.g., Lehmann,

Pascual-Marqui, Strik, & Koenig, 2010; Lehmann, Strik, Henggeler,

Koenig, & Koukkou, 1998; Pipinis et al., 2017). Importantly, one

recent study found that 6 weeks of daily meditation practice led to

clusters of optimal microstates with different topographic configura-

tions in EEG collected at rest (Brechet et al., 2021).

The examination of microstates at rest may therefore provide

insights into experience-dependent changes in the dynamics of func-

tional brain networks. More broadly, the complex succession of global

brain states over time is thought to reflect how the brain and cogni-

tion are dynamically coupled with the world (Bressler & Kelso, 2016;

Bressler & Menon, 2010; Rabinovich, Afraimovich, Bick, & Varona,

2012; Varela et al., 2001). Thus, ongoing cognitive function and the

functional organization of brain networks should also be reflected in

time series of microstates as brain states dynamically evolve over suc-

cessive moments. In addition to metrics of averaged microstate

dynamics, sequence analytic methods can quantify differences in

sequences of microstate as they unfold over time.

In the present study, we examined the longitudinal effects of

shamatha meditation training on felt states of awareness and the

spontaneous dynamics of electrophysiological functional brain net-

works. We conducted two full-time residential retreat interventions.

During the first intervention, meditation practitioners were randomly

assigned to engage in 3 months of training (6–10 hr daily) or to serve

as waiting-list controls. A second intervention was then held, in

which wait-list participants received their own training intervention.

In both interventions, participants reported on their feelings of mind-

ful attentiveness and serenity using a daily experience survey. In

addition, training participants reported daily on four experiential

dimensions of their meditation practice, which are commonly

ascribed to focused-attention (shamatha) meditation practices (Lutz

et al., 2015): physical relaxation, mental relaxation, attentional stabil-

ity, and attentional vividness. We expected meditation training to

gradually increase these phenomenal aspects of meditation in practi-

tioners' daily felt experience, coincident with their developing medi-

tative expertise.

The fingerprints of practitioners' changing states of awareness

may also be reflected in resting-state electrophysiological dynamics.

We collected resting broadband EEG at the beginning, middle, and

end of each intervention, and segmented the EEG into microstates to

estimate the activation strength of whole brain neuronal networks

and their millisecond temporal dynamics. Relative to wait-list controls,

we expected differences to emerge in the strength, occurrence rate,

and duration of microstates over the course of both interventions.

However, due to limited prior research in this area, we had no

hypotheses about whether such changes would be specific to a given

microstate configuration or reflect more global changes to the dynam-

ics of interacting microstates. As such, we also examined changes in

the temporal patterning of microstates across the entire resting time

series, and whether this patterning evolved differently for each group

as a function of training. Finally, we explored whether longitudinal

changes in experiential qualities of awareness were directly associated

with the large-scale neuronal dynamics of brain electric microstates.

For all our analyses, we expected effects to replicate across both inde-

pendent training interventions; results that do not replicate require

corroboration from future research.

2 | METHODS

2.1 | Participants

Sixty individuals with prior meditation experience were recruited

through advertisements in various Buddhist meditation centers and

print and online publications. Participants were assigned to an ini-

tial training group (n = 30) or a waiting-list control group (n = 30)

through stratified random assignment. In the first of two 3-month-

long interventions (Retreat 1), the initial training group lived onsite

and practiced meditation at Shambhala Mountain Center in Red

Feather Lakes, Colorado. During Retreat 1, the wait-list participants

traveled to the retreat center for week-long assessments, but ret-

urned to their normal daily lives at home between assessments.

Approximately 3 months after Retreat 1, these same control partici-

pants (n = 29)1 received formally identical training during a second

3-month intervention (Retreat 2) held at the same location. Group

assignment occurred roughly 3 months prior to the beginning of

Retreat 1.

The training and wait-list participants were matched and assigned

to groups on basic demographics (age, sex, handedness, and educa-

tion) and prior meditation experience (see MacLean et al., 2010;

Sahdra et al., 2011, for additional recruitment and participant details).

The mean age was 48 years (range = 22–69), there were 28 males and

32 females, and 57 right-handed (3 left-handed) participants. All par-

ticipants were required to have some prior meditation experience,

including having previously attended a retreat by B. Alan Wallace, the

meditation teacher who led the training in the present study. On aver-

age, participants had attended 14 prior meditation retreats and

reported 2,610 total hours of estimated lifetime meditation experi-

ence (range = 200–15,000). All participants had normal or corrected-

to-normal vision and hearing, and no known neurological or Axis I psy-

chiatric diagnoses (based on the Mini International Neuropsychiatric

Interview screen; Sheehan et al., 1998). We also confirmed that the

groups did not differ on baseline measures of personality, cognitive

control performance, or self-reported anxiety, depression symptomology,

and well-being (see MacLean et al., 2010; Shields et al., 2020). Study pro-

cedures were approved by the Institutional Review Board of the Univer-

sity of California, Davis. All participants gave full informed consent and

were compensated $20 per hour of data collection.
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2.2 | Meditation training

Participants received meditation training from B. Alan Wallace, an

established Buddhist teacher and scholar. The training emphasized

three shamatha techniques, which aim to foster calm sustained atten-

tion on a chosen object: (a) mindfulness of breathing, in which atten-

tion is drawn to the tactile sensations of the breath; (b) attending to

the arising of mental content (e.g., thoughts, perceptions, sensa-

tions)—a technique known as settling the mind into its natural state;

and (c) focusing attention on the sense of awareness itself, known as

shamatha without a sign (Wallace, 2006). Participants also practiced

complementary techniques, known collectively as the Four Immeasur-

ables, which aim at generating compassion and benevolent aspirations

for oneself and others.

While on retreat, participants were encouraged to maintain mind-

ful awareness of their actions and surroundings throughout the day;

met twice daily for group practice and discussion; and devoted an

average of about 6 hr (SD = 1.5) of their remaining daily time to soli-

tary shamatha meditation over the course of the entire retreat, based

on estimates from daily experience surveys. Further details regarding

the techniques employed and training time dedicated to different

techniques can be found in Sahdra et al. (2011). B. Alan Wallace

designed the structure of the training intervention but was not

involved in data collection or analysis.

2.3 | Procedure

All participants were assessed at the beginning, middle, and end of

their respective training or wait-list periods with a battery of self-

report, behavioral, and physiological laboratory measures (the results

of which have been reported on elsewhere, e.g., MacLean et al., 2010;

Sahdra et al., 2011; Saggar et al., 2012, 2015; Shields et al., 2020;

Zanesco, King, MacLean, & Saron, 2018; Zanesco et al., 2019). At each

assessment, testing took place across a 2-day period, in two sound-

attenuated and darkened testing rooms located in the building where

training participants lived and meditated. In addition, all participants

were asked to complete a daily experience survey each evening for

the duration of their training or wait-list periods. Daily experience

reports were included for a time period spanning from the end of the

preassessment laboratory session (Day 5 after arrival) to the beginning

of the postassessment laboratory session (Day 72 after arrival). During

Retreat 1, the wait-list control participants arrived 3 days (range = 65–

75 hr) before each laboratory assessment to acclimatize to the moder-

ate altitude (�2,400 m), diet, and natural surroundings of the retreat

center.

Participants engaged in 4 min of silent rest at the start of each

laboratory session. Participants were asked to sit quietly and comfort-

ably with their eyes open or closed, with their hands on their lap, dur-

ing four 1-min epochs. A digital audio chime signaled the beginning

and end of each epoch, presented in fixed order: eyes open, eyes

closed, eyes closed, eyes open. To allow participants to settle into

quiet rest—and to avoid confounds due to the temporal ordering of

conditions—we limited our analyses to the two contiguous minutes of

eyes closed rest. The eyes open epochs were not submitted to micro-

state clustering or analysis.

2.4 | Daily experience questionnaire

The daily experience questionnaire included a modified list of 42 affect

labels from the expanded Positive and Negative Affect Schedule

(PANAS-X; Watson & Clark, 1994). Participants rated how strongly

each affect label described how they generally felt that day, from

1 (disagree strongly) to 7 (agree strongly). For the present analyses,

we selected three items reflecting feelings of attentiveness (alert,

attentive, focused) and three items reflecting feelings of serenity

(at ease, calm, and serene). We then created daily composite scores

for attentiveness and serenity by averaging items within these dimen-

sions.2 Active training participants were also asked to judge the qual-

ity of their meditation practice each day along four experiential

dimensions: physical relaxation or comfort, mental relaxation or com-

fort, attentional stability, and attentional vividness. Ratings were made

on a scale ranging from 1 (very poor) to 5 (very good).

Only daily records with complete responses for all six affect labels

were retained for analysis of attentiveness and serenity; and only

records with complete responses on all four self-reported meditation

qualities were retained for analysis of these qualities. Daily records

provided on days of the laboratory sessions were excluded from ana-

lyses. If participants mistakenly provided duplicate records for the

same calendar date (<0.6% of useable records in Retreat 1 or Retreat

2), scores were averaged across records for that day. Fifty-nine partic-

ipants had available data in Retreat 1 for attentiveness and serenity

scores (M = 55.8 days, SD = 14.3 range = 10–66), and 29 training par-

ticipants had available data in Retreat 2 (M = 64.2 days, SD = 1.4,

range = 60–65). One control participant did not complete any of the

daily questionnaires in Retreat 1. Thirty active training participants

had available data in Retreat 1 for ratings of their meditation quality

(M = 62.7 days, SD = 4.8, range = 47–66), and 29 training participants

had available data in Retreat 2 (M = 63.4 days, SD = 1.8,

range = 59–65).

2.5 | EEG data collection and processing

Continuous EEG was recorded from 88 electrodes (custom equidis-

tant montage; http://www.easycap.de) using the Biosemi Active2 sys-

tem (http://www.biosemi.com), sampled at 2,048 Hz with 24-bit

resolution. Individual electrodes were localized in three dimensions

using a Polhemus Patriot digitizer (http://www.polhemus.com). The

two 1-min epochs of eyes-closed EEG were concatenated, average

referenced, and band-pass filtered offline between 0.1 Hz (12 dB/

octave zero-phase) and 200 Hz (24 dB/octave zero phase). EEG were

screened for poor signal quality, and channels with intermittent con-

nectivity or periods of extreme amplitude were removed. Several

recordings with poor overall signal quality were also excluded from
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further preprocessing. A total of 169 recordings (out of 180) from

59 participants were retained for Retreat 1, with 119.32 s (SD = 2.11)

of retained EEG, on average. For Retreat 2, a total of 81 recordings

(out of 87) from 29 participants were retained, with 119.34 s

(SD = 1.95) of EEG, on average.

After initial data screening, second-order blind source identifica-

tion (SOBI; Belouchrani, Abed-Meriam, Cardoso, & Moulines, 1997)

was used to remove additional non-neural signal contaminants,

including 60 Hz noise, and ocular and muscle artifacts. Details regard-

ing the SOBI procedure can be found in Saggar et al. (2012). The

2 min of 88-channel EEG data were then reconstructed absent puta-

tive sources of noise and transformed into a standard 81-channel

montage (international 10–10 system) using spherical spline interpola-

tion. This transformation was performed to ensure that the location

and number of channels were consistent across participants following

the removal of channels with poor signal quality. Initial data

processing and interpolations were conducted using Brain Electrical

Source Analysis software (BESA 5.3; www.besa.de). Finally, the EEG

were down sampled to 102.4 Hz, low-pass filtered (40.0 Hz, 12 dB/

octave), and spatially smoothed to reduce the influence of signal out-

liers in the electrode montage (see Michel & Brunet, 2019, for a

description of spatial smoothing). These final processing steps were

done using the Cartool software toolbox version 3.7 (Brunet, Mur-

ray, & Michel, 2011).

F IGURE 1 Schematic illustrating the method of topographic segmentation using 1 s of 81-channel eyes-closed rest taken from an individual

electroencephalogram (EEG) recording at random. (a) The global field power (GFP) is calculated from the multichannel EEG and reflects a measure
of the ongoing strength of the electric field. The time series succession of voltage maps is also derived from the EEG. Maps are 2D isometric
projections with nasion upward. (b) Voltage maps at peaks of GFP are identified as periods of topographic quasi-stability. k-means clustering of
maps at GFP peaks (polarity is ignored) identifies the optimal k clusters of voltage maps for that recording. The centroids of clusters from each
recording are then submitted to a second k-means clustering to identify the optimal k global clusters from among all recordings. (c) The original
EEG time series is categorized according to which global cluster centroid best correlates with that instance in order to reexpress the multichannel
EEG as a sequence of alternating microstates and derive measures of temporal dynamics from the categorized time series

3232 ZANESCO ET AL.

http://www.besa.de


2.6 | Topographic segmentation and microstate
parameter estimation

Topographic identification of microstates was achieved through an

adapted k-means clustering method, implemented in Cartool. This

method determines the optimal number of clusters (k) that can

account for the greatest global explained variance (GEV) in the spatial

time series using the smallest number of representative topographic

maps (Michel, Koenig, & Brandeis, 2009; Murray et al., 2008). A sche-

matic summarizing steps of this procedure is depicted in Figure 1. See

also Zanesco (2020) for a previous application of this technique to

microstate analysis of resting EEG.

To begin, topographic voltage maps were generated for each peak

in the global field power (GFP) time series. This was done separately for

each individual at each assessment. GFP is a reference-independent

measure of voltage potential (μV) that quantifies the strength of the

scalp electric field at a given sample of the recording. The GFP is equiva-

lent to the spatial SD of amplitude across the entire average-referenced

electrode montage (Skrandies, 1990). Maps were clustered at local GFP

peaks because these moments provide optimal representations of the

momentary quasi-stable voltage topography (Zanesco, 2020).

2.6.1 | Clustering of voltage maps

Each iteration of k-means clustering proceeded as follows. A subset

of 1–12 maps (k = [1:12]) was randomly selected from the total set

of voltage maps for a given EEG recording, to use as initial centroids

for clustering. The spatial correlation between the k centroid maps

and the remaining voltage maps was then computed. Voltage maps

were assigned to the centroid with which they had the highest spa-

tial correlation, creating k clusters of maps. Maps were only

assigned to a cluster if the spatial correlation with the centroid map

exceeded 0.5; and correlation values were based on the relative

topographical configuration but not the polarity of the maps by cor-

recting the sign of the spatial correlation coefficients (Michel

et al., 2009). After all correlations were calculated, k new centroids

were created by averaging the constituent maps assigned to a given

cluster. The process was repeated, such that each voltage map was

compared to the recomputed (averaged) centroids and assigned

again based on the correlation criterion. This process continued iter-

atively until the GEV between the average centroids and the maps

converged to a limit.

This entire procedure was repeated 100 times for each value of k,

with a new subset of k centroids selected for each iteration. After

100 iterations, the k set of centroids with maximal GEV was identified.

This was repeated for each level of k = [1:12]. Across all levels of

k (and for each individual and assessment), the optimal number of

k clusters from the maximal GEV centroids was selected using a meta-

criterion defined by seven independent optimization criteria (see

Brechet et al., 2019; Custo et al., 2017). This k-means clustering rev-

ealed that four to seven topographies (M = 5.31, SD = 0.71) were the

optimal number of k clusters for each individual EEG recording (total-

ing 1,327 topographies).

2.6.2 | Clustering of subject-level centroids

In a second step, we conducted k-means clustering on the centroids

identified through clustering of the subject-level voltage maps. This

was done to identify the optimal global clusters that best explain the

subject-level representative cluster centroids across all 250 recordings.

A set of k = [1:15] maps were randomly selected from the set of

subject-level representative topographies and used as random cen-

troids for clustering. For each level of k, 200 iterations were con-

ducted, until the k centroids with the maximal GEV were selected.

After all iterations, the optimal number of k global clusters was deter-

mined using the optimization metacriterion, resulting in a set of

k global centroids that best represent the topographic configurations

from all EEG recordings.

This second round of k-means clustering identified six global clus-

ters that together explained 82.14% of the GEV among the individual

subject cluster centroids. These six clusters were selected as the opti-

mal number based on the optimization metacriterion and appeared to

be a good representation of the most common topographic patterns

observed among participants across retreats. Figure 2 depicts the six

global cluster centroids, which we named microstates A–F, along with

the 1,321 individual subject cluster topographies grouped according

to their global cluster membership. Six topographies went unassigned

to a cluster.

2.6.3 | Parameterization of the microstate time
series

The six global centroids were then fit back to the original EEG record-

ings to derive time series sequences of microstates. All samples of a

participant's continuous EEG were categorized by the global cluster

topography that demonstrated the highest spatial correlation with a

given sample-wise voltage map. EEG samples that had low spatial cor-

relations (<.5) with all global centroids were left unassigned; and

polarity was again ignored during centroid assignment by correcting

the sign of the correlation coefficient. Temporal smoothing was

applied by ignoring assigned microstates that were present for less

than three consecutive samples (30 ms), then splitting the time points

between the preceding and subsequent microstates in the series. In

addition to the continuous EEG, we also fit the six global centroids to

the individual voltage maps associated with each peak of each partici-

pant's global field power.

We derived four microstate parameters from each subject-level

microstate time series. GEV is the percentage of observed variance in

an individual's continuous EEG that is explained by a given global

topographic centroid (i.e., microstate configuration). Mean microstate

duration is the average duration (in ms) of contiguous samples

ZANESCO ET AL. 3233



categorized according to a specific global topography. Frequency of

occurrence represents how many times per second, on average, a given

microstate occurs in the continuous time series. Finally, mean global

field power is the average of the fitted GFP peaks, and reflects the max-

imal field strength and degree of synchronization among the neural

generators contributing to the voltage maps for each global topogra-

phy. In prior work, mean microstate parameters calculated from 2 min

of eyes closed EEG have demonstrated good reliability over two con-

secutive days (Liu et al., 2020). In the present study, reliabilities calcu-

lated over 3 months ranged from poor to excellent across measures

and microstate configurations (see Supplementary Materials).

In Retreat 1, the six global cluster centroids were successfully

assigned to 87.24% of samples from the continuous EEG time series

(SD = 11.6%), and 96.9% of GFP peaks (SD = 6.2%), on average across

participants. Of the 169 recordings, two were excluded from further

analysis because a high percentage of voltage maps for the continu-

ous time series (>69%) and GFP peaks (>42%) could not be assigned

to a global cluster. For the remaining recordings, the six global micro-

state topographies explained an average total of 55.07% GEV for the

continuous EEG time series (SD = 6.7%) and 71.84% GEV for the GFP

peaks (SD = 6.8%). In Retreat 2, the centroids were successfully

assigned to an average of 88.70% of continuous EEG samples

(SD = 9.5%) and 97.81% of GFP peaks (SD = 3.0%). Additionally, the

six global topographies explained an average of 56.3% GEV for the

EEG time series (SD = 7.0%) and 73.0% GEV for the GFP

peaks (SD = 6.4%).

2.7 | Transition probabilities and microstate
sequence analysis

In addition to the four global microstate parameters, we examined the

dynamics of the microstate time series using Markov-chain transition

probabilities and sequence analysis.

2.7.1 | Markov-chain transition probabilities

First-order Markov-chain transition probabilities were calculated

using the R package seqHMM (Helske & Helske, 2019). The proba-

bility that a given microstate transitions to another microstate was

calculated for all 30 pairs of microstates. For these transition

analyses, the microstate time series was transformed so that (a) the

duration of each microstate was ignored by collapsing consecutive

samples of the same microstate configuration into a single observa-

tion, (b) occurrences of consecutive microstate configurations were

collapsed across unassigned epochs lasting for less than two

consecutive samples (≤ 20 ms), and (c) unassigned epochs longer

than two consecutive samples (≥30 ms) were included in the

sequence time series, but transitions to these unassigned epochs

were ignored.

2.7.2 | Optimal matching and analyses of sequence
dissimilarities

We employed a set of multivariate techniques to analyze time series

sequences of microstates, accounting for both the frequency of

occurrence of different microstates and their temporal ordering.

Sequence analysis (Abbott & Tsay, 2000) enables the comparison of

sets of multivariate symbolic data (e.g., a time series of symbolic

states) by defining the dissimilarity between pairwise sets of

sequences based on an edit distance. We calculated matrices of

pairwise dissimilarities between entire (2 min) time series of micro-

states using the TraMineR package in R (Gabadinho, Ritschard,

Müller, & Studer, 2011). Dissimilarities between sequences were

determined using the optimal matching (OM) of spells algorithm

(Studer & Ritschard, 2016). OM determines dissimilarity between

pairs of sequences based on the minimal number of substitutions,

insertions, and deletions required to transform one sequence into

another. The Supplementary Materials provide a more detailed over-

view of OM methods applied to microstate sequences.

F IGURE 2 Six global cluster centroids were identified from
k-means clustering of 2 min of eyes-closed rest from two retreat
interventions. Here, 1,321 cluster centroids (A–F) derived from
k-means clustering of 250 separate recordings are shown grouped
according to their global cluster membership. Each global topography
is the centroid of respective clusters of maps. Maps are 2D isometric
projections with nasion upward. Six cluster centroids went unassigned
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Figure 3 provides a schematic showing microstate sequences

from a Retreat 1 training and control participant and their corresponding

sequence dissimilarities. With sequence analysis, a descriptive measure

of variance is calculated as the discrepancy among sequences. Discrep-

ancy is calculated as the average dissimilarity of sequences from the dis-

tance center of a set of sequences. Greater discrepancy indicates that

sequences are more heterogeneous on average between individuals.

The sequence medoid can also be obtained to provide a visual represen-

tation of the most representative sequence for an entire grouping of

sequences. The medoid in this instance refers to the least dissimilar

sequence to all other sequences within its grouping. This makes the

medoid similar to the median microstate sequence.

Microstate sequence dissimilarities were compared between

groups and assessments using multivariate distance matrix regression

(MDMR; McArdle & Anderson, 2001; McArtor, Lubke, & Bergeman,

2017; Zapala & Schork, 2012) with the MDMR package in R

(McArtor, 2018). MDMR is a person-centered regression method that

allows for the estimation of statistical associations between

multivariate outcomes and categorical or continuous predictors based

on dissimilarities among sets of data (McArtor et al., 2017). Dissimilar-

ity in MDMR can be quantified from various distance measures (e.g.,

Euclidean distance or OM edit distance). When partitioning the sums

of squares of dissimilarities in MDMR, dissimilarities were not squared

because this is preferred when dissimilarity is based on edit distances

(Studer, Ritschard, Gabadinho, & Müller, 2011). Mixed effects MDMR

can also be used to account for hierarchical or dependent data

(McArtor, 2018; McArtor et al., 2017).

2.8 | Statistical analysis

We modeled linear changes in mean attentiveness, mean serenity, and

the four experiential meditation qualities across sequential days of

each intervention. Multilevel mixed effects models were implemented

using PROC Mixed in SAS 9.4. Linear trajectories of change were

described in terms of an intercept (i.e., starting point) and linear slope

F IGURE 3 Schematic summarizing the calculation of pairwise dissimilarities between microstate sequences using optimal matching (OM) of
spells. (a) Time series sequences of microstates are visualized on separate rows for two individuals at pre-, mid-, and postassessment. (b) Pairwise
dissimilarities are shown for these six sequences based on OM. Sequences from mid- and postassessment for the Retreat 1 training participants
are highly dissimilar from other sequences, and more heterogeneous overall (discrepancy = 1,165.85). Sequences from the control participants are
less dissimilar from one another (discrepancy = 990.71), suggesting more homogeneous microstate sequences across assessments
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(i.e., rate of change). Fixed effects of day reflect the linear rate of

change per day of retreat, and random effects of day were included to

represent between-person variability in slopes of daily change and

covariance between slopes and the intercept. Model parameters were

estimated using restricted maximum likelihood, and degrees of free-

dom were approximated by dividing the residual degrees of freedom

into between-person and within-person components. For Retreat

1, fixed effects were referenced to the control group at the first day

of the retreat.

Longitudinal changes in microstate parameters (GEV, GFP, dura-

tion, and occurrence) were also described using mixed effects models.

Retreat 1 models included the between-subjects fixed effect of group

(training and control), and the within-subjects effects of assessment

(pre-, mid-, and postassessment) and microstate configuration (A, B,

C, D, E, and F). For Retreat 2, we compared longitudinal changes in

training participants to their own patterns of change as wait-list con-

trols (as a within-subjects effect). We also compared transition proba-

bilities between conditions for each microstate transition-pair. Random

subject intercepts were included to represent between-person variabil-

ity, and effects were referenced to the wait-list control group at pre-

assessment. Type III tests of fixed effects are reported for omnibus

tests, and parameter estimates are given for simplified models of signif-

icant fixed effects. Because multilevel mixed models can accommodate

missing data, we included all participants in our analyses who contrib-

uted data for any day or assessment of a given dependent measure.

We also assessed associations between longitudinal changes in

daily experience (attentiveness and serenity) and changes in microstate

parameters. For use as outcome measures, we calculated residualized

changes in microstate parameters by regressing postassessment values

on preassessment values and retained the unstandardized least squares

residual estimates. We also obtained linear estimates of each partici-

pants' change in attentiveness and serenity across days of retreat from

our longitudinal mixed models. These estimates reflect the empirical

best linear unbiased predictors of the random effects solution (West,

Welch, & Galecki, 2014), and were used to quantify person-specific

model-estimated slopes. Bivariate correlations were then examined

between these slope estimates and residual changes in microstate

parameters for all individuals in each retreat.

For sequence analysis, we compared the fixed effects of group

and assessment in Retreat 1 using mixed effects MDMR. Specifically,

we examined the interaction terms that indicate whether the two

groups changed differently in sequence dissimilarities from pre- to

midassessment, and from pre- to postassessment. In Retreat 2, we

compared changes in dissimilarities across assessments to partici-

pants' prior patterns of change as wait-list controls. We followed up

interaction terms with directed MDMR comparisons within each

group separately, because: (a) the calculation of dissimilarities is

potentially affected by group differences in edit costs, and (b) the par-

titions of sums of squares of dissimilarities are affected by the overall

dissimilarity of sequences included in a given analysis. Finally, we

assessed whether changes in sequence dissimilarities were moderated

by longitudinal changes in attentiveness and serenity in Retreat 1 and

Retreat 2.

3 | RESULTS

3.1 | Attentiveness, serenity, and qualities of
meditation practice

We first examined longitudinal changes in self-reported attentiveness

and serenity, and qualities of meditation practice, across days of

retreat. Figure 4 depicts longitudinal changes in attentiveness, seren-

ity, and meditation qualities over days of Retreat 1. Figure 5 depicts

similar changes over days of Retreat 2.

3.1.1 | Felt attentiveness

In Retreat 1, the training (M = 5.413, SD = 0.653) and control

(M = 4.942, SD = 0.700) groups differed significantly in observed

mean attentiveness based on an independent-samples t test, t

(56.39) = 2.673, p = .010, d = 0.697, when averaged across the full

intervention. A longitudinal mixed model showed that the intercept

for wait-list controls (b = 4.945, 95% CI [4.652, 5.238]) did not differ

from the intercept for training participants (b = 0.058, p = .775, 95%

CI [−0.349, 0.465]), and that controls did not change linearly over

days of the intervention (b = 0.000, p = .983, 95% CI [−0.003, 0.003]).

We did observe a significant interaction between linear change and

group, suggesting that the training group increased significantly more

over days of retreat than did the controls (b = 0.011, p < .001, 95% CI

[0.006, 0.015]). Specifically, the training group was expected to line-

arly increase by 0.011 units of attentiveness each day (p < .001, 95%

CI [0.008, 0.014]; see Figure 4). Subsequent estimates of each partici-

pants' linear daily change in attentiveness were obtained based on the

random effects solution from this model.

In Retreat 2, participants increased linearly from an intercept of

4.857 (95% CI [4.540, 5.174]) by 0.008 units of attentiveness each

day (p = .003, 95% CI [0.003, 0.013]). This model served as the basis

for subsequent estimates of participant-level slope outcomes. A sepa-

rate model was used to contrast training participants in Retreat 2 with

their experiences as wait-list controls. This model showed that the

intercept at the beginning of Retreat 1 (b = 4.861, 95% CI [4.570,

5.152]) did not differ from the intercept of Retreat 2 (b = 0.008,

p = .906, 95% CI [−0.123, 0.138]), and confirmed that wait-list con-

trols did not change over days of Retreat 1 (b = 0.002, p = .297, 95%

CI [−0.002, 0.006]). Importantly, we observed a significant interaction

between linear change and retreat, indicating that participants

increased significantly more over the course of Retreat 2 than when

they acted as controls in Retreat 1 (b = 0.006, p < .001, 95% CI [0.003,

0.009]; see Figure 5). Retreat 2 participants therefore increased by 0.008

units of attentiveness each day (p < .001, 95% CI [0.004, 0.011]).

3.1.2 | Felt serenity

The training (M = 5.383, SD = 0.649) and control (M = 4.485,

SD = 0.927) groups differed significantly on mean serenity in Retreat
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1 based on an independent-samples t test, t(50.01) = 4.300, p < .001,

d = 1.126. Moreover, a longitudinal model demonstrated that the

intercept for controls (b = 4.559, 95% CI [4.202, 4.916]) did not differ

from that of active training participants (b = 0.497, p = .050, 95% CI

[0.001, 0.994]). As with attentiveness, controls did not change linearly

over days (b = −0.002, p = .461, 95% CI [−0.006, 0.003]), and there

was a significant interaction between linear change and group

(b = 0.010, p < .001, 95% CI [0.004, 0.016]). The training group was

expected to linearly increase by 0.009 units of serenity each day

(p < .001, 95% CI [0.005, 0.012]; see Figure 4). Estimates of individ-

uals' trajectory of change in serenity over days were based on this

model.

In Retreat 2, training participants linearly increased by 0.009 units

of serenity each day (p = .002, 95% CI [0.003, 0.014]). We obtained

estimates of individuals' trajectory of change from this model. A sepa-

rate model contrasting Retreat 2 training participants with their experi-

ences during Retreat 1 showed that the intercept at the beginning of

Retreat 1 (b = 4.521, 95% CI [4.187, 4.855]) differed from Retreat

2 (b = 0.203, p = .009, 95% CI [0.056, 0.350]), and that wait-list

controls did not change over days of Retreat 1 (b = 0.000, p = .953,

95% CI [−0.004, 0.004]). Again, we observed a significant interaction

between linear change and retreat: training participants increased

significantly more over the course of Retreat 2 than when they acted as

controls in the first retreat (b = 0.008, p < .001, 95% CI [0.005, 0.012];

see Figure 5). Retreat 2 participants therefore increased by 0.009 units

of attentiveness each day (p < .001, 95% CI [0.005, 0.013]).

3.1.3 | Qualities of meditation practice

Mean values for self-reported meditation qualities are presented in

Table 1, separately by retreat group. For Retreat 1, longitudinal

models indicated that the training group increased daily on each of

the four self-reported meditation qualities (see also Figure 4). Physical

relaxation increased from an intercept of 3.294 (95% CI [3.023,

3.565]) by 0.009 units each day (p < .001, 95% CI [0.006, 0.012]).

Mental relaxation increased from 3.282 (95% CI [2.997, 3.567]) by

0.009 units each day (p < .001, 95% CI [0.006, 0.012]). Attentional

stability increased from 2.915 (95% CI [2.597, 3.234]) by 0.013 units

each day (p < .001, 95% CI [0.009, 0.017]). And finally, attentional viv-

idness increased from 2.560 (95% CI [2.239, 2.881]) by 0.015 units

each day (p < .001, 95% CI [0.010, 0.019]).

F IGURE 4 Mean self-reported attentiveness and serenity for Retreat 1 training (n = 30) and wait-list control (n = 29) groups across each day
of retreat. Model estimated trajectories are plotted atop observed mean daily ratings. Estimates of daily linear change (b) are provided for retreat
training participants. Four self-reported qualities of meditation practice (physical relaxation, mental relaxation, attentional stability, and attentional
vividness) are also shown for the training group. ***p < .001
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The Retreat 2 training group replicated the patterns of self-

reported meditation qualities seen in Retreat 1 (see Figure 5). Physical

relaxation increased from 3.200 (95% CI [3.000, 3.401]) at the inter-

cept by 0.008 units each day (p < .001, 95% CI [0.005, 0.012]). Mental

relaxation increased from 3.037 (95% CI [2.778, 3.296]) by 0.008 units

each day (p < .001, 95% CI [0.004, 0.013]). Attentional stability

increased from 2.761 (95% CI [2.503, 3.019]) by 0.010 units per day

(p < .001, 95% CI [0.005, 0.014]). And attentional vividness increased

from 2.520 (95% CI [2.226, 2.813]) by 0.010 units each day (p < .001,

95% CI [0.005, 0.015]).

Meditation qualities were themselves significant predictors of

average self-reported attentiveness and serenity in each training group.

Correlations among individuals' means of these measures, averaged

across days of retreat, are reported in Table 1. Meditation qualities

were moderately to strongly correlated (r range = .36–.85) with mean

attentiveness and serenity. Importantly, a series of bivariate growth

curve models demonstrated that daily linear changes among attentive-

ness, serenity, and qualities of meditation were also highly correlated

in their change over time for both training groups (r range = .46–.99;

see Supplementary Materials). Together, these findings suggest that

self-reported meditation practice quality was related to attentiveness

and serenity felt generally throughout one's day during retreat. More-

over, all patterns of change in daily experience appeared to replicate

across the independent training interventions.

3.2 | Microstate strength and temporal dynamics

Global parameters of GEV, mean GFP, mean duration, and frequency

of occurrence were derived for microstates in Retreat 1 and then

compared between groups and across assessments. We then

attempted to replicate patterns of results from the first retreat when

the wait-list control group entered training in Retreat 2. Table 2

reports descriptive statistics for these microstate parameters and the

number of participants contributing data at each assessment for

Retreat 1. Table 3 reports comparable values for Retreat 2.

3.2.1 | Global explained variance

We first compared the mean GEV of the global topographies for

Retreat 1. We observed no significant effect of group, F(1, 57) = 0.68,

F IGURE 5 Mean self-reported attentiveness and serenity for Retreat 2 training (n = 29) and Retreat 1 wait-list control (n = 29) groups across
each day of retreat. Model estimated trajectories are plotted atop observed mean daily ratings. Estimates of daily linear change (b) are provided
for retreat training participants. Four self-reported qualities of meditation practice (physical relaxation, mental relaxation, attentional stability, and

attentional vividness) are also shown for the training group. ***p < .001
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p = .412, no significant effect of assessment, F(2, 104) = 0.04,

p = .962, and a significant effect of microstate configuration,

F(5, 285) = 158.18, p < .001. There was no significant interaction

between group and assessment, F(2, 104) = 0.00, p = .997, and no

other significant interactions between group, assessment, or micro-

state (all ps >.056). Accordingly, we report parameter estimates and

mean comparisons from a simplified model based on the significant

effects of microstate alone. These parameter estimates are reported

in Table 4.

We then compared the GEV for wait-list control participants to

their values as training participants in Retreat 2. We observed no sig-

nificant effect of retreat, F(1, 28) = 0.01, p = .925, no significant effect

of assessment, F(2, 58) = 0.02, p = .977, and a significant effect of

microstate configuration, F(5, 145) = 209.38, p < .001. There was no

significant interaction between retreat and assessment, F

(2, 45) = 0.00, p = .997, and no other significant interactions between

retreat, assessment, and microstate (all ps >.965). Parameter estimates

are reported in Table 5 for the simplified model.

3.2.2 | Mean global field power

We next compared the mean GFP of all local GFP maxima that were

categorized according to different microstate configurations. In

Retreat 1, we observed a significant effect of group, F(1, 57) = 5.26,

p = .026, a significant effect of assessment, F(2, 104) = 19.84,

p < .001, and a significant effect of microstate configuration,

F(5, 285) = 88.91, p < .001. Importantly, we observed a significant

interaction between group and assessment, F(2, 104) = 8.21, p < .001.

We also observed a significant interaction between group and micro-

state, F(5, 285) = 3.92, p = .002. There were no other significant inter-

actions (all ps >.996). Parameter estimates from a simplified model

based on these significant effects are presented below and in Table 4.

Across Retreat 1 microstates, the groups showed no differences

in mean GFP at the preassessment (b = −0.781 μV, p = .091, 95% CI

[−1.691, 0.128]), and the control group did not significantly change

from pre- to midassessment (b = −0.077 μV, p = .317, 95% CI

[−0.230, 0.075]) or from pre- to postassessment (b = −0.123 μV,

p = .108, 95% CI [−0.273, 0.027]). However, the training group

decreased in GFP amplitude significantly more than controls from

pre- to midassessment (b = −0.322 μV, p = .004, 95% CI [−0.539,

−0.104]), and from pre- to postassessment (b = −0.427 μV, p < .001,

95% CI [−0.645, −0.210]). The mean microstate GFP of the training

group was estimated to decrease by −0.399 μV from pre- to

midassessment (p < .001, 95% CI [−0.554, −0.244]), and decrease by

−0.550 μV from pre- to postassessment (p < .001, 95% CI [−0.707,

−0.393]). In addition, the training group had significantly lower GFP at

the midassessment (b = −1.103 μV, p = .017, 95% CI [−2.003,

−0.203]), and at the postassessment (b = −1.209 μV, p = .009, 95% CI

[−2.109, −0.309]), than controls. These findings can be interpreted as

showing global reductions in the strength of the electric field at the

GFP peaks of microstate intervals for training participants. Model esti-

mated means and observed subject averages for these effects are

depicted in Figure 6.

For the Retreat 2 participants, we observed a significant effect of

retreat, F(1, 28) = 28.36, p < .001, a significant effect of assessment, F

(2, 58) = 6.73, p = .002, and a significant effect of microstate configu-

ration, F(5, 145) = 99.11, p < .001. Importantly, we observed a

TABLE 1 Descriptive statistics and correlations for self-reported states of awareness and meditation quality

Correlations

Measure Mean (SD) 1 2 3 4 5

Retreat 1

1. Attentiveness 5.413 (0.653)

2. Serenity 5.383 (0.649) 0.677***

3. Physical relaxation 3.640 (0.530) 0.728*** 0.675***

4. Mental relaxation 3.626 (0.574) 0.795*** 0.668*** 0.927***

5. Attentional stability 3.413 (0.596) 0.853*** 0.498** 0.798*** 0.871***

6. Attentional vividness 3.128 (0.688) 0.617*** 0.475** 0.585*** 0.694*** 0.775***

Retreat 2

1. Attentiveness 5.156 (0.658)

2. Serenity 5.036 (0.714) 0.787***

3. Physical relaxation 3.520 (0.368) 0.400* 0.362

4. Mental relaxation 3.356 (0.453) 0.626*** 0.585*** 0.902***

5. Attentional stability 3.128 (0.502) 0.761*** 0.631*** 0.740*** 0.896***

6. Attentional vividness 2.903 (0.641) 0.540** 0.515** 0.594*** 0.675*** 0.803***

Note: Means and SDs (SD) for self-reported attentiveness, serenity, and four qualities of meditation practice averaged across days of retreat for Retreat 1

(n = 30) and Retreat 2 (n = 29) training participants. Attentiveness and serenity were measured on a scale from 1 (disagree strongly) to 7 (agree strongly).

Qualities of meditation practice were measured on a scale from 1 (very poor) to 5 (very good). Correlations are provided between measures.

*p < .05. **p < .01. ***p < .001.
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significant interaction between retreat and assessment, F

(2, 45) = 3.34, p = .044. There were no other significant interactions

(all ps >.975). We simplified the model and report parameter estimates

below and in Table 5.

Retreat 2 participants showed significantly lower mean GFP

amplitude (across all microstates) at the beginning of Retreat 2 than

when they were wait-list controls at the beginning of Retreat 1 (b =

−0.175 μV, p = .047, 95% CI [−0.346, −0.003]). They also decreased

in GFP amplitude from pre- to midassessment significantly more in

Retreat 2 than they did as controls (b = −0.275 μV, p = .026, 95% CI

[−0.514, −0.035]); but they did not decrease more from pre- to

postassessment (b = −0.007 μV, p = .954, 95% CI [−0.250, 0.237]).

The mean microstate GFP of the Retreat 2 training participants was

estimated to decrease by −0.358 μV from pre- to midassessment

(p < .001, 95% CI [−0.527, −0.189]), but not significantly decrease

from pre- to postassessment (b = −0.117 μV, p = .187, 95% CI

TABLE 2 Descriptive statistics of microstate parameters in Retreat 1

Training group Control group

Pre Mid Post Pre Mid Post

N 26 28 28 29 28 28

GEV (%)

A 5.29 (2.6) 5.77 (3.5) 5.22 (3.2) 4.64 (3.7) 4.60 (2.6) 5.12 (3.5)

B 5.77 (2.6) 6.56 (3.8) 6.39 (3.5) 5.61 (3.7) 6.17 (3.3) 5.99 (3.2)

C 17.96 (12.5) 16.35 (11.0) 16.01 (10.9) 19.98 (10.6) 19.56 (12.0) 20.74 (13.7)

D 15.90 (8.6) 16.55 (10.9) 16.17 (10.5) 16.56 (7.7) 16.82 (7.0) 14.93 (7.3)

E 4.97 (2.4) 4.61 (2.1) 5.20 (3.0) 4.53 (3.1) 4.37 (3.4) 4.54 (3.3)

F 4.20 (2.1) 4.60 (2.3) 4.58 (2.5) 4.56 (3.2) 5.06 (3.9) 4.46 (2.5)

Total 54.08 (6.7) 54.43 (6.2) 53.56 (5.7) 55.87 (6.3) 56.57 (7.0) 55.77 (7.9)

GFP (μV)

A 5.25 (1.6) 4.98 (1.4) 4.83 (1.4) 5.95 (2.0) 6.08 (1.9) 6.01 (1.7)

B 5.35 (1.6) 5.02 (1.5) 4.96 (1.5) 6.21 (2.1) 6.32 (1.9) 6.24 (1.8)

C 6.12 (2.2) 5.71 (1.9) 5.60 (1.9) 7.32 (2.7) 7.31 (2.5) 7.29 (2.5)

D 6.00 (2.0) 5.61 (1.8) 5.56 (1.8) 7.07 (2.3) 7.15 (2.2) 6.95 (2.2)

E 5.11 (1.5) 4.81 (1.4) 4.82 (1.4) 5.97 (1.9) 5.84 (1.8) 5.80 (1.6)

F 5.14 (1.6) 4.82 (1.4) 4.84 (1.4) 5.95 (1.9) 6.01 (1.8) 5.91 (1.6)

Average 5.50 (1.7) 5.16 (1.5) 5.10 (1.5) 6.41 (2.1) 6.45 (2.0) 6.37 (1.8)

Duration (ms)

A 82.92 (9.1) 79.22 (9.5) 76.88 (11.4) 85.73 (13.9) 86.01 (11.6) 85.20 (10.6)

B 85.08 (8.5) 79.91 (9.7) 78.10 (11.6) 88.05 (17.1) 87.77 (13.2) 85.83 (13.7)

C 100.98 (22.8) 91.48 (20.6) 91.68 (23.0) 107.73 (22.8) 103.75 (21.0) 106.77 (24.7)

D 96.41 (14.2) 91.60 (15.8) 88.85 (13.2) 98.95 (12.5) 101.08 (11.4) 97.89 (12.0)

E 84.42 (8.3) 79.34 (8.7) 80.17 (11.6) 85.91 (12.6) 85.22 (13.4) 85.25 (11.6)

F 82.85 (8.4) 79.94 (8.6) 77.48 (11.7) 86.01 (10.8) 85.19 (12.9) 85.09 (9.2)

Average 88.78 (8.6) 83.58 (9.7) 81.19 (11.6) 92.06 (12.3) 91.50 (10.4) 91.01 (9.2)

Occurrence (Hz)

A 1.09 (0.4) 1.23 (0.5) 1.17 (0.5) 0.92 (0.5) 0.96 (0.3) 1.03 (0.5)

B 1.17 (0.4) 1.32 (0.6) 1.29 (0.5) 1.03 (0.4) 1.17 (0.4) 1.13 (0.4)

C 1.90 (0.6) 1.93 (0.7) 1.88 (0.6) 1.98 (0.6) 1.99 (0.7) 1.95 (0.6)

D 1.94 (0.5) 2.01 (0.7) 2.14 (1.1) 2.01 (0.8) 1.99 (0.6) 1.81 (0.6)

E 1.11 (0.4) 1.14 (0.4) 1.20 (0.4) 0.95 (0.4) 0.96 (0.4) 0.99 (0.4)

F 0.93 (0.3) 1.07 (0.4) 1.05 (0.4) 0.97 (0.4) 0.99 (0.5) 0.97 (0.3)

Total 8.14 (0.9) 8.69 (1.2) 8.73 (1.3) 7.86 (0.9) 8.05 (1.2) 7.89 (1.2)

Note: Means and SDs are provided for global explained variance (GEV %), global field power (GFP μV), microstate duration (in ms), and per-second rate of

microstate occurrence (Hz) for each microstate configuration (A–F). The sum of microstates is indicated by the total, and the mean of microstates is

indicated by the average. N denotes the available sample size for Retreat 1 participants at each assessment.
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[−0.292, 0.058]). Nevertheless, they had significantly lower GFP at

both the midassessment (b = −0.449 μV, p < .001, 95% CI [−0.620,

−0.278]), and postassessment (b = −0.182 μV, p = .045, 95% CI

[−0.359, −0.004]) of Retreat 2, compared to their prior measurements

in the first retreat. Thus, global reductions in the strength of micro-

states at GFP peaks were observed in Retreat 2, replicating patterns

observed in training participants from the first retreat (see Figure 6).

3.2.3 | Mean duration

In Retreat 1, we observed a significant effect of group, F(1, 57) = 6.97,

p = .011, a significant effect of assessment, F(2, 104) = 12.15,

p < .001, and a significant effect of microstate configuration, F

(5, 285) = 81.19, p < .001, on mean microstate duration. We also

observed a significant interaction between group and assessment, F

(2, 104) = 6.93, p = .002. There were no other no significant interac-

tions (all ps >.071). Table 4 reports parameter estimates from a simpli-

fied model based on significant effects.

Considered across all microstates, the two groups showed no dif-

ferences in mean duration at the preassessment in Retreat 1 (b =

−2.630 ms, p = .316, 95% CI [−7.836, 2.576]), and the control group

did not significantly change from pre- to midassessment (b =

−0.878 ms, p = .476, 95% CI [−3.312, 1.557]), or from pre- to

postassessment (b = −0.974 ms, p = .424, 95% CI [−3.381, 1.433]). In

contrast, the training group decreased in mean microstate duration

significantly more than controls from pre- to midassessment (b =

−4.694 ms, p = .009, 95% CI [−8.173, −1.216]), and from pre- to

postassessment (b = −6.322 ms, p < .001, 95% CI [−9.802, −2.841]).

The mean microstate duration of the training group was estimated to

decrease by −5.572 ms from pre- to midassessment (p < .001, 95% CI

[−8.057, −3.087]), and decrease by −7.296 ms from pre- to

postassessment (p < .001, 95% CI [−9.809, −4.782]). They also had

significantly lower duration at the mid- (b = −7.324 ms, p = .006, 95%

CI [−12.459, −2.190]), and postassessment (b = −8.951 ms, p < .001,

95% CI [−14.086, −3.817]), compared to controls. These findings sug-

gest global reductions in the duration of microstate intervals on aver-

age for retreat training participants. Model estimated means and

observed subject averages are depicted in Figure 6.

For Retreat 2, we observed a significant effect of retreat, F

(1, 28) = 37.92 p < .001, a significant effect of assessment, F

(2, 58) = 10.65, p < .001, and a significant effect of microstate config-

uration, F(5, 145) = 90.61, p < .001. We also observed a significant

interaction between retreat and assessment, F(2, 45) = 6.37, p = .004.

There were no other no significant interactions (all ps >.679). Parame-

ter estimates from the simplified model are presented in Table 5.

Retreat 2 participants did not differ on average duration (across

microstates) at the preassessment as a function of retreat (b =

−0.884 ms, p = .472, 95% CI [−3.364, 1.597]). However, these indi-

viduals decreased in mean microstate duration significantly more from

pre- to midassessment (b = −5.469 ms, p = .003, 95% CI [−8.927,

−2.011]), and from pre- to postassessment (b = −5.275 ms, p = .004,

95% CI [−8.789, −1.761]) as active training participants than as wait-

list controls. The mean microstate duration of Retreat 2 training par-

ticipants was estimated to decrease by −5.957 ms from pre- to

midassessment (p < .001, 95% CI [−8.396, −3.518]), and decrease by

−6.331 ms from pre- to postassessment (p < .001, 95% CI [−8.855,

−3.806]). They had significantly lower mean duration at the

midassessment (b = −6.353 ms, p < .001, 95% CI [−8.817, −3.888]),

and postassessment (b = −6.159 ms, p < .001, 95% CI [−8.712,

−3.605]) in Retreat 2, compared to themselves in Retreat 1. Thus,

global reductions in the duration of microstates were also observed in

TABLE 3 Descriptive statistics of microstate parameters in
Retreat 2

Pre Mid Post

N 28 28 25

GEV (%)

A 4.27 (2.4) 4.78 (2.5) 4.85 (2.6)

B 6.50 (3.4) 6.52 (3.3) 6.89 (3.7)

C 19.41 (10.3) 20.24 (10.6) 19.56 (10.9)

D 17.13 (7.9) 16.26 (8.7) 15.78 (5.6)

E 4.67 (2.9) 4.51 (3.4) 4.44 (2.3)

F 4.14 (2.9) 4.21 (2.7) 4.69 (3.0)

Total 56.13 (7.2) 56.52 (6.9) 56.21 (7.2)

GFP (μV)

A 5.82 (1.8) 5.65 (1.7) 5.90 (2.0)

B 6.20 (1.9) 5.94 (1.7) 6.10 (2.0)

C 7.16 (2.5) 6.88 (2.3) 7.03 (2.6)

D 6.99 (2.3) 6.58 (2.1) 6.80 (2.3)

E 5.77 (1.5) 5.49 (1.6) 5.81 (1.9)

F 5.71 (1.6) 5.54 (1.5) 5.76 (1.7)

Average 6.28 (1.9) 6.01 (1.8) 6.23 (2.0)

Duration (ms)

A 84.64 (12.6) 79.79 (10.8) 80.00 (9.6)

B 87.67 (10.1) 81.89 (10.0) 82.54 (8.9)

C 102.13 (17.6) 98.32 (17.3) 96.65 (16.9)

D 98.44 (13.3) 92.23 (14.9) 90.55 (11.1)

E 84.90 (12.2) 80.56 (10.2) 79.07 (7.1)

F 84.83 (12.5) 78.69 (10.3) 79.77 (8.1)

Average 90.43 (10.2) 85.25 (9.5) 84.76 (7.6)

Occurrence (Hz)

A 0.94 (0.4) 1.06 (0.4) 1.04 (0.4)

B 1.17 (0.5) 1.26 (0.4) 1.33 (0.5)

C 2.05 (0.6) 2.14 (0.7) 2.10 (0.7)

D 2.00 (0.6) 2.01 (0.7) 2.11 (0.5)

E 1.02 (0.4) 1.07 (0.5) 1.07 (0.3)

F 0.90 (0.4) 0.98 (0.4) 1.01 (0.4)

Total 8.08 (1.1) 8.52 (0.9) 8.66 (1.0)

Note: Means and SDs are provided for global explained variance (GEV %),

global field power (GFP μV), microstate duration (in ms), and per-second

rate of microstate occurrence (Hz) for each microstate configuration (A–F).
The sum of microstates is indicated by the total, and the mean of

microstates is indicated by average. N denotes the available sample size

for Retreat 2 training participants at each assessment.
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Retreat 2, replicating patterns observed in the first retreat (see

Figure 6).

3.2.4 | Occurrence frequency

For Retreat 1, we observed a significant effect of group,

F(1, 57) = 4.18, p = .046, no significant effect of assessment,

F(2, 104) = 1.32, p = .271, and a significant effect of microstate config-

uration, F(5, 285) = 135.24, p < .001, on the mean rate of microstate

occurrence. There was no significant interaction between group and

assessment, F(2, 104) = 0.64, p = .527, and no other significant inter-

actions (all ps >.149). Parameter estimates are reported in Table 4.

Across all assessments, microstates occurred more frequently on aver-

age for training group participants than for controls (b = 0.098 Hz,

p = .042, 95% CI [0.004, 0.191]).

Global reductions in microstate duration (as we showed in Retreat

1) ought to be accompanied by increases in the total occurrence of

microstates overall, irrespective of particular microstate configuration.

Therefore, for Retreat 1 participants, we also investigated the total

rate of occurrence, summed across all microstates (see Table 2). We

observed no significant effect of group, F(1, 57) = 3.99, p = .051, a sig-

nificant effect of assessment, F(2, 104) = 8.48, p < .001, and a signifi-

cant interaction between group and assessment, F(2, 104) = 4.13,

p = .019. Groups did not differ at the preassessment on total

occurrence rate (b = 0.266 Hz, p = .375, 95% CI [−0.330, 0.862]), and

the control group did not significantly change from pre- to

midassessment (b = 0.176 Hz, p = .169, 95% CI [−0.076, 0.429]), or

from pre- to postassessment (b = 0.027 Hz, p = .829, 95% CI [−0.222,

0.277]). In contrast, the training group increased in total microstate

occurrences more than controls from pre- to postassessment

(b = 0.510 Hz, p = .006, 95% CI [0.149, 0.871]), but not from pre- to

midassessment (b = 0.357 Hz, p = .052, 95% CI [−0.004, 0.718]). The

total microstate occurrence rate of the training group was estimated

to increase by 0.533 microstates per second from pre- to

midassessment (p < .001, 95% CI [0.278, 0.791]), and increase by

0.537 from pre- to postassessment (p < .001, 95% CI [0.276, 0.798]).

The training group also had significantly greater total occurrence at

the midassessment (b = 0.623 Hz, p = .038, 95% CI [0.346, 1.212]),

and postassessment (b = 0.776 Hz, p = .010, 95% CI [0.187, 1.364]),

than controls.

We next compared the mean occurrence rate of microstates for

wait-list control participants across the two retreat interventions. We

observed a significant effect of retreat, F(1, 28) = 6.29, p = .018, no

significant effect of assessment, F(2, 58) = 1.37, p = .263, and a signifi-

cant effect of microstate configuration, F(5, 145) = 178.94, p < .001.

There was no significant interaction between retreat and assessment,

F(2, 45) = 0.82, p = .447, and no other significant interactions (all

ps >.720; see Table 5 for parameter estimates from the simplified

model). On average, microstates occurred more frequently for

TABLE 4 Model parameter estimates from analyses of microstate parameters in Retreat 1

Estimate (SE)

Model effects GEV (%) GFP (μV) Duration (ms) Occurrence (Hz)

Fixed effects

Intercept 18.449 (0.501)*** 7.096 (0.322)*** 103.900 (1.976)*** 1.894 (0.049)***

Microstate A −13.350 (0.709)*** −1.043 (0.076)*** −17.758 (1.224)*** −0.874 (0.056)***

Microstate B −12.368 (0.709)*** −0.875 (0.076)*** −16.299 (1.224)*** −0.757 (0.056)***

Microstate D −2.290 (0.709)** −0.168 (0.076)* −4.626 (1.224)*** 0.043 (0.056)

Microstate E −13.752 (0.709)*** −1.167 (0.076)*** −17.048 (1.224)*** −0.882 (0.056)***

Microstate F −13.870 (0.709)*** −1.114 (0.076)*** −17.656 (1.224)*** −0.943 (0.056)***

Group — −0.781 (0.454) −2.630 (2.600) 0.098 (0.047)*

Midassessment — −0.077 (0.077) −0.878 (1.228) —

Postassessment — −0.123 (0.076) −0.974 (1.214) —

Group × midassessment — −0.322 (0.110)** −4.694 (1.754)** —

Group × postassessment — −0.427 (0.110)*** −6.322 (1.755)*** —

Random effects

Intercept variance 0 2.949 (0.558) 76.297 (15.777) 0.017 (0.006)

Residual variance 41.961 (1.880) 0.487 (0.023) 124.990 (5.785) 0.259 (0.012)

−2 log-likelihood 6,579.0 2,416.5 7,789.1 1,557.1

Note: Maximum likelihood estimates are reported for Retreat 1 models of global explained variance (GEV %), global field power (GFP μV), microstate

duration (in ms), and per-second rate of microstate occurrence (Hz) for the fixed effects of group (training vs. wait-list control), assessment (pre-, mid-, and

postassessment), and microstate configuration (microstates A–F). The reference condition was microstate C in wait-list participants at the preassessment.

Then, 59 participants were included with a total of 1,002 observations contributing to the analyses. SEs are reported in parentheses.

*p < .05. **p < .01. ***p < .001.

3242 ZANESCO ET AL.



individuals when they participated as Retreat 2 training participants

than as wait-list controls (b = 0.077 Hz, p = .020, 95% CI

[0.013, 0.141]).

Finally, we also investigated the total rate of occurrence summed

across all microstates for Retreat 2 participants. We observed a signif-

icant effect of retreat, F(1, 28) = 33.27, p < .001, a significant effect of

assessment, F(2, 58) = 7.67, p = .001, and a significant interaction

between group and assessment, F(2, 45) = 4.73, p = .014. Participants

did not differ at the preassessment as a function of retreat (b =

0.151 Hz, p = .281, 95% CI [−0.130, 0.432]). Importantly, they increased

in total microstate occurrence significantly more from pre- to

postassessment when in training in Retreat 2 (b = 0.604 Hz, p = .004,

95% CI [0.206, 1.001]), but not from pre- to midassessment

(b = 0.352 Hz, p = .077, 95% CI [−0.040, 0.744]). The total microstate

occurrence rate of Retreat 2 training participants was estimated to

increase by 0.604 microstates per second from pre- to postassessment

(p = .004, 95% CI [0.206, 1.001]), but not significantly change from pre-

to midassessment (b = 0.352 Hz, p = .077, 95% CI [−0.040, 0.744]). In

addition, they had significantly greater total occurrence at the

midassessment (b = 0.503 Hz, p < .001, 95% CI [0.224, 0.782]), and

postassessment (b = 0.754 Hz, p < .001, 95% CI [0.465, 1.044]). Thus,

the pattern observed in Retreat 2 again replicated that of the first

retreat.

3.3 | Experiential correlates of changes in
microstate parameters

We correlated residualized changes in microstate mean GFP and dura-

tion (from pre- to postassessment) with individual estimates of daily

linear changes in attentiveness and serenity obtained from random

effects of mixed models. We focused on mean GFP and duration,

since these were the parameters that showed consistent change

across both retreat interventions. In Retreat 1 (n = 52), daily changes

in attentiveness were not significantly correlated with change in mean

microstate GFP (r = −.248, p = .076, 95% CI [−0.488, 0.026]) or

change in mean microstate duration (r = −.272, p = .051, 95% CI

[−0.507, 0.001]). Daily change in serenity, however, was significantly

correlated with reductions in GFP (r = −.445, p < .001, 95% CI

[−0.640, −0.195]) and duration (r = −.341, p = .013, 95% CI [−0.562,

−0.075]). Scatterplots of these correlations are shown in Figure 7.

In Retreat 2 (n = 24), attentiveness (r = −.028, p = .898, 95% CI

[−0.426, 0.380]) and serenity (r = −.275, p = .194, 95% CI [−0.610,

0.145]) were not significantly correlated with reductions in GFP from

pre- to postassessment. Nor were attentiveness (r = −.025, p = .908,

95% CI [−0.424, 0.382]) and serenity (r = −.205, p = .336, 95% CI

[−0.562, 0.216]) significantly correlated with reductions in duration.

Thus, these correlations did not replicate across retreats, although

TABLE 5 Model parameter estimates from analyses of microstate parameters in Retreat 2

Estimate (SE)

Model effects GEV (%) GFP (μV) Duration (ms) Occurrence (Hz)

Fixed effects

Intercept 19.918 (0.474)*** 7.245 (0.352)*** 104.970 (1.857)*** 2.000 (0.048)***

Microstate A −15.217 (0.663)*** −1.263 (0.085)*** −19.059 (1.221)*** −1.045 (0.053)***

Microstate B −13.657 (0.663)*** −0.996 (0.085)*** −17.004 (1.221)*** −0.858 (0.053)***

Microstate D −3.666 (0.663)*** −0.241 (0.085)*** −6.051 (1.221)*** −0.048 (0.053)

Microstate E −15.412 (0.663)*** −1.387 (0.085)*** −19.119 (1.221)*** −1.026 (0.053)***

Microstate F −15.406 (0.663)*** −1.351 (0.085)*** −19.355 (1.221)*** −1.065 (0.053)***

Retreat — −0.175 (0.084)* −0.884 (1.211) 0.077 (0.031)*

Midassessment — −0.083 (0.084) −0.488 (1.210) —

Postassessment — −0.110 (0.083) −1.056 (1.205) —

Retreat × midassessment — −0.275 (0.119)* −5.469 (1.717)** —

Retreat × postassessment — −0.007 (0.121) −5.275 (1.745)** —

Random effects

Intercept variance 0.130 (0.319) 3.521 (0.930) 63.330 (17.679) 0.019 (0.007)

Residual variance 36.505 (1.664) 0.593 (0.027) 123.730 (5.660) 0.236 (0.011)

−2 log-likelihood 6,404.9 2,488.6 7,679.0 1,450.7

Note: Maximum likelihood estimates are reported for Retreat 2 models of global explained variance (GEV %), global field power (GFP μV), microstate

duration (in ms), and per-second rate of microstate occurrence (Hz) for the fixed effects of retreat (Retreat 2 training vs. Retreat 1 wait-list control),

assessment (pre-, mid-, and postassessment), and microstate configuration (microstates A–F). The reference condition was microstate C in wait-list

participants at the preassessment. Then, 30 participants were included with a total of 996 observations contributing to the analyses. SEs are reported in

parentheses.

*p < .05. **p < .01. ***p < .001.
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their magnitude and 95% CIs generally overlapped with those

observed in the first retreat.

3.4 | Microstate transition dynamics

3.4.1 | Transition probabilities

Figure 8 depicts the mean Markov-chain transition probabilities calcu-

lated from sets of microstate sequences for each group and retreat.

Rows of the transition probability matrix reflect the total probability

(i.e., each row sums to 1) of a transition from one microstate to every

other microstate. We examined fixed effects of group, assessment,

and the interaction between group and assessment for all 30 pairs of

these Markov-chain transition probabilities. For Retreat 1, we

observed no significant main effects or interactions (all ps >.050) for

any transition-pair. In Retreat 2, we observed no significant effect of

assessment (ps >.054), and no significant interactions between retreat

and assessment (ps >.286) for any transition pair. There were, how-

ever, several significant differences between Retreat 1 and Retreat

2 for the wait-list participant group (ps < .047). Compared to Retreat

1, these participants had fewer transitions from B ! A (b = −0.015,

p = .047, 95% CI [−0.029, −0.000]), F ! A (b = −0.025, p = .005, 95%

CI [−0.041, −0.008]), and C ! F (b = −0.015, p = .038, 95% CI

[−0.029, −0.001])—and more transitions from F ! B (b = 0.023,

p = .016, 95% CI [0.005, 0.041])—than they did in Retreat 2. Impor-

tantly, however, these findings did not replicate across both retreats.

3.4.2 | MDMR of microstate sequences

Figure 9 presents the observed microstate sequences for all partici-

pants as a function of condition. Brief occurrences of microstates and

the complexity of their alternating dynamics are evident in the time

series. Some sequences appear more homogeneous than others; but

no obvious visual pattern differentiates assessments or groups overall.

Figure 10 depicts pairwise sequence dissimilarities calculated between

participants in each retreat, and the corresponding sequence medoid

for each intervention group and assessment. The matrices were based

on the OM of spells algorithm, with OM edit costs derived from the

log of inverse state frequencies (see Supplementary Materials).

MDMR analysis of sequence dissimilarities demonstrated signifi-

cant interactions between Retreat 1 groups and assessments. Com-

pared to controls, the training group showed a different pattern of

change in dissimilarities from pre- to postassessment (p = .046), but

not from pre- to midassessment (p = .279). Directed comparisons in

the training group (with edit costs calculated independent of the con-

trol group) revealed that sequences significantly differed from pre- to

postassessment (p < .001), but not from pre- to midassessment

(p = .051). As such, the dissimilarity between multivariate distance cen-

ters was greater from pre- to postassessment (dissimilarity = 662.74)

than from pre- to midassessment (633.78) or mid- to postassessment

(607.21). In general, there was more overall discrepancy (i.e., dispersion

around the distance center) between sequences at postassessment

(discrepancy = 1,688.85) and midassessment (1,681.70), relative to the

preassessment (1,636.73). In contrast, dissimilarities did not signifi-

cantly differ from pre- to midassessment (p = .332) or pre- to

postassessment for the control group (p = .300), and sequence dis-

crepancy was comparable at the pre- (discrepancy = 1,628.28), mid-

(1,609.76), and postassessment (1,640.61).

In contrast, Retreat 2 participants did not significantly differ in

their change in dissimilarities from pre- to midassessment (p = .350)

or from pre- to postassessment (p = .258), when compared to their

status as wait-list controls. Nevertheless, directed comparisons in

F IGURE 6 Model estimated means from multilevel mixed effects
models are plotted for global field power for microstate peaks (top)
and microstate interval duration (bottom) across assessments (pre-,

mid-, and postassessment) and groups (training and control) in Retreat
1 and Retreat 2. Boxes are model estimates for the mean across
microstate configuration. Errors bars are 95% confidence intervals
around each model estimate. Observed subject averages are plotted
as dots for each condition. Model estimates (b) for significant changes
from pre- to midassessment and from pre-to postassessment are
provided above the observed data. ***p < .001
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Retreat 2 (with edit costs calculated independent of controls from

Retreat 1) showed that dissimilarities significantly differed from

pre- to postassessment in Retreat 2 (p = .026), but not from pre- to

midassessment (p = .119). Dissimilarity between multivariate distance

centers was greater from pre- to postassessment (dissimilarity = 635.75)

than from pre- to midassessment (606.22) or mid- to postassessment

(625.37). There was more overall discrepancy between sequences at

postassessment (discrepancy = 1,651.63) and midassessment

(1,647.05), relative to the preassessment (1,630.89). Thus, change from

pre- to postassessment in the retreat training groups replicated across

both retreats, and sequences appeared more heterogeneous (i.e., had

more discrepancy) after retreat.

F IGURE 7 Scatterplots of
residualized change (pre- to
postassessment) in global field power for
microstate peaks (top) and microstate
interval duration (bottom) in Retreat
1 (n = 52), plotted against trajectories of
linear daily change in attentiveness and
serenity. Bivariate correlation coefficients
(r) are provided. Training participants are

depicted as black points and control
participants as gray points.
*p < .05, ***p < .001

F IGURE 8 Mean Markov-chain transition probabilities resting-state microstates based on 167 sets of microstate sequences. Transition
probabilities are shown from each microstate on the vertical axis to each corresponding microstate on the horizontal axis. Maps are 2D isometric
projections with nasion upward
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3.4.3 | Experiential correlates of microstate
sequences

Estimates of daily linear change in attentiveness and serenity were

included as moderators of the effects of assessment on sequence dis-

similarities in mixed effects MDMR. For Retreat 1 training participants,

we observed significant interactions between serenity and differences

in dissimilarities from pre- to midassessment (p = .042), as well as pre-

to postassessment (p = .011). This suggests that daily changes in seren-

ity moderated differences in dissimilarity between sequences. The

interactions for attentiveness, however, did not reach significance for

either pre- to midassessment (p = .081) or pre- to postassessment

(p = .079). Retreat 1 training participants who increased an average

amount in daily attentiveness (centered at b = 0.011) and serenity

(b = 0.009) differed significantly in their sequence dissimilarities from

pre- to midassessment (p = .014) and from pre- to postassessment

(p < .001). In contrast, training participants who did not show daily

change (bs centered at 0) differed from pre- to postassessment only

(p = .028), but not from pre- to midassessment (p = .085).

For Retreat 2 training participants, we observed significant

interactions between serenity and differences in dissimilarities from

pre- to postassessment (p = .007) but not pre- to midassessment

(p = .058). We also observed interactions between attentiveness and

differences from pre- to postassessment (p = .027) but not pre- to

midassessment (p = .091). Retreat 2 training participants who

increased an average amount in daily attentiveness and serenity (bs

centered at 0.008) differed significantly in their sequence dissimilar-

ities from pre- to postassessment (p = .015) but not from pre- to

midassessment (p = .059). Training participants who did not change

(bs centered at 0) also differed from pre- to postassessment (p = .040)

but not pre- to midassessment (p = .070). Across both retreats, these

findings suggest that changes in the multivariate microstate sequence

time series were different for training group participants who experi-

enced greater levels of daily change in attentiveness and serenity over

the course of their retreat.

4 | DISCUSSION

In an intensive longitudinal study, we found that full-time residential

training in shamatha meditation reduced the strength and duration of

brain electric microstates and differentiated their temporal patterning

during periods of quiet rest. Microstates were derived by segmenting

ongoing neuroelectric activity into a time series of transient intervals

F IGURE 9 Sequences of microstates are represented on individual rows for each participant as a function of the intervention groups and
assessments. Each row represents the roughly 2-min continuous microstate time series
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reflecting the spontaneous phase-synchronized activity of whole-

brain neuronal networks. In addition, we observed changes in felt

qualities of awareness that appear to corroborate phenomenological

accounts of deepening mental calm and mindful attentiveness with

contemplative training over time (Wallace, 1999, 2006). These

increases in felt attentiveness and serenity were in turn associated

with changes in the multivariate sequencing of entire time series of

microstates. Critically, these patterns were replicated in a second

3-month retreat in which wait-list control participants received train-

ing of their own. Our findings provide robust evidence that dedicated

meditation practice changes the felt experiences of meditation practi-

tioners and leaves its imprint in the dynamic activity of functional

brain networks.

Practitioners' daily attentiveness and serenity increased systemati-

cally during both retreats relative to wait-list controls. Similar, correlated,

increases were observed in the reported quality of participants' medita-

tion practice each day. Together, these findings corroborate traditional

perspectives on shamatha meditation, which hold that shamatha

enhances the stability and vividness of an individual's concentration and

cultivates states of physical and mental relaxation as expertise develops

(Wallace, 2006). Participants who reported greater attentional stability

and vividness—and who indicated greater self-reported physical and

mental relaxation during meditation practice—also reported greater

levels of daily attentiveness and serenity during the retreat. Thus, during

intensive practice, the qualities of one's meditation practice develop sys-

tematically over time and appear to generalize into dispositional experi-

ences felt more generally throughout one's day. These increases in

attentional stability, vividness, and felt daily attentiveness, are compati-

ble with retreat-related improvements in attention and perceptual sensi-

tivity that have previously been reported in these same study

participants using behavioral and event-related potential methods

(MacLean et al., 2010; Sahdra et al., 2011; Shields et al., 2020; Zanesco

et al., 2018, 2019). Our findings also inform emerging phenomenological

models that profile the distinctive feeling qualities associated with differ-

ent meditation practices (Lutz et al., 2015), and join other recent studies

investigating experiential qualities of meditation (Abdoun et al., 2019;

Kok & Singer, 2017; Petitmengin, van Beek, Bitbol, Nissou, &

Roepstorff, 2019; Przyrembel & Singer, 2018).

F IGURE 10 (a) Symmetrical matrices
depict the pairwise dissimilarities between
individuals' microstate sequences
calculated based on optimal matching
(OM) of spells. Dissimilarity matrices are
organized according to study group and
assessment. The matrix of dissimilarities
for Retreat 1 are on the left and Retreat
2 on the right. (b) Microstate sequence

medoids are shown for groupings of
microstate sequences by intervention
groups and assessments. The medoid is
the actual sequence that is least dissimilar
to all other sequences in its grouping and
is therefore the most representative
sequence of its group
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Consistent with prior work, we found that six data-driven global

topographic centroids explained the preponderance of variance in the

resting topographic voltage patterns obtained from our 250 EEG

recordings (for a review, see Michel & Koenig, 2018). Microstate clus-

ters A through D match canonical patterns observed in prior research,

while microstates E and F appear to reflect two distinct lateralized

configurations, which share similarity to those identified in recent

studies utilizing data-driven approaches to determine the optimal

number of clusters (cf. Brechet et al., 2019; Custo et al., 2017;

Zanesco et al., 2020). However, there remained an appreciable

amount of unexplained variance in the EEG in our study. This raises

the possibility that other microstate configurations, not included

among our data-derived global clusters, may have further explained

meaningful EEG patterns or demonstrated sensitivity to meditation

training.

We observed global reductions in the strength and duration of

microstate intervals following meditation training, irrespective of the

configurations considered. The shorter duration of microstates was mir-

rored by an increase in their total occurrence. Reductions in the global

field power at the peaks of microstate intervals can be interpreted as

resulting from fewer phase-synchronized neurons contributing

(on average) to the strength of a given microstate as it predominates at

that moment in time. Moreover, reductions in the average duration of

microstates can be interpreted as reflecting less momentary temporal

stability in the neural ensemble underlying the generation of each

microstate (Khanna, Pascual-Leone, Michel, & Farzan, 2015). Together,

these findings imply that the brain generators responsible for the for-

mation of brain electric microstates are less stable following 3 months

of intensive meditation, manifesting as an increase in the frequency with

which microstates precariously cycle between different configurations.

One interpretation of our findings is that meditation practitioners'

tendency to calmly rest their awareness in the present moment might

be realized in the increased lability of resting-state microstate dynam-

ics. It has been suggested that an increased lability might be an opti-

mal condition for metastable brain dynamics, reflecting a continual

state of inner exploration in which neural systems are readied for

unpredictable external input (Deco, Jirsa, & McIntosh, 2011). This

affords cortical function a flexibility that allows the brain to accommo-

date the contingencies of the present moment (Bressler &

Kelso, 2001, 2016). Indeed, this flexibility appears to be meaningfully

associated with states of awareness and cognitive function. More fre-

quent switching among fMRI-derived functional networks has been

found to be associated with self-reported states of attentiveness and

arousal (Betzel, Satterthwaite, Gold, & Bassett, 2017) and better cog-

nitive performance (Pedersen, Zalesky, Omidvarnia, & Jackson, 2018).

Practitioners reporting greater levels of attentional absorption have

also demonstrated reduced long-range temporal dependencies

(i.e., more random fluctuations) in EEG oscillations during meditation

(Irrmischer et al., 2018).

Global changes in the strength, duration, and occurrence rate of

microstates as a function of training replicated over two independent

training interventions and did not depend on any specific microstate

configuration.

Global changes such as these might reflect alterations in large-scale

brain processes that organize patterns of synchronization and neuronal

excitability, as opposed to changes that are constrained to specific func-

tional networks. This interpretation is also consistent with our results

from multivariate sequence analyses of microstates, in which training

participants from both retreats showed different temporal patterns in

their microstate time series at the beginning of retreat than at the end

of retreat. This demonstrates that dynamic temporal patterns in the

whole sequence of categorically defined brain states differed in terms

of their sequential evolution over successive moments. The microstate

time series was more heterogeneous in retreat participants after

training, in line with reduced duration and increased cycling between

microstates overall. Microstate sequences (and their differences across

training) were also found to be moderated by daily changes in serenity

in both retreats, and by changes in attentiveness in the second retreat

only. These findings suggest trait-like increases in calm mindful atten-

tiveness might moderate the rapidly fluctuating dynamics of microstate

sequences at rest. Furthermore, they highlight the role that large-scale

dynamics of functional networks might play in practitioners' growing

experience of attentiveness and serenity during retreat.

Although we observed differences in the multivariate sequencing

of microstates, we did not find evidence for training-related changes

for any specific microstate transition probabilities. First-order Markov

transitions have been shown inadequate for describing the complex

dynamics of microstate sequences, as microstate transitions are non-

stationary, non-Markovian, and display temporal dependencies at lon-

ger scales (von Wegner, Tagliazucchi, & Laufs, 2017). This suggests

that our multivariate microstate sequence analysis differentiated

sequences according to higher-order dynamics that were invisible to a

first-order Markov process. Nevertheless, microstates C and D

appeared to be important attractor states for ongoing brain network

dynamics, since all other microstates were more likely to transition to

these two configurations. This implies that these brain states may

mediate interactions between other functional networks over tempo-

ral scales relevant to large-scale neural integration.

We examined the consequences of an intensive bout or “dosage”
of meditation practice on intrinsic brain network dynamics by investi-

gating 3 months of full-time residential retreat practice. However, the

scenic retreat environment and the acute behavioral and social

changes associated with participants' time in solitary meditation may

have contributed to a number of nonspecific effects that could have

influenced our outcomes. Residential retreat interventions provide a

supportive and peaceful environment to help limit distraction and

facilitate continued mindful awareness to ongoing experience (King,

Conklin, Zanesco, & Saron, 2019). These elements might (indirectly)

explain an unknown proportion of certain intervention outcomes, but

they also directly support meditation-related changes by facilitating

continued practice, and calm, focused states of mind. One specific lim-

itation of the present study in this regard is that the residential retreat

took place at moderate altitude (�2,400 m). Altitude is a plausible

environmental confound of neuroelectric measurements, as prior

studies have demonstrated that the amplitude of EEG oscillations in

various frequency bands are affected by rapid altitude ascent
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(e.g., Kaufman, Wesensten, Pearson, Kamimori, & Balkin, 1993) or

prolonged exposure at more extreme altitudes (e.g., Zhao, Zhang,

Qian, & Zhang, 2016). Yet, it is unclear how more moderate altitude

might affect the temporal dynamics of microstates.

We attempted to reduce the influences of the quiet scenic envi-

ronment and altitude on our study outcome measures by having wait-

list participants acclimatize for 3 days prior to each assessment. In

addition, control participants were free to enjoy the natural scenery

and interact with their control group peers during their week-long

stay at the retreat center. It is also likely that control participants

shared many of the same expectations and motivations about medita-

tion practice as those individuals who were assigned as active partici-

pants in the first retreat intervention. Wait-list participants were

stratified and randomly assigned to the control condition, but were

also experienced meditators who continued their daily meditation

practice at home in the interim between assessments. Wait-list con-

trols were matched with training participants on a number of demo-

graphic factors, including age, gender, education, handedness and

prior meditation experience, and the groups did not differ along sev-

eral major psychological dimensions (MacLean et al., 2010; Sahdra

et al., 2011; Shields et al., 2020). Nevertheless, there was at least

some evidence for an unexpected influence of retreat assignment on

participants' felt experiences. In both retreats, we found higher initial

levels of self-reported serenity at the onset of training relative to

wait-list controls. GFP amplitude was also lower at the Retreat 2 pre-

assessment, after wait-list control participants began their own train-

ing. Future investigations of residential retreat interventions could

better account for potential social, motivational, and environmental

contributors by employing active (rather than passive) control condi-

tions that are comparable in length and intensity to a residential

intervention.

It is difficult to know what happens in a person's experience

when they are asked to close their eyes and rest quietly. This inferen-

tial problem extends to the study of contemplative practice more

broadly, where researchers have little recourse for corroborating

experiential changes reported by practitioners. Moreover, most stud-

ies do not collect rich experiential data informed by meditative expe-

riences. Methodological approaches that pair the phenomenological

investigation (or manipulation) of conscious experiences with the

analysis of microstate sequences hold promise for understanding

how subjective experience unfolds at the millisecond temporal scale

(Varela, 1996; Varela, Thompson, & Rosch, 2016). Contemplative

practice itself might facilitate this scientific endeavor. Meditative

expertise is thought to increase the veracity of introspective reports,

as practitioners deepen their focus and familiarize themselves with a

panoply of internal mental states (Abdoun et al., 2019; Lutz &

Thompson, 2003; Varela et al., 2016). Our findings complicate this

prospect, as states of awareness and properties of practitioners' brain

network dynamics appear to change with training and differ at base-

line from novices. Clearly, this is a rich area for future study, as the

activity of microstates reflects neural integration at multiple temporal

scales with many possible links to felt experiences and cognitive

function.
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ENDNOTES
1 One wait-list control participant withdrew prior to participation in

Retreat 2 for reasons unrelated to the intervention.
2 Our items overlapped with those from the original dimensions of the

same name described in the PANAS-X (Watson & Clark, 1994) for atten-

tiveness (i.e., alert, attentive, concentrating, determined) and serenity

(i.e., at ease, calm, and relaxed). We submitted our modified items to a

confirmatory factor analysis (using the lavaan package in R;

Rosseel, 2012), after averaging each item across days of retreat. Two

latent factors representing attentiveness and serenity were a good fit of

the data in Retreat 1 (n = 59), χ2(8) = 10.506, p = .231, CFI = .995, as well

as in Retreat 2 (n = 29), χ2(8) = 14.97, p = .060, CFI = .968, and all indica-

tors had strong positive loadings on their respective latent factor (R2

range = .563–.975).
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