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Abstract: Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is
increasing evidence for their critical role in host defense. MCs not only play an important role in
initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the
adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have
been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties
of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely
from the periphery. In this review, we provide a summary of recent findings that explain how MCs
act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult
to orchestrating the final outcome of the immune response.
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1. Introduction

Mast cells (MCs) are well-known as key effector cells of type I allergic reactions, commonly
named anaphylactic responses. In this case, MCs are activated by the crosslinking of cell-surface-bound
FcεRI-IgE complexes by a specific antigen, which results in a three-step-response: (a) The immediate
degranulation of MC secretory granules; (b) the release of lipid mediators (including thromboxanes,
prostaglandins, and leukotrienes); and (c) the secretion of a wide spectrum of de novo synthesized
mediators (including cytokines, chemokines, and growth factors) [1–3]. However, MCs are also equipped
with a spectrum of surface receptors allowing the sensing of various pathogen-associated patterns
(PAMPS), danger-associated molecular patterns (DAMPS), cytokines, chemokines, neuropeptides,
and others [1,3–7]. Moreover, the mode of ligand-receptor-based MC activation and downstream
signaling determines the mode of MC action, which can consist of the full three-step-response, but can
also solely involve de novo synthesized mediator release, without degranulation [6,8]. Based on this
spectrum of sensing capacities, and the ability to deploy specific responses, there is increasing evidence
that MCs critically contribute to innate host defense against pathogens. Additionally, MCs influence
the induction, amplitude, and function of the adaptive arm of the immune defense, either by direct
effects on T cells or indirectly, by modifying the properties of antigen-presenting cells (APCs) [6,9].
Importantly, MCs even modulate lymph node-borne adaptive responses remotely from the periphery.
In this review, we provide a summary of recent findings that explain how MCs act as a link between
the innate and adaptive immune response, all the way from sensing invading pathogens, dangerous
situations, and allergens to orchestrating the final outcome of the immune reaction.

Cells 2020, 9, 2538; doi:10.3390/cells9122538 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-2113-5284
https://orcid.org/0000-0002-1311-9620
http://dx.doi.org/10.3390/cells9122538
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/12/2538?type=check_update&version=2


Cells 2020, 9, 2538 2 of 19

2. Innate MC Functions in Peripheral Tissues Fostering Adaptive Responses

MCs are tissue-resident myeloid cells, populating, at a high density, tissues lining the interface
to the environment, such as skin, lung, and intestinal epithelium, and are also found in lower cell
numbers in organ-defining barriers of the lymph nodes (LN), spleen, kidney, bone marrow (BM),
and brain [3,10]. Due to their strategic positioning, MCs critically contribute to the first line of host
defense against invading pathogens [4,11–13]. MCs are equipped with a wide array of pattern
recognition receptors to identify invading pathogens, including Toll-like receptors (TLR), Fc receptors,
and complement receptors [4–7,11,12]. Importantly, MCs have also been reported as sensors of cell
stress and tissue damage, through alarmin and purinergic receptors [4,13–16]. Finally, MCs can be
activated or modulated by binding cytokines, growth factors like stem cell factor (SCF), chemokines,
and neuropeptides [14–16].

A unique characteristic of MCs is the high number of intracellular secretory granules, which in
turn each contain a plethora of preformed mediators, such as histamine, proteases, cytokines,
and chemokines [8]. An MC granule consists of a proteoglycan scaffold, in which the mediators are
embedded based on electrostatic interactions [8,17]. Connective tissue-type murine MCs utilize heparin
as the dominant proteoglycan, which allows for the detection of MC granules by metachromatic
staining with Giemsa or Toluidine-blue, as well as by fluorochrome-conjugated avidin. In comparison,
mucosal-type MCs in the lung and intestinal epithelial layers contain chondroitin sulfate-based
granules [8,17]. Upon IgE/FcεRI crosslinking by a specific antigen or other stimuli, MCs release these
secretory granules within only seconds to minutes, in a process called degranulation [1,4].

Because they can immediately degranulate, MCs respond to invading pathogens or cell stress
faster than other tissue-resident immune cells and therefore, in many cases, are the initiators of immune
responses. Whenever an inflammatory insult is causing MC degranulation, the immediate release of
histamine triggers vascular responses, in particular vasodilatation and vessel permeabilization, within
only minutes, finally leading to tissue edema [12,18–22]. The effect of histamine on endothelial cell
activation and vascular barrier disintegration is potentiated by the MC release of tumor necrosis factor
(TNF) [23–25] and proteases [26–29], as well as the rapid production of lipid mediators [30,31].
Complementing the vascular effects, MCs are also critical initiators of neutrophil recruitment,
for example, during sepsis and peritonitis [26,32–35], upon lipopolysaccharide (LPS)-induced lung
inflammation [36], as well as at sites of skin inflammation [18,37–39] and bone fracture [40] and in areas
of arteriogenesis [41] and atherosclerotic plaque progression [42,43]. More specifically, MCs contribute
to early neutrophil recruitment by the release of the neutrophil chemoattractants CXCL-1 (KC)
and CXCL-2 (MIP-2), in addition to vascular effects [34,38,44,45]. Importantly, we have recently
demonstrated in a model of contact hypersensitivity (CHS) that MCs degranulate directionally into the
blood stream and thereby infuse TNF that primes circulating neutrophils for efficient extravasation [46].
Beside their boosting effect on neutrophil influx, MCs were also reported to enhance neutrophil effector
functions [47,48]. In addition, MCs are a potent source of eosinophil-attracting chemokines (eotaxins)
and, via histamine, inducers of eotaxin release by endothelial cells. Thereby, MCs are key drivers of
eosinophil recruitment and have been shown to interact with eosinophils [49–51].

The MC-mediated vessel permeability and subsequent edema formation further support the
recruitment of adaptive immune effector cells to the site of infection or inflammation. Indeed, by blocking
the activity of MC-released histamine on the vasculature, subsequent T-cell-driven adaptive immune
responses were severely impaired [18]. Furthermore, the edema-related relaxation of connective
tissue is important for dendritic cell (DC) motility at the site of infection/inflammation and their
subsequent migration toward the draining LNs (DLNs), in order to induce antigen-specific immune
responses. Moreover, Weber et al. showed that, in CHS, (MC-initiated) neutrophil influx is required
for an efficient activation and migration of DCs and hapten-specific T-cell priming, and consequently,
for sensitizing efficiency of the hapten [37]. Neutrophil-released mediators with alarmin activity
promote DC recruitment to sites of inflammation/infection and their maturation, thereby augmenting
innate and adaptive immunity (reviewed in [52]). In contrast, neutrophil extracellular traps (NETs)
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and cathelicidins can downregulate LPS-induced DC activation and the T-cell priming capacity, in part
by neutralizing LPS [53–56].

3. MC Functions in LN Conditioning and Hypertrophy

Besides local vasoactivation and edema formation, peripheral MCs support APC and lymphocyte
influx in DLNs by exerting remote effects (Figure 1). Increased TNF levels have been detected in
prenodal lymph and DLNs [57–59], as early as one hour after peripheral MC activation. Indeed,
McLachlan et al. showed that, upon intradermal bacterial challenge, peripheral MC-derived TNF is
the main driver of DLN hypertrophy and the recruitment of circulating T cells. In addition, MCs play
a pivotal role in TNF-independent, but complement-regulated, LN hypertrophy and Langerhans
cell mobilization, following intradermal peptidoglycan injection [56]. Moreover, Anopheles mosquito
bite-induced dermal MC degranulation was not only shown to lead to local inflammation and
neutrophil influx, but also to be required for T-cell and DC recruitment to the DLN, which is a
prerequisite for T- and B-cell priming [60]. The mechanisms that underlie peripheral MC long-distance
effects on DLNs and facilitate LN hypertrophy and circulating lymphocyte influx have barely been
examined, but might be related to MC mediator drainage. Gashev and colleagues showed that,
in rats, MCs reside close to mesenteric lymphatic vessels (MLVs) and direct the recruitment of MHC
class II-positive cells [61,62]. The histamine release of perilymphatic MCs impacts the lymphatic
microenvironment in an NFκB-dependent manner [63,64]. Importantly, the perilymphatic mesenteric
MCs directly regulate themselves via histamine receptors in an autocrine loop, which is essential
for acute inflammation-induced trafficking of MHC class II-expressing leukocytes [65]. Given the
significant distance between the inflamed peripheral site and the DLN, it is still unclear how peripheral
MC-derived cytokines, such as TNF, can reach the LN without being degraded or diluted to ineffective
concentrations, particularly considering the short half-life period of TNF in vivo [66]. The remote effect
of MC-derived TNF may be explained by its storage in the proteoglycan-backbone of the secretory
granules. Importantly, we and others were able to visualize in vivo that the secretory granules are
released by peripheral MCs in an intact and stable form [8,67,68]. Mediators such as histamine that are
not highly charged rapidly diffuse from the proteoglycan matrix upon MC granule secretion to the
extracellular fluid. In contrast, other mediators, such as MC proteases and TNF, are released slowly
and sequentially from the secreted granules, which may enhance their activity and prolong their
presence in the extracellular tissue [68–70]. Kunder et al. reported that, upon the topical application
of phorbol-acetate-myristate (PMA), resulting in peripheral MC degranulation, some of the MC
granules can enter the lymphatics and drain to local LNs, while no degranulation of LN-resident MCs
was detected [68]. Furthermore, the authors demonstrated that the drained granules, carrying TNF,
could efficiently elicit profound LN hypertrophy (Figure 1). Due to this adjuvant effect of MC granules,
the same group modeled synthetic carbohydrate-backbone particles with encapsulated inflammatory
mediators and showed their efficiency in enhancing adaptive immune responses upon influenza virus
hemagglutinin vaccination [71].
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Figure 1. Peripheral mast cells (MCs) orchestrate the induction and amplitude of local innate responses
and distant lymph node-borne adaptive immunity. The sensing of pathogens or danger-associated
patterns by MCs or MC activation by IgE crosslinking in the periphery may result in MC degranulation
and/or the de novo synthesis of pro-inflammatory mediators. Peripheral MCs exert remote effects on
lymph node (LN) hypertrophy via histamine, TNF, and the drainage of intact MC secretory granules.
The migration, maturation, and antigen-presenting capacity of dendritic cells (DCs) is promoted
by MC soluble mediators, secretory granules, and exosomes, thereby facilitating T-cell expansion
in draining LNs (DLNs). Finally, MCs enhance the homing of effector T cells to peripheral sites of
inflammation/infection and may contribute to effector T-cell activation.

4. MCs Affect Adaptive Immunity via the Modulation of Dendritic Cells

Beside the effect on LN conditioning and hypertrophy, MCs are indirectly implicated in LN-borne
adaptive immune responses via the modulation of DC functions (Figure 1). In peripheral tissues,
and particularly those lining the interface to the environment such as the skin, MCs reside in a
dense network of tissue-resident innate immune cells and are involved in a variety of intercellular
interactions [72,73]. We have previously shown that MCs and macrophages (Mph) cooperate in initiating
the recruitment of neutrophils in a model of LPS-induced peritonitis [34]. However, despite their
close proximity, the interaction between MCs and Mph and its impact on the recruitment and activity
of effector T cells remains elusive. Several studies have reported intense communication between
MCs and DCs and the MC-driven modulation of DC migration, maturation, and function, thereby
linking MCs to adaptive responses [73,74]. On one hand, peripheral MC activation is critical for the
recruitment of additional DCs to sites of bacterial infection and protective immunity [75]. On the other
hand, MCs promote DC migration from the skin to the DLN after IgE-mediated activation [76,77],
and in response to bacteria [75] or bacterial products [59,78].

In terms of CHS, in a mouse model of T-cell-driven disease allergic contact dermatitis, we found
that, upon hapten sensitization, MCs promote DC migration to skin-DLNs and DC maturation,
and thereby critically enhance T-cell expansion [18]. Consequently, the expansion of both CD4+ and
CD8+ T cells in skin-DLNs, and the T-cell-triggered adaptive skin inflammation upon hapten challenge,
were markedly reduced in the absence of MCs [18]. In particular, peripheral TNF release by MCs
is required for the efficient initiation of skin and airway DC migration to DLNs [78–80] (Figure 2A).
Using MC-specific TNF knockout, we could show in vivo that MC-derived TNF predominantly targets
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cDC1 migration and priming capacity upon hapten sensitization, thereby promoting CD8+ effector
T-cell responses [80].

1 
 

 
Figure 2. MCs impact T-cell activation by modulating DC functionality. MCs communicate with DCs
in three different modes. (A) Soluble MC mediators, in particular histamine and TNF, promote the
migration, maturation, and antigen-presenting capacity of DCs, thereby enhancing T-cell priming and
fine-tuning TH cell polarization. (B) MC exosomes and intact MC secretory granules, engulfed by DCs
upon MC degranulation, facilitate DC migration and maturation, and consequently, boost T-cell priming.
In turn, DCs relay antigen to MCs via extracellular microvesicles and thereby induce MC degranulation
(C) MCs and DCs undergo dynamic physical interactions and synapse formation allowing bidirectional
exchange. MCs transfer endocytosed antigen-IgE-FcεRI complexes to DCs, facilitating the activation
of allergen-specific T cells. In turn, MCs are “cross-dressed” by DCs with MHCII complexes, thereby
enabling the activation of effector T cells by MCs with antigen processed by DCs.

In addition to their effect on DC migration, MCs have been reported to enhance DC maturation,
antigen processing, and T-cell priming capacities. Specifically, histamine promotes DC maturation [81],
antigen uptake, and cross-presentation [82] and regulates the DC cytokine response, thereby polarizing
T cells toward a Th2 phenotype [83]. In line with this, IgE-stimulated MCs control the Th1/Th2
balance by promoting Th2-generating DCs [84,85] (Figure 2A). Importantly, MCs exert effects on DC
functionality not only by soluble mediators, but also via the secretory MC granules, MC-derived
exosomes, and physical contact (Figure 2). By means of MC granule staining in vivo, directly inside the
MCs, and intravital 2-photon-microscopy, we could monitor MC degranulation and track the fate of MC
granules after their exocytosis. We found that, upon skin inflammation, dermal DCs accumulate at the
site of MC degranulation, engulf the intact MC granules, and actively shuttle them to skin-DLNs [67].
This MC granule uptake facilitates DC migration and maturation, and boosts their T-cell priming
capacity (Figure 2B). The cDC1 subpopulation was the most efficient in MC granule uptake in a partially
TNF-dependent manner. Importantly, the intradermal (i.d.) injection of MC granules into MC-deficient
mice was able to induce a profound expansion of T cells, indicating their adjuvant effect. Extending
the finding of Kunder et al. [68], we provided evidence that MC degranulation in the periphery may
exert long-distance effects on LN-borne adaptive T-cell responses in two ways: (a) The trafficking of
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MC granules via lymphatic vessels towards the DLNs, and (b) the active shuttling of MC granules by
DCs along with DC-modulating effects [67].

In addition to MC granules, MC-derived exosomes offer an additional mechanism for
intercellular communication, by having a greater stability in the interstitial space compared to
soluble mediators [72,86] and being able to promote DC maturation and the antigen-presenting
capacity [87,88] (Figure 2B). Importantly, DCs may also communicate with MCs and vice versa,
via extracellular microvesicles. Choi et al. recently demonstrated that CD301b+ perivascular DCs
sample the blood and relay blood antigens to neighboring perivascular MCs, which can subsequently
result in antigen/IgE-crosslinking-induced MC degranulation and an anaphylactic response [89].

Confirming our findings on CHS, Otsuka et al. showed impaired skin DC maturation and
migration in the absence of MCs and highlighted the relevance of a direct interaction between DCs and
MCs, leading to an upregulation of membrane-bound TNF by MCs [90]. Given the close proximity
of MCs and DCs in peripheral tissues, especially in the skin, a physical cell-to-cell interaction was
considered likely and studied in several in vitro studies (Figure 2C). Non-activated peritoneal MCs,
resembling connective tissue-type skin MCs, underwent direct crosstalk with immature DCs, inducing
DC maturation and CD4+ T-cell polarization toward Th1 and Th17 responses [91]. Upon FcεRI
crosslinking, MCs have been shown to form immunological synapses with DCs, enabling the transfer
of endocytosed antigens from MCs to DCs to activate T cells [92] (Figure 2C). However, there is still
little in vivo evidence for a functional relevance of the MC/DC cell-to-cell interaction. In a recent study,
using intravital 2-photon-microscopy of MC/DC double reporter mice, we demonstrated in vivo, for the
first time, that upon skin inflammation, MCs and DCs rapidly undergo a highly dynamic interaction,
which evolves to long-term synapse formation [93]. This MC/DC communication culminates in
a protein exchange from DCs to MCs, including MHC class II complexes. Intriguingly, the DC
“cross-dressing” of MCs with functionally active MHC class II complexes equipped the MCs with an
antigen-presenting capacity, which subsequently enhanced T-cell-driven skin inflammation (Figure 2C).
This MC bestowal with antigen-presenting capacity, particularly antigens that have been engulfed and
processed by DCs before leaving the peripheral tissue towards the DLN, suggests a role for MCs in
activating effector T cells that enter the peripheral tissue [93].

5. Direct Role for MCs in T-Cell Activation

In addition to the modulation of the APC function in the periphery, MCs have been reported
to directly impact T-cell activation. Here, MCs may exert promoting effects by two modes of action:
Either by direct antigen-presentation or by modulating T-cell expansion, differentiation, and polarization
via soluble mediators.

5.1. Antigen-Presenting Capacity of MCs

The capacity of MCs to directly present antigen to T cells has been speculated by several reports
based on the finding that MCs may express MHC class II complexes under certain conditions.
An early study showed a selective ability of BM-derived mouse MCs (BMMCs) to present exogenous
antigens that is supported by granulocyte macrophage colony stimulating factor (GM-CSF) [94].
Kambayashi et al. demonstrated the MHC class II expression and antigen-presenting capacity of
BMMCs and splenic mouse MCs, in response to LPS and IFN-γ in vitro and upon inflammatory insult
in vivo [95]. This finding was supported by Gaudenzio et al., who showed the expression of MHC class
II and costimulatory molecules (CD80 and CD86) on mature peritoneal mouse MCs stimulated with
IFN-γ and IL-4 [96]. Interestingly, the antigen-presenting capacity relied on direct MC/T-cell crosstalk,
where CD4+ T cells formed immunological synapses and polarized their secretory machinery toward
the antigen-loaded MCs [96]. In BMMCs, the MHC class II expression is induced by Notch ligand
Delta-like 1 (Dll1)/Notch signaling through activation of the class II transactivator (CIITA) [97,98].
Furthermore, IgE/antigen-stimulated BMMCs enhance T-cell activation by the expression of various
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costimulatory molecules, including ICOSL, PD-L1, PD-L2, Ox40L, Fas, and 4-1BB, and a TNF-mediated
increase of the surface expression of the respective counter-receptors on T cells [99].

In line with this, the expression of HLA-DR and activation of antigen-specific T cells were
confirmed for human MCs that were stimulated with IFN-γ or by FcεRI crosslinking [100,101]. Here,
the direct crosstalk between tonsillar human MCs and CD4+ T cells seemed to involve costimulation
via Ox40L/Ox40 [101].

Despite robust in vitro evidence for the antigen-presenting potential of MCs, MC interactions
with naïve T cells in LNs or with effector T cells infiltrating peripheral sites of inflammation/infection
have barely been explored in vivo. In collagen-induced arthritis (CIA), MC-depleted mice showed
reduced joint inflammation due to impaired T-cell expansion and T-cell cytokine response upon
i.d. collagen/complete Freund’s adjuvant (CFA) immunization [102,103]. When exploring the underlying
mechanism, we only found a few MCs in the subcapsular regions of inguinal LNs under physiological
conditions. MCs were accumulated in the LN T-cell zones, but only later on (at day 6 after immunization),
thereby succeeding effector T-cell expansion and egress from the LNs [102] (Figure 3). This finding
let us speculate once again that MC effects on T-cell priming may be linked to DC modulation
during immunization. Consequently, the MC antigen-presenting function may be important for
effector T-cell activation in the periphery rather than naïve T-cell priming in lymphoid organs. Indeed,
the in vitro studies by Gaudenzio et al. and Kambayashi et al. showed that MC antigen-presentation
preferentially induced the expansion of antigen-specific effector T cells and regulatory T cells over
naïve T cells [95,96] (Figure 4A). Our hypothesis of MC antigen-presentation in peripheral tissues
is supported by a recent study by antigens under hyperlipidemic conditions [104]. Importantly,
Kritikou et al. showing an increased MHC class II expression and in vivo capacity to present, the authors
identified HLA-DR-expressing MCs in human atherosclerotic plaques, in line with reduced aortic
CD4+ T-cell numbers and proliferation in MC-deficient mice [104]. In a non-conventional mode
of antigen-presentation, MCs induce γδ T-cell activation and proliferation in dengue virus-infected
peripheral tissue, due to immune synapse formation mediated by the T-cell receptor and the endothelial
cell protein C receptor (EPCR) [105] (Figure 4A).
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Figure 3. MC accumulation in LN T-cell zones upon immunization. Two-photon-microscopy of
MC/T-cell double reporter mice revealed the accumulation of MCs in the T-cell zone and colocalization
with T cells in inguinal LNs six days after intradermal immunization with collagen/CFA. Green: T cells;
purple: MCs; blue: vessel tracer Angiospark 750; and yellow: anti-CD31Ab (quantification and more
detailed information in [102]).
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Figure 4. Direct role for MCs in the activation and modulation of T-cell responses. There is increasing
evidence that MCs contribute to T-cell activation, not only by direct antigen-presenting potential, but
also by modifying the outcome of the T-cell response. (A) Direct MC/T-cell interaction and synapse
formation and the antigen-presenting capacity of MCs have been shown for CD4+ αβ T cells, γδ T cells,
and CD8+ T cells. (B) Beyond direct activation, MCs can modulate T-cell activation by exosomes and
soluble mediators. Here, MCs skew T-cell polarization towards Th1, Th17, or Th2, depending on
the mode of MC stimulation. In addition, MCs provide anti-inflammatory effects by promoting Treg

activation via IL-2 or by inhibiting conventional T-cell activation via IL-10 in a Treg-independent way.

In addition to MHC class II-dependent activation of CD4+ T cells, MCs have been shown to induce
CD8+ T-cell activation and proliferation and to promote CD8+ T-cell cytokine release and cytotoxicity
in a direct cell contact and MHC class I-dependent manner [106]. This finding was confirmed in vivo,
since the adoptive transfer of antigen-pulsed MCs induced CD8+ T-cell priming in experimental
autoimmune encephalomyelitis (EAE) (Figure 4A).

5.2. MC Modulation of T-Cell Priming, Differentiation, and Polarization

In addition to the potential MC function as APCs, several studies have reported MC-driven
modulatory effects on T-cell priming, differentiation, and polarization (Figure 4B). However, most of
the work has been conducted in vitro using immature BMMCs, which complicates interpretation of
the functional relevance under disease conditions. For example, the co-activation of T cells in the
presence of IgE/antigen-activated BMMCs skewed the T-cell response towards IL-4producing Th2
cells [107]. In particular, MC-derived histamine may regulate the Th1/Th2 balance by the differential
expression of H1 and H2 histamine receptors [108]. In contrast, Liu et al. recently reported a role for the
MC-derived mouse mast cell-protease 6 (Mcpt6) in counter-regulating Th2 polarization and cytokine
release by increasing Bcl-6 in Th2 cells, which subsequently inhibited GATA-3 [109]. Human MCs
have been demonstrated to enhance the Th17 fraction within the memory CD4+ T-cell population by
inflammasome-independent IL-1β release [110].

In addition to soluble MC mediators, B- and T-cell activation is regulated by the secretion of
MC exosomes harboring immunologically relevant molecules, such as MHC class II, CD86, LFA-1,
and ICAM-1 [69,88,111]. Purified MC exosomes have been demonstrated to induce blast formation,
T-cell proliferation, and IL-2 and IFN-γ production, while being inefficient in the induction of IL-4 [111]
(Figure 4B). IL-2 production by BMMCs, in response to concomitant IL-33 signaling and FcεRI activation,
resulted in the expansion of regulatory T cells in vitro. Salamon et al. demonstrated elevated IL-33
levels and increased numbers of IL-2-expressing MCs in human skin with chronic inflammation
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and in mouse ear skin upon allergic dermatitis and concluded that MC-derived IL-2 has a role in
Treg stimulation and the suppression of allergic dermatitis [112]. Independent of regulatory T cells,
MCs have been reported to suppress graft-versus-host disease by decreasing conventional T-cell
proliferation via release of the anti-inflammatory cytokine IL-10 [113]. MC-delivered exosomes were
further involved in a recently described non-conventional mechanism, supporting the Th17 response
in the chronic inflammatory skin disease psoriasis [114]. In detail, the cytoplasmic phospholipase
A2 (PLA2G4D) is expressed by MCs upon psoriasis and transferred within exosomes to neighboring
CD1a-expressing Langerhans cells. The resulting presentation of neolipid antigens to lipid-specific
CD1a-binding T cells induced the production of IL-22 and IL-17A, driving skin inflammation [114].

6. MC Functions in B-Cell Activation

In contrast to the MC-T-cell axis, there is much less knowledge regarding MC functions in regulating
B-cell numbers, activation, or antibody responses. Due to the accumulation of MCs and MC-driven
effects in B cell-mediated inflammatory disorders, including rheumatoid arthritis, a direct modulation of
B cells by MCs was hypothesized. Moreover, the high levels of IL-6 released by MCs suggest MC–B-cell
communication, for example, in pulmonary hypertension [115]. In MC-deficient Kit mutant mice,
an impaired protective humoral response to Escherichia coli was observed, which led to the suggestion
of pharmacological MC activation as a new adjuvant principle in vaccination [72,116,117]. However,
a non-redundant role for MCs in antibody production could not be confirmed in Kit-independent
novel mouse models of MC-deficiency [118].

In vitro, naïve, sensitized, and activated MCs were shown to promote the proliferation of
naïve and B-cell receptor-activated B cells [119–121], as well as both follicular and marginal zone
B cells [118]. As indicated by the secretion of IgM and IgG by IgM+ B cells, MCs can induce class
switch recombination [118]. Pucillo and colleagues further reported that the CD40/CD40L-mediated
MC/B-cell contact, together with IL-6 secretion by MCs, differentiates B cells to CD138+ plasma cells
and leads to IgA secretion [117]. The same group demonstrated the existence of MC/B-cell crosstalk in
the inflamed colon of inflammatory bowel disease (IBD) patients and, by using MC-depleted mice,
confirmed, in vivo, a role for MCs in the control of B-cell distribution in the gut, as well as in increased
IgA production upon dextran sulfate sodium (DSS)-colitis [122]. In vitro, MCs regulated splenic
B cells, while peritoneal B cells were unresponsive but skewed the MCs to increased IL33 receptor
expression and TNF production [119]. The synthesis of IgE by B cells was found to be enhanced by
adenosine-activated human MCs via IL-4 and IL-13 production, which is a process that might be
implicated in asthma-associated amplification of allergic inflammatory responses [123]. In contrast,
Kim et al. recently described an immunoregulatory function of MCs in the control of severe CHS.
Here, the MC production of IL-5 maintains the population of IL-10+ regulatory B cells in peripheral
tissues, which in turn suppress the activation of IL-13 producing type 2 innate lymphoid cells in an
IL-10-dependent manner [124].

7. MCs Orchestrate Effector Cell Recruitment to Inflamed Tissues

While MCs are known for their role in neutrophil and eosinophil recruitment, only a few reports
have addressed, until now, the impact of MCs on effector T-cell recruitment to peripheral tissues.
This limited knowledge may arise from the restriction of cell dynamic and recruitment studies to
in vivo mouse model investigations. On the other hand, MC effects on T-cell recruitment are hard to
discriminate from effects on T-cell expansion and activation. Hence, the reduction of CD4+ and CD8+

T-cell numbers, infiltrating the ear skin upon allergic contact dermatitis, which we have observed in
the absence of MCs, may include MC effects on the recruitment process itself, in addition to effects on
LN-borne T-cell expansion [18,80]. Determining specific MC functions in effector T-cell recruitment
requires the uncoupling of T-cell priming from T-cell extravasation, for example, by site-specific MC
depletion (possible in novel mouse models of diphtheria toxin-induced MC depletion [18,90,125]),
or by adoptive transfer approaches. However, vessel endothelium activation by MCs, in line with their
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capacity to produce the T-cell chemoattractants CCL2 (MCP-1), CCL5 (RANTES), and CXCL10 (IP-10),
indicates a contribution to the recruitment of effector T cells, once they are expanded in lymphoid
organs, to the peripheral site of inflammation or infection [126–129]. MCs have been suggested as
attractors of CD8+ effector T cells in two studies. In an early in vitro report, activated MCs induced the
chemotaxis of effector, but not central memory, CD8+ T cells through the production of leukotriene B4
(LTB4) [130]. In vivo, Ebert et al. showed that systemic infection with cytomegalovirus (CMV) induced
MC degranulation selectively in infected MCs, thereby eliciting a wave of CCL5 [131]. In MC-deficient
mice, CD8+ T cells were recruited less efficiently to the lungs, which correlated with enhanced viral
replication and delayed virus clearance [128].

8. The Adjuvant Effect of MC Activators in Vaccination

Given the fact that MCs promote LN hypertrophy and T-cell expansion and even contribute to B-cell
responses and antibody production, beneficial MC functions during vaccination have been hypothesized.
In particular, the groups of Abraham and Staats followed their own observations [58,68,75], with the
idea of using adjuvants that target MCs specifically, termed MC activators, during vaccination against
protein antigens. Firstly, the MC-activating compound 48/80 (c48/80), which is a calcium ionophore,
has been proven as an effective and safe adjuvant for immunization with several protein antigens, such as
botulinum neurotoxin A [132], the Bacillus anthracis protective antigen [116,117,133], the influenza
H1N1 recombinant hemagglutinin protein [134], and the hepatitis B surface antigen [135], resulting in
enhanced antibody production. Since MCs are located in mucosal surfaces at a high density, c48/80 was
also efficiently used as adjuvant in powder vaccines for intranasal application [132–134,136]. In addition,
the incorporation of c48/80 into chitosan nanoparticles as a delivery system has been demonstrated to
further enhance mucosal immunity [133,135,137]. C48/80 can also efficiently enhance the synthesis
of IgE and IgG upon the intranasal application of ovalbumin [138]. In contrast, c48/80 displayed
no adjuvant activity for immunization with UV-attenuated Toxoplasma gondii [139]. Surprisingly,
a promoting effect of MCs on antibody production upon protein vaccination could not be confirmed in
a transgenic model of MC deficiency independent of kit mutations, which may be attributable to the
fact that only connective tissue-type, but not mucosal, MCs were depleted [118].

Some MC activators target the MC-specific mas-related G-protein coupled receptor MrgprX2 (or its
murine orthologue MrgprB2). The core advantage is the specificity to MCs, thereby avoiding unspecific
uncontrollable immune reactions, such as the ones caused by CpG and other Toll-like receptor-targeting
adjuvants, or alum. Importantly, McNeil et al. demonstrated that the mouse orthologue MrgprB2
is activated by basic secretagogues, such as c48/80 and mastoparan, by neuropeptides such as
substance P, but also by a number of FDA-approved peptidergic drugs, such as icatibant [140,141].
The binding to MrgprB2 may be responsible for the induction of pseudo-allergic anaphylactic responses
and injection-site inflammation by some peptidergic drugs. Moreover, the authors identified a
common chemical motif of many small-molecule drugs associated with pseudo-allergic reactions that
may help predict the side effects of other compounds in the future [141]. Although c48/80 acts on
MrgprB2/MrgprX2, Schubert et al. provided evidence that the adjuvant effects of c48/80 in intradermal
or mucosal immunization may also be independent of MC activation. Other MrgprB2/MrgprX2
binding peptides, such as mastoparan, which is a wasp venom component, may be more specific [140].
Hence, Abraham and colleagues could show that (i) mastoparan-induced MC activation promotes the
clearance of bacterial infection and protects against reinfection [142], (ii) a mastoparan derivative has
broad-spectrum antiviral activity [143], and (iii) the MC-activating oligopeptide mastoparan-7 (M7)
can induce effective humoral immunity upon cocaine vaccination [144]. In humans, the antimicrobial
peptide LL-37, which is a member of the cathelicidin family, has been demonstrated to induce
MC activation by binding to MrgprX2 [145,146]. Kim et al. found that, when used in a mouse
model, LL-37 has potential as an oral mucosal adjuvant, by promoting T-cell-mediated and
Th17-skewed antigen-specific mucosal and systemic immunity [147]. Other compounds that induce MC
degranulation and provide potent adjuvant effects, upon intranasal protein immunization, include the
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bee venom component melittin [148,149], and the antibiotic cyclic lipopeptides polymyxin B [150,151]
and surfactin [152]. MCs also contribute to the potential adjuvant effect of interleukin-1 family
cytokines, upon intranasal immunization with recombinant influenza virus hemagglutinin [153].
Finally, Abraham and colleagues showed that chitosan-based synthetic MC granules provide adjuvant
effects that promote and polarize LN-borne adaptive immune responses [71].

9. Concluding Remarks

MC research of the last two decades has provided increasing evidence that MCs critically
contribute to innate host defense and adaptive immunity. In peripheral tissues, MCs sense pathogens
and danger-associated patterns and initiate local innate responses. Beyond that, MCs affect the onset,
kinetics, and amplitude of adaptive immunity by (at least) four modes of action: (a) Remote effects
initiating draining LN hypertrophy; (b) Promoting DC migration and functionality; (c) Inducing or
modulating T-cell activation and polarization; and finally, (d) Orchestrating the homing of effector
T cells to the site of inflammation or infection. Despite our current advances, future work is required to
substantiate recent findings and indications with in vivo evidence, particularly using novel mouse
models of MC deficiency or MC-specific gene inactivation, independent of Kit mutations. Moreover,
due to their immobility, the capacity of MCs to link innate sensing to the induction and fine-tuning
of adaptive immune responses relies on cellular communication. Therefore, understanding MC
communication with neighboring tissue-resident immune cells and infiltrating effector cells should be
the principal focus, in order to reveal future therapeutic targets to either intentionally boost or dampen
adaptive immunity.
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