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A B S T R A C T   

Viral epidemics and pandemics are considered public health emergencies. However, traditional and novel 
antiviral discovery approaches are unable to mitigate them in a timely manner. Notably, drug repurposing 
emerged as an alternative strategy to provide antiviral solutions in a timely and cost-effective manner. In the 
literature, many FDA-approved drugs have been repurposed to inhibit viruses, while a few among them have also 
entered clinical trials. Using experimental data, we identified repurposed drugs against 14 viruses responsible for 
causing epidemics and pandemics such as SARS-CoV-2, SARS, Middle East respiratory syndrome, influenza 
H1N1, Ebola, Zika, Nipah, chikungunya, and others. We developed a novel computational “drug-target-drug” 
approach that uses the drug-targets extracted for specific drugs, which are experimentally validated in vitro or in 
vivo for antiviral activity. Furthermore, these extracted drug-targets were used to fetch the novel FDA-approved 
drugs for each virus and prioritize them by calculating their confidence scores. Pathway analysis showed that the 
majority of the extracted targets are involved in cancer and signaling pathways. For SARS-CoV-2, our method 
identified 21 potential repurposed drugs, of which 7 (e.g., baricitinib, ramipril, chlorpromazine, enalaprilat, etc.) 
have already entered clinical trials. The prioritized drug candidates were further validated using a molecular 
docking approach. Therefore, we anticipate success during the experimental validation of our predicted FDA- 
approved repurposed drugs against 14 viruses. This study will assist the scientific community in hastening 
research aimed at the development of antiviral therapeutics.   

1. Introduction 

Viruses are responsible for causing various epidemics and pandemics 
worldwide [1,2]. Currently, the world is witnessing a major devastating 
pandemic of severe acute respiratory syndrome coronavirus 2 (SAR-
S-CoV-2), which causes the disease known as COVID-19 [3]. With its 
high infectivity and mortality rates, it has infected over 180 million 
people and resulted in over 4 million deaths globally. The World Health 
Organization has reported 14 major epidemics and pandemics caused by 
viruses, such as SARS-CoV-2, Ebola, Zika, chikungunya, SARS, Middle 
East respiratory syndrome (MERS), and others (https://www.who. 
int/emergencies/diseases/en/). Despite the devastating consequences 
of viral infections, only a limited number of promising and approved 
drugs/vaccines are available [4,5]. Thus, the development of efficient 

antivirals would be highly beneficial to control viral diseases. 
Drug discovery is a costly and time-consuming process. According to 

the U.S. Food and Drug Administration (FDA) guidelines, the develop-
ment of new drugs generally consists of the following steps: preclinical 
testing, investigational new drug application, phases I to III, new drug 
application, and phase IV clinical trials [6]. The average time required 
for the development of new drugs (i.e., from target identification to 
marketing) is over 12 years [7], while the estimated total cost is over $1 
billion (average of $2.6 billion) [8]. Furthermore, as per Eroom’s law, 
the cost of developing a new drug doubles every 9 years [8,9]. In this 
regard, drug repurposing could represent a promising solution to tackle 
infectious agents such as viruses. 

Drug repurposing identifies new uses for preexisting approved or 
investigational drugs for any disease [10,11]. The drug repurposing 
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strategy is advantageous and has a low risk of failure, shorter time 
frame, and reduced cost [12]. It reduces the cost to an average of 
$200–300 million [12]. In 1987, zidovudine was successfully repur-
posed as an anti-HIV drug (previously used as an anti-cancer drug) [13]. 
The ongoing SARS-CoV-2 pandemic further justifies the need to repur-
pose drugs as a rapid solution [14,15]. Many scientists worldwide are 
working on developing promising repurposed drug candidates against 
SARS-CoV-2 [16]. Drug repurposing also holds a promising solution 
against the emergence of various viral diseases caused by Zika, Ebola, 
influenza, Nipah, Japanese encephalitis, chikungunya, hepatitis, and 
many more viruses that pose serious global public health concerns 
[17–21]. Repurposed drugs may also bypass safety and toxicity testing 
and can directly be used under emergency pandemic situations [10,11]. 

Computational interventions can further reduce the cost of drug 
repurposing and can also allow researchers to monitor drug candidates 
and predict their effectiveness against various diseases within a short 
period [22] [–] [24]. A few computational approaches, such as molec-
ular docking/simulation and quantitative structure-activity relationship 
methods, have already been utilized for the identification of repurposed 
drugs [25] [–] [31]. In the recent past, other strategies have also been 
adopted to identify repurposed drugs against SARS-CoV-2, such as 
transcriptomic signatures [32], the multi-omics approach [33], deep 
learning [34], protein interaction maps [35], network-controllability 
[36], protein-protein interaction [37], and assessing risk factors 
among patients [38]. 

In the present study, a data-driven approach has been used for the 
identification of repurposed drug candidates. In this method, we 

exploited drug candidates that were experimentally validated for their 
antiviral activities. The drug-targets of these molecules were used to 
predict new repurposed drugs with the same targets. The predicted 
repurposed drugs were further prioritized based on confidence scores. 
This novel “drug-target-drug” approach is used to predict promising 
repurposed drug candidates against 14 viruses responsible for causing 
epidemics and pandemics, including Lassa virus (LASV), Crimean-Congo 
hemorrhagic fever virus (CCHV), severe acute respiratory syndrome 
(SARS), MERS, novel coronavirus (SARS-CoV-2), Marburg virus 
(MARV), Ebola virus (EBOV), Zika virus (ZIKV), influenza virus (IAV/ 
IBV), Hendra virus (HeV), Nipah virus (NiV), Rift Valley virus (RVFV), 
chikungunya virus (CHIKV), and variola virus (VARV). 

2. Results 

2.1. Identification of repurposed drugs using the “drug-target-drug” 
approach 

We used the “drug-target-drug” approach to predict the efficiency of 
repurposed drugs (see Methods section). The best repurposed drug 
candidates identified using a Python-based pipeline show promising 
results against viruses known to cause epidemics and pandemics. The 
overall approach for the identification of repurposed drugs involves the 
manual curation of effective drugs followed by the extraction of their 
targets. Thereafter, these drug-targets are used to predict novel repur-
posed drugs based on their confidence scores. Confidence scores are 
calculated based on the ratio of the number of drug-targets mapped in 

Table 1 
Table depicting the topmost repurposed drugs of major pandemic/epidemic viruses along with information on their IC50 cutoffs, virus families, abbreviations, and 
repurposed drug categories.  

Virus Abbreviation Family Positive 
dataset (IC50/ 
EC50) 

Negative 
dataset IC50/ 
EC50) 

Repurposed Drugs category Repurposed Drugs 

Lassa virus LASV Arenaviridae 2.8 uM 50 uM Antidepressant, Antiviral, 
Immunosuppressant 

Isoprenaline, Loxapine, 
Mycophenolate mofetil, Ribavirin, 
Fostamatinib 

Crimean-Congo 
hemorrhagic fever 
virus 

CCHF Bunyaviridae 4.3 uM 50 uM Antidepressant, Antihyperprolactinemic Loxapine, Cabergoline, 
Ziprasidone, Mianserin, 
Imipramine 

Severe acute 
respiratory 
syndrome 

SARS Coronaviridae 5 uM 50 uM Antidepressant, Antiviral, 
Immunosuppressant 

Tramadol, Nicardipine, 
Fluphenazine, Felodipine, 
Artenimol 

Middle East 
Respiratory 
Syndrome 

MERS Coronaviridae 1 uM 50 uM Antineoplastic, Antiallergic Clofarabine, Imexon, 
Trimethoprim, Pemetrexed, 
Fludarabine 

Novel corona virus SARS-CoV-2 Coronaviridae 1 uM 50 uM Antineoplastic (lung, renal), Rheumatoid 
arthritis, Antidepressants, 
Immunosuppressant 

Sorafenib, Baricitinib, 
Chlorpromazine, Mycophenolate 
mofetil, Baricitinib 

Marburg virus MARV Filoviridae 5 uM 50 uM Antidepressants, Rheumatoid arthritis, 
Antiallergic 

Chlorhexidine, Citalopram, 
Adalimumab, Clemastine, 
Triprolidine 

Ebola virus EBOV Filoviridae 0.7 uM 50 uM Cardiovascular, Antihypertensive, 
Vasodilator, Anticancer (Renal) 

Digoxin, Diazoxide, Bretylium, 
Almitrine, Lenvatinib 

Zika virus ZIKV Flaviviridae 0.3 uM 50 uM Anticancer, Immunosuppressants, 
Antiviral 

Alvocidib, Mycophenolate mofetil, 
Ribavirin, Pemetrexed, Olmesartan 

Influenza virus IAV/IBV Orthomyxoviridae 0.35 uM 50 uM Antibiotic, Antiasthmatic, Anticancer, 
Antiepileptic, Immunomodulatory 

Ceftriaxone, Carfilzomib, 
Nedocromil, Paclitaxel, Zonisamide 

Hendra virus HeV Paramyxoviridae 9.75 uM 50 uM Antidepressant, Antihypertension, 
Antitussive, Vasodilator, Antiasthmatic 

Paroxetine, Pindolol, 
Methylephedrine, Mephentermine, 
Racepinephrine 

Nipah virus NiV Paramyxoviridae 7.5 uM 50 uM Antidepressant, Antihypertension, 
Antitussive, Vasodilator, Antiasthmatic 

Paroxetine, Pindolol, 
Methylephedrine, Norepinephrine, 
Racepinephrine 

Riftvalley virus RVFV Phenuiviridae 10 uM 50 uM Anticancer, Anticoagulant Regorafenib, Pimecrolimus, 
Erdafitinib, Cabozantinib, Heparin 

Chikungunya virus CHIKV Togaviridae 1 uM 50 uM Antidepressant, Anticancer, 
antiosteoporotic 

Chlorpromazine, Imipramine, 
Alendronic acid, Olanzapine, 
Cabozantinib 

Variola virus VARV Poxviridae 1 uM 50 uM Anticancer, Anticonvulsant, Antibiotic, 
Antimycotic 

Clotrimazole, Cyclophosphamide, 
Permethrin, Phenobarbital, 
Ritonavir  
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the repurposed drugs by the total number of targets mapped to experi-
mentally validated drugs. 

The predicted repurposed drugs against viruses fall under various 
categories such as antidepressants, immunosuppressants, and anti-
allergics. The details of 14 viruses including their families, cutoff 
thresholds, repurposed drug categories, and drugs are summarized in 
Table 1. For example, the identified repurposed drug candidates against 
SARS-CoV-2 belong to the antineoplastic (i.e., lung, renal), rheumatoid 
arthritis drug, antidepressant, immunosuppressant, and antihyperten-
sive categories. 

Furthermore, we explored repurposed drugs for all 14 viruses using 
the “drug-target-drug” approach (Fig. 1). SARS-CoV-2, SARS, and MERS 
viruses of the Coronaviridae family were checked. The analysis showed 
that SARS and MERS have two repurposed drugs in common (i.e., 3-phe-
nyllactic acid and puromycin), while SARS-CoV-2 does not show any 
drugs in common with SARS and MERS. For SARS-CoV-2, the most 
promising predicted repurposed drug candidates are fostamatinib, 

chlorpromazine, mycophenolate mofetil, and etidronic acid (Fig. 2A). 
The identified repurposed drugs for SARS-CoV-2 were sorted according 
to “drug type” and represented as an alluvial plot (Fig. 3). Alluvial plots 
show the relationship among experimentally validated drugs, predicted 
repurposed drugs, and their respective drug categories. The best pre-
dicted repurposed drugs belong to the approved and investigational 
categories. Furthermore, we checked the predicted repurposed drugs in 
all three viruses of the Coronaviridae family and summarized them in the 
form of a heatmap with the scale of confidence score(s) (Fig. 2B). 
Notably, 3-phenyllactic acid and puromycin were common between 
SARS and MERS, with a high confidence score of 1.00. An analysis of the 
remaining 13 viruses is provided in Supplementary Figs. S1–S9. 

Influenza virus belongs to the Orthomyxoviridae family, which was 
responsible for a severe pandemic in 2009. Our “drug-target-drug” 
approach identified repurposed drug candidates such as ceftriaxone, 
carfilzomib, nedocromil, paclitaxel, and fostamatinib, which had high 
confidence scores of 1.0. The repurposed drug candidates belong to the 

Fig. 1. The network displayed common repurposed drugs between different viruses using our pipeline. A) Correlations between the repurposed drugs identified using 
our “drug-target-drug” approach and 14 viruses causing epidemics/pandemics were visualized using complex networks. B) Interaction diagram of identified repur-
posed drugs found in common for more than five viruses. 
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antibiotic, antiasthmatic, anti-cancer, antiepileptic, and immunomodu-
latory categories (Supplementary Fig. S4 and Supplementary Table S1). 

The Paramyxoviridae family consists of two viruses (i.e., NiV and 
HeV) that are known to cause epidemics/pandemics. Both of these vi-
ruses had 16 repurposed drugs in common (i.e., mephentermine, race-
pinephrine, paroxetine, pindolol, ergoloid mesylate, 
dihydroergocornine, dihydroergocristine, methylephedrine, cabergo-
line, nortriptyline, trimipramine, aripiprazole, penbutolol, asenapine, 
norepinephrine, and racepinephrine) (Supplementary Table S1 and 
Supplementary Fig. S6). The identified repurposed drugs (i.e., NiV and 
HeV) are categorized as antidepressants, antihypertensives, antitussives, 
vasodilators, and antiasthmatics. 

The EBOV and MARV (Filoviridae family) are known to cause epi-
demics/pandemics. The repurposed drug podofilox shows the highest 
confidence score of 1.00 for EBOV. However, for MARV, predicted drugs 
such as citalopram, benzatropine, ziprasidone, amitriptyline, and pro-
mazine show high confidence scores (Supplementary Table S1 and 
Supplementary Fig. S3). The antidepressant category of drugs is 
commonly repurposed against both viruses. 

Among the top 20 repurposed drugs for ZIKV, drugs such as 

alvocidib, mycophenolate mofetil, ribavirin, pemetrexed, and olme-
sartan showed the most promising results (Supplementary Table S1 and 
Supplementary Fig. S9). These drugs are broadly categorized as anti- 
cancer drugs, immunosuppressants, and antivirals. 

The mosquito-transmitted epidemic causing CHIKV can be targeted 
using predicted repurposed drugs such as chlorpromazine, imipramine, 
alendronic acid, olanzapine, and cabozantinib. Furthermore, these drugs 
are categorized as antidepressants, anti-cancer drugs, and anti-
osteoporotics (Supplementary Table S1 and Supplementary Fig. S1). 

The top 20 repurposed drug candidates against major epidemic-/ 
pandemic-causing viruses identified from our pipeline are represented 
as network diagrams in Supplementary Figs. S1–S9 and in detailed 
tabulation format in Supplementary Table S1. We have also incorpo-
rated the information of the drug category as well as the classification of 
predicted repurposed drugs. The classification of identified drugs in-
cludes whether that drug is host-specific or pathogen-specific. The ma-
jority of these predicted drugs are host-specific (e.g., anti-cancer drugs, 
anti-diabetics, anticoagulants, anti-inflammatories, etc.). However, 
antibiotic, antifungal, antiviral, and antiparasitic drugs are considered 
pathogen-specific (as listed in Supplementary Table S1). 

Fig. 2. Repurposed drug analysis for Coronaviridae. A) Network analysis of repurposed drugs, where nodes represent viruses belonging to the Coronaviridae family- 
like novel coronavirus-2019 (SARS-CoV-2), Severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) along with the repurposed 
drug candidates resulting from our “drug-target-drug” analysis. Edge line width represents the confidence score (thicker lines represent high confidence scores for 
repurposed drugs, while thinner lines represent comparatively lower confidence in repurposed drugs against a virus). B) Heatmap depicting the repurposed drug 
candidates resulting from our “drug-target-drug” analysis. The colors represent the confidence scores of individual repurposed drugs. 

A. Rajput et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 136 (2021) 104677

5

We checked the status of the predicted repurposed drugs in common 
among viruses and obtained 52 out of the 283 common drugs for at least 
two viruses (Fig. 4). Among these 52 drugs, fostamatinib (DB12010) and 
loxapine (DB00408) were commonly found between five viruses. Fos-
tamatinib is predicted to be suitable for repurposing against LASV, IAV/ 
IBV, RVFV, SARS-CoV-2, and ZIKV. Simultaneously, loxapine is pre-
dicted to be repurposed against CCHV, CHIKV, HeV, LASV, and SARS- 
CoV-2. The statuses of all 52 drugs are provided in Fig. 4. 

2.2. Drug pathway analysis 

We used a “drug-target-pathway” approach to identify KEGG path-
ways that were being targeted by existing drugs. Additionally, we used 
experimentally validated drugs to identify their drug-targets followed by 
the mapping of KEGG pathways. The top 10 pathways were selected for 
each of the 14 viruses (Fig. 5). 

The “pathways in cancer” were found to be a majorly occurring drug- 
target for SARS-CoV-2, influenza, EBOV, and ZIKV. “Pathways in can-
cer” is a collection of several pathways whose genes are perturbed due to 
cancer. For SARS-CoV-2, we had 21 drugs with 124 genes. Overall, 21 
out of 124 genes were mapped to the neuroactive ligand-receptor 
interaction pathway (hsa 04080), while 20 genes were found in the 
MAPK signaling pathway. For the influenza virus, 14 drugs were found 
to have 45 genes. Overall, 9 of these 45 genes belonged to the PI3K-Akt 
signaling pathway (hsa04151), while 7 genes coincided with the pros-
tate cancer pathway. In the case of EBOV, 15 drugs targeted 58 genes. Of 

these genes, 14 were shared with the MAPK signaling pathway and 14 
mapped to the Ras signaling pathway (hsa 04014). In the case of ZIKV, 
13 drugs have 46 genes, of which 9 genes are involved in the PI3K-Akt 
signaling pathway (hsa04151) and 7 genes mapped to the Cushing 
syndrome pathway. Moreover, the “pathways in cancer” hsa 05200 
pathway was a common target for eight of the viruses. This pathway was 
mapped onto 27, 9, 14, and 10 genes in the cases of SARS-CoV-2, 
influenza, EBOV, and ZIKV, respectively. Ten of the most common 
pathways for the other viruses are provided in Supplementary Table S2. 

2.3. Gene ontology analysis 

For the gene ontology (GO) analysis, gene Entrez IDs corresponding 
to the drugs were visualized with the enriched GO terms for the viruses. 
Fisher’s exact test for GO term enrichment was performed using the 
topGO package in R. The enrichment of GO terms was visualized using 
R, and the statistical results of the test are provided in the supplementary 
material (Supplementary Figs. S10–S48 and Supplementary Table S3). 

Enriched GO biological processes for SARS-CoV-2 were mostly pre-
dicted as regulatory processes for the transportation and localization of 
cellular components. In GO molecular functions, genes that acted as 
targets for drugs designed against SARS-CoV-2 were significantly 
involved in tyrosine kinase signaling activity (GO:0004713 and 
GO:0008227). We also identified many genes involved in ion channel 
transporter activities, especially sodium- and calcium-gated channels 
(GO:0005248 and GO:0005244). Ion channels are known to serve an 

Fig. 3. The alluvial plot represents the correlation between experimentally validated drugs, promising repurposed drug candidates, and repurposed drug types for 
the treatment of SARS-CoV-2. 
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important role in the transmission of nerve impulses, and this result 
suggests that the “neuroactive ligand-receptor interaction pathway” 
may serve a critical role in virus infection. In the case of overrepresented 
GO cellular components, the majority of the components mapped to the 
plasma membrane. Since most of the cell signaling machinery is located 
in the plasma membrane (GO:0005886 and GO:0005887), we found the 
plasma membrane node to be highly significant (Supplementary 
Figs. S34–S36). 

For the influenza virus, we primarily found that cell cycle-related GO 
terms (GO:0045,786 and GO:0044,772) were enriched within GO 

biological processes. Within GO molecular function terms, cyclin- 
dependent protein serine/threonine and kinase activity (GO:0004693 
and GO:0097,472) were found to be significantly enriched. Other terms 
involved in binding functions were also found in higher numbers. 
Enriched GO cellular components were mainly protein kinase complexes 
(GO:0000307 and GO:1902911) or complexes involved in vesicular 
transport (GO:1903561 and GO:0031,982) (Supplementary 
Figs. S22–S24). 

Signaling processes were the major biological processes enriched in 
the case of the EBOV. Generally, we found that the MAP kinase signaling 

Fig. 4. Heatmap depicting the status of repurposed drugs predicted from our pipeline against the viruses responsible for causing epidemics/pandemics. The colors in 
the heatmap represent the confidence scores of individual repurposed drugs. 
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pathway (GO:0000165) and Fc receptor signaling pathway 
(GO:0038,093) were involved as common drug-targets against EBOV. 
Among the GO molecular functions, protein kinase activity and 
nucleotide-binding (GO:0004672, GO:0004697, and GO:0000166) were 
more commonly enriched. Vesicle-related GO terms and the proteasome 
core complex were the GO cellular components targeted by drugs 
against EBOV (Supplementary Figs. S16–S18). 

Furthermore, phosphate-related metabolic processes were enriched 
within GO biological processes for the ZIKV (GO:0006796 and 
GO:0006793). We observed a large number of binding-related molecular 
functions, such as nucleoside phosphate binding (GO:1901265), drug 
binding (GO:0008144), and anion binding (GO:0043,168) GO terms 
were more pronounced. Among GO cellular components, those involved 
in drug-targets for viral inhibition were cyclin-dependent protein ki-
nases (GO:0000307) and certain lumen-related terms (GO:0031,983, 
GO:0034,774, and GO:0060,205) (Supplementary Figs. S46–S48). 

2.4. Molecular docking 

Molecular docking plays a significant role in understanding protein 
and ligand interactions. Additionally, it provides information about the 
bond length between atoms. In the present study, we selected 21 mol-
ecules against SARS-CoV-2, of which 17 were used for docking. These 
molecules were consecutively docked on the SARS-CoV-2 S-protein 
(PDB: 6LZG) to determine the best binding affinity (Kcal/mol). A 
comprehensive list of these molecules’ binding affinities is presented in 
Table 2. Moreover, six molecules (i.e., etoposide, regorafenib, sorafenib, 
nintedanib, fostamatinib, and loxapine) were found to have binding 
energies ranging from − 8.2 to − 9.2 kcal/mol. Figs. 6 and 7 present the 
interacting residues of four molecules (i.e., etoposide, regorafenib, sor-
afenib, and nintedanib). 

The interaction analysis shows that etoposide exhibits nine in-
teractions, of which one interaction belongs to the N-terminal domain 

Fig. 5. Pathway heat map depicting the number of genes from the KEGG pathways (y-axis) that are involved as drug-targets against the epidemic/pandemic viruses 
(x-axis). Numbers within square brackets indicate the total number of genes in the pathway. Deep blue indicates a higher number of genes, whereas white indicates 
the lower involvement of genes. 

A. Rajput et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 136 (2021) 104677

8

Table 2 
The ligand, binding affinity, root mean square deviation (RMSD) value (Å), interacting residues, bond length (Å), types of interactions, and interacting domain of the 
spike protein.  

Drug_id Drugs Affinity (Kcal/mol) RMSD (Å) Interacting residues Bond length(Å) Interactions Interacting domain 

DB00773 Etoposide − 9.2 0 PHE-40 
ASP-350 
TYR-385 
PHE-390 
ARG-393 
ASN-394 
HIS-401 
ARG-514 
TYR-515 

3.86 
2.06 
1.76 
4.39 
3.41 
2.43, 3.52 
2.94 
2.76, 3.89, 4.13 
4.47 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-cation 
Pi-sigma 
Alkyl 
Pi-alkyl 

NTD/CTD (RBD) 

DB08896 Regorafenib − 9.1 0 LEU-95 
GLN-102 
TYR-202 
ASP-206 
ALA-396 
SER-511 
ARG-514 
LYS-562 
GLU-564 
TRP-566 

3.94 
2.40 
5.64 
3.23, 4.82, 4.99 
3.31, 3.68 
2.20, 2.48 
2.29 
3.04, 3.45 
3.39 
2.93 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-Pi T-shaped 
Halogen 
Pi-anion 
Pi-sigma 

NTD/CTD (RBD) 

DB00398 Sorafenib − 9 0 LEU-95 
GLN-102 
TYR-202 
ASP-206 
ALA-396 
ASP-509 
SER-511 
ARG-514 
LYS-562 
GLU-564 

5.12 
2.45 
5.57 
3.19, 4.80 
3.06, 3.21 
3.78 
2.16, 2.44 
2.25 
2.90, 4.49 
3.43 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-Pi T-shaped 
Halogen 
Pi-anion 
Pi-alkyl 
Alkyl 

NTD/CTD (RBD) 

DB09079 Nintedanib − 8.7 0 GLN-102 
ASP-509 
LYS-562 

2.87 
3.45, 3.60 
4.65 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-cation 

NTD/CTD (RBD) 

DB12010 Fostamatinib − 8.6 0 GLN-102 
TRP-203 
ARG-514 
LYS-562 

2.22, 2.63 
4.59 
2.04, 2.43 
2.52, 4.48, 4.99 

Conventional hydrogen bond 
Unfavorable positive-positive 
Pi-cation 
Pi-alkyl 

NTD/CTD (RBD) 

DB00408 Loxapine − 8.2 0 PHE-40 
ALA-348 
ASP-350 
PHE-390 
ARG-393 

4.84, 5.38 
3.71 
3.52, 3.72 
4.76 
4.79 

Carbon hydrogen bond 
Pi-Pi stacked 
Pi-Pi T-shaped 
Pi-alkyl 

NTD/CTD (RBD) 

DB01238 Aripiprazole − 8.1 0 ASP-350 
GLY-352 
HIS-378 
ARG-393 
HIS-401 
GLU-402 
ARG-514 

2.39 
3.65 
5.47 
2.24, 3.70 
3.85, 5.12 
3.73 
3.62, 4.80 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-cation 
Pi-anion 
Pi-sigma 
Alkyl 
Pi-alkyl 

NTD/CTD (RBD) 

DB01268 Sunitinib − 8 0 PHE-40 
LEU-73 
ALA-99 
LEU-391 
ARG-393 
ASN-394 

4.87 
4.27 
3.18, 3.68 
2.43, 3.63 
2.22, 3.33, 4.69 
2.60 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-Sigma 
Pi-Pi stacked 
Alkyl 
Pi-alkyl 

NTD/CTD (RBD) 

DB00543 Amoxapine − 7.9 0 PHE-40 
ASP-350 
PHE-390 
ARG-393 

4.82,5.41 
3.48, 3.67 
4.82 
4.82 

Carbon hydrogen 
Pi-Pi stacked 
Pi-Pi T-shaped 
Pi-alkyl 

NTD/CTD (RBD) 

DB11817 Baricitinib − 7.5 0 TYR-202 
GLY-205 
ASP-206 
GLU-208 
LYS-562 

3.59, 5.30 
3.69 
3.62 
3.29 
2.14, 3.76 

Conventional hydrogen bond 
Carbon hydrogen bond 
Pi-Pi T-shaped 

NTD/CTD (RBD) 

DB00178 Ramipril − 7.4 0 ALA-348 
TRP-349 
ASP-350 
HIS-378 

2.13 
4.13, 4.75 
2.85 
3.93 

Conventional hydrogen bond 
Pi-sigma 
Pi-Pi stacked 

CTD (RBD) 

DB02266 Flufenamic acid − 7.4 0 PHE-40 
ASP-350 
PHE-390 
ARG-393 
ASN-394 

4.36, 4.81 
3.10 
2.60, 3.33, 4.3, 4.86 
2.77, 3.29, 3.29, 4.36 
1.84 

Conventional hydrogen bond 
Carbon hydrogen bond 
Halogen 
Pi-Pi stacked 
Pi-Pi T-shaped 

NTD/CTD (RBD) 

(continued on next page) 
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(NTD) and eight interactions belong to the C-terminal domain (CTD) of 
the SARS-CoV-2 protein (PDB: 6LZG). The interactive residues are PHE- 
40, ASP-350, TYR-385, PHE-390, ARG- 393, ASN-394, HIS-401, ARG- 
514, and TYR-515. Moreover, two major types of interaction occur in 
these interacting residues (i.e., conventional hydrogen bond and carbon- 
hydrogen bonds) along with other types of interactions. The bond 
lengths between ligand and interacting residues are provided in Table 1. 
Regorafenib reveals 10 interactions, of which 4 were associated with 
NTD and 6 belonged to the CTD/receptor-binding domain (RBD). 
Furthermore, nintedanib showed one NTD and two CTD/RBD 

interactions. Additionally, fostamatinib and loxapine showed four and 
five interactions, respectively. For fostamatinib, two out of four in-
teractions belong to the CTD/RBD. For loxapine, four out of five in-
teractions belong to the CTD/RBD. 

3. Discussion 

Viruses are responsible for causing various pandemics/epidemics 
with high morbidity and mortality worldwide. However, designing 
effective antivirals remains a challenge for the scientific community. 

Table 2 (continued ) 

Drug_id Drugs Affinity (Kcal/mol) RMSD (Å) Interacting residues Bond length(Å) Interactions Interacting domain 

Alkyl 
Pi-alkyl 

DB09477 Enalaprilat − 7.3 0 LEU-95 
GLN-102 
TYR-196 
TYR-202 
GLY-205 
GLU-208 
VAL-209 
PRO-565 

3.52 
2.70 
2.75 
2.81, 5.06 
2.36 
2.08 
5.09 
5.41 

Conventional hydrogen bond 
Pi-sigma 
Pi-alkyl 

NTD/CTD (RBD) 

DB00477 Chlorpromazine − 6.1 0 ASP-350 
ASP-382 
PHE-390 
ARG-393 

3.48 
3.58, 3.62 
4.74 
4.78  

Carbon hydrogen bond 
Pi-Pi stacked 
Pi-alkyl 

NTD/CTD (RBD) 

DB00786 Marimastat − 6.1 0 TYR-202 
TRP-203 
ASP-206 
GLU-398 
SER-511 

4.94 
2.47 
3.72, 2.66 
2.73 
1.21, 2.45 

Conventional hydrogen bond 
Carbon hydrogen bond 
Unfavorable positive-positive 
Pi-cation 
Pi-alkyl 

NTD/CTD (RBD) 

DB01033 Mercaptopurine − 5.7 0 HIS-34 
GLU-37 
LYS-353 
ARG-403 
GLY-496 

2.50 
3.58 
2.34, 3.60 
2.30 
2.44 

Conventional hydrogen bond 
Pi-cation 

NTD/CTD (RBD) 

DB01077 Etidronic acid − 5.4 0  
GLY-205 
ASP-206 
GLU-208 
LYS-562 
TRP-566 

2.46 
2.85, 2.94, 4.82 
2.00 
2.79, 2.96, 4.20 
2.11, 3.23, 3.48 

Conventional hydrogen bond 
Carbon hydrogen bond 
Attractive charge 
Unfavorable positive-positive 

NTD/CTD (RBD)  

Fig. 6. The ligands A) etoposide, B) regorafenib, C) sorafenib, and D) nintedanib binding to the SARS-CoV-2 S-protein (the SARS-CoV-2 S-protein is shown in the 
ribbon diagram in gray color and the ligand molecule is shown in the green sphere). 
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Drug repurposing has emerged as a powerful tool that reduces time and 
cost [39]. In the current study, we provide a novel “drug-target-drug” 
approach to identify and prioritize promising repurposed drugs (see 
Methods). The overall analysis involved the collation of experimentally 
validated antiviral drugs from the literature followed by the extraction 
of their targets. Thereafter, these drug-targets were used for the iden-
tification of new and effective repurposed drugs against major human 
viruses. 

The “drug-target-drug” approach is a novel strategy that was used in 
the present study to identify promising repurposed drug candidates 
against 14 viruses responsible for causing epidemics/pandemics. This 
study used experimentally validated and FDA-approved viral inhibitors 
as inputs. However, few published articles have used different ap-
proaches to identify repurposed drug candidates targeting SARS-CoV-2. 
O’Donovan et al. used transcriptomics signatures from the publicly 
available data of SARS-CoV-2 infected cell lines to identify 20 putative 
drugs for COVID-19 patients [32]. Moreover, Barh et al. used 
multi-omics (interactome, proteome, transcriptome, and bibliome) data 
to predict drug candidates against SARS-CoV-2 [33]. Additionally, 
Majumdar et al. identified effective chemical candidates against 
SARS-CoV-2 by incorporating the deep learning-based potential ligand 
prediction framework [34]. Cippa et al. predicted protective drugs 
against COVID-19 by examining the interplay between the risk factors 
and medications [38]. Furthermore, Gordon et al. identified the 66 
druggable targets from 69 compounds in various phases of clinical trials 
for SARS-CoV-2 based on protein interaction maps [35]. Ackerman et al. 
showed eight prioritized drug-targets against SARS-CoV-2 using 
network-controllability [36]. Moreover, Stolfi et al. developed a 
target-based strategy to identify a drug against SARS-CoV-2 by 
analyzing protein-protein interactions [37]. However, none of the 
aforementioned approaches used experimentally validated repurposed 
drug candidates (tested for antiviral activity) as inputs. Therefore, the 
current study is different and more robust than the approaches reported 
in the literature. 

We compared the drug-targets used in our study with other ap-
proaches for SARS-CoV-2 and found that 33 out of 114 targets were also 
identified in previous studies [34] [–] [37]. Overall, six of the targets 
mapped with those of Gordon et al. (i.e., P06280, P12268, P21964, 
P38606, Q92769, and Q99720) [35]. Our study also shows six targets in 
common with Stolfi et al. (i.e., P42345, P07948, P11362, P12931, 
P21964, and P05362) [37]. Furthermore, two targets were identified by 
Ackermann et al. (i.e., Q99720 and P12268) [36]. Moreover, Majumdar 
et al. used the kinase inhibitor bioactivity (KIBA) dataset to perform 

drug-target interaction prediction [34], which resulted in 25 targets that 
were also identified in the present study. Some studies did not use tar-
gets for the identification of repurposed drug candidates. For example, 
O’Donovan et al. used transcriptomics signatures [32], Barh et al. used 
multi-omics data [33], and Cippa et al. identified the risk profiles of the 
patients to identify protective drugs [38]. 

All of the reported approaches identified repurposed drug candidates 
for SARS-CoV-2. We compared our output (repurposed drugs) from 
recent studies and found many drug candidates in common (see Sup-
plementary Fig. S49). Interestingly, we found that six drugs from our 
study were also predicted as potential repurposed drug candidates 
against SARS-CoV-2 in previous studies (e.g., fostamatinib, mycophe-
nolate mofetil, sorafenib, regorafenib, etoposide, and nintedanib. This 
further validates the promising nature of our “drug-target-drug” pipeline. 
Among the aforementioned drugs, fostamatinib, regorafenib, and nin-
tedanib were also predicted by Stolfi et al., while etoposide was also 
predicted by Barh et al., mycophenolate mofetil was identified by 
Ackermann et al., and sorafenib was also identified by O’Donovan et al. 
Thus, our “drug-target-drug” approach has some drug-targets and 
repurposed drugs in common with a few computational approaches. 
Notably, a few of the predicted repurposed drugs have also entered 
clinical trials. This demonstrates that our “drug-target-drug” approach is 
capable of identifying potential repurposed drug candidates for 
epidemic-/pandemic-causing viruses. 

In light of the SARS-CoV-2 pandemic, we have predicted promising 
repurposed drug candidates in the antineoplastic (lung, renal, and he-
patic), rheumatoid arthritis drug, antidepressant, and immunosuppres-
sant categories. For example, fostamatinib, chlorpromazine, baricitinib, 
ramipril, enalaprilat, nintedanib, and etoposide are already in various 
phases of clinical trials for COVID-19 patients. Chlorpromazine had a 
high confidence score (1.0) and was also experimentally validated by 
Weston et al. (IC50 = 3.14 μM) [40]. During our analysis, we identified 
certain drugs (e.g., ramipril and enalaprilat) as potential repurposed 
drugs against COVID-19 patients. The effectiveness of ramipril and 
enalaprilat was confirmed by their targets (i.e., angiotensin-converting 
enzyme (ACE) or angiotensin II receptor blocker (ARB), which already 
showed promising results in treating COVID-19 patients [41] [–] [43]. 
Reports have highlighted the potential use of ACE2, which is also the 
target of drugs approved for use in COVID-19 patients (e.g., chloroquine 
and hydroxychloroquine) [44]. Our approach also predicted drugs for 
use in COVID-19 patients (e.g., sorafenib, AE-941, and sunitinib) that 
were previously used to treat renal disorders. These drugs could be 
promising repurposed drug candidates in COVID-19 patients since 

Fig. 7. The ligands A) etoposide, B) regorafenib, C) sorafenib, and D) nintedanib binding the SARS-CoV-2 S-protein (the SARS-CoV-2 S-protein is shown in cyan 
color, the interacting residues are shown in blue Color, and ligand molecules are shown as green balls and sticks). 
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reports suggest major kidney functionality complications [45,46]. 
However, our method also predicted that drugs used in hepatocellular 
carcinoma and immune thrombocytopenic purpura (ITP) (i.e., regor-
afenib and fostamatinib) will be effective in COVID-19 patients. These 
drugs could be used for various clinical indications in COVID-19 pa-
tients, such as non-functionality of the liver [46] and blood-related 
disorders [47]. However, we also predicted that baricitinib (usually 
given to rheumatoid arthritis patients) will be effective for COVID-19 
patients. Various reports further confirmed the effective reuse of rheu-
matoid arthritis drugs in COVID-19 patients. JAK/STAT is involved in 
the cytokine production of macrophages and the differentiation, sur-
vival, and activation of neutrophils. These genes are highly expressed 
during SARS-CoV-2 infection. Furthermore, drugs such as rux-
olitinib—which target these pathways—have been predicted to be 
effective against SARS-CoV-2 [48]. Tumor necrosis factor-ɑ (TNF-ɑ) is a 
cytokine that helps in the pathogenesis of SARS-CoV-2 infection [49] in 
acute respiratory distress syndrome (ARDS) patients [50]. 

We also predicted the potential reuse of nedocromil—a well-known 
antiasthmatic drug—against influenza infection. The presence of asthma 
has further confirmed its use as a clinical indication among influenza 
patients during the 2008–2009 flu pandemic. Furthermore, our “drug- 
target-drug” approach identified the potential for the anti-cancer drugs 
gemcitabine and paclitaxel to cure influenza patients. Interestingly, 
some anti-cancer drugs showed promising results in treating influenza 
patients [39]. Furthermore, we found a few gene targets that are 
involved in viral pathogenesis. For example, Chavas et al. reported that 
human cytosolic sialidase Neu 2 interacts with the sialidase of the 
influenza virus and is targeted by drugs such as oseltamivir and zana-
mivir [51]. Through an RNAi screening study, Zhang et al. revealed that 
the anti-cancer drug flavopiridol targets cyclin-dependent kinase 4 
(CDK4), which is involved in leukocyte migration and lung injury. 
Notably, they observed significant improvement in edema among 
H5N1-infected mouse lung tissues [52]. We predicted that paclitaxel 
(also known as Taxol) is effective against the influenza virus. Taxol is 
primarily used to treat Kaposi’s sarcoma and lung cancer. Roberts et al. 
have shown that the addition of the microtubule stabilizer paclitaxel 
(Taxol) significantly reduces the spread of influenza A virus infection in 
cell lines [53]. A few studies have also suggested the non-cancer 
repurposed use of paclitaxel at low concentrations to treat skin disor-
ders, renal and hepatic fibrosis, inflammation, axon regeneration, limb 
salvage, and coronary artery restenosis [54]. 

The EBOV caused a major epidemic between 2014 and 2016. We 
identified that drugs categorized as cardiovascular drugs, antihyper-
tensives, vasodilators, and anti-cancer drugs can be repurposed for 
EBOV patients. We predicted the use of deslanoside and digitoxin, which 
are well-known cardiovascular drugs that could be effectively repur-
posed against EBOV. Previously, some studies also reported the prom-
ising use of cardiovascular drugs to treat EBOV infections [55]. We also 
identified lenvatinib and diethylstilbestrol as anti-cancer drugs that 
could be repurposed to tackle EBOV. Various reports have shown the 
effective use of anti-cancer drugs against Ebola hemorrhagic fever [56]. 
There are several repurposed drug-targets in the EBOV. García-Dorival 
et al. showed that the ATP1A1 enzyme is inhibited in Ebola 
virus-infected cells, which results in decreasing virus progeny [57]. Also, 
the dihydroorotate dehydrogenase (DHODH) target results in the inhi-
bition of the Ebola virus-induced minigenome (MG) assay [58]. 

Epidemics caused by ZIKV occurred during the 2015–2016 period in 
Brazil as well as areas of North and South America [59]. Our “drug--
target-drug” approach predicted anti-cancer, antiviral, and immunosup-
pressant drugs as repurposed candidates for ZIKV infections. From our in 
silico analysis, we identified certain anti-cancer drugs (e.g., alvocidib, 
sorafenib, regorafenib, and lenvatinib) as promising candidates for 
treating ZIKV infection. Previous reports showed that the anti-cancer 
drug methotrexate is effective against ZIKV infection [60]. We also 
found that repurposed drugs such as ribavirin and trifluridine showed 
promising results in tackling ZIKV infection [61,62]. Additionally, we 

found that the immunosuppressant drug mycophenolate mofetil is 
effective against ZIKV patients with high efficiency. Notably, the DHFR 
gene plays a vital role in inhibiting ZIKV replication [60]. Beck et al. 
showed that methotrexate inhibits the DHFR pathway against ZIKV in 
cell lines such as Vero and human neural stem cells (hNSCs). Similarly, 
RNase L gene function is also activated in Zika infection, which degrades 
genomic RNA [63]. 

Apart from the aforementioned viruses responsible for causing epi-
demics and pandemics, we also identified the most promising drug- 
targets for the remaining 10 viruses, which have not been previously 
used for treating viral infections. Among all of the identified repurposed 
drugs, fostamatinib has been used as a highly promising broad-spectrum 
drug against SARS-CoV-2, EBOV, IAV/IBV, ZIKA, LASV, and RVFV. 
Fostamatinib is an orphan drug and has been primarily used to treat 
rheumatoid arthritis and ITP [47,64]. Likewise, aripiprazole—an anti-
psychotic drug—has been identified as a common drug against 
SARS-CoV-2, LASV, CCHF, HeV, and NiV. Furthermore, the antipsy-
chotic drug loxapine was found to be effective against five viruses (i.e., 
SARS-CoV-2, LASV, CCHF, HeV, and CHIKV). Interestingly, the litera-
ture shows psychotic disorder as a clinical indication for all of these 
viruses [65] [–] [67]. Nayak et al. showed that chikungunya infection 
results in TNF production in the host macrophages [68]. Likewise, fatty 
acid synthase (FASN) has been reported as a proviral for CHIKV via nsP1 
palmitoylation [69]. 

Most of the enriched GO terms belonged to the cell cycle and 
signaling pathways. Cell cycle processes are essential for the survival of 
viruses within hosts and are the preferred targets of most viruses. 
Notably, cellular and viral kinases (involved in the cell cycle) may prove 
to be viable targets for the prophylactic and therapeutic treatment of 
viral infections. Cyclin-dependent kinases regulate the state of cellular 
growth and replication. These were also found to be significantly 
enriched among GO terms, which indicates that they could be preferred 
as drug-targets. The plasma membrane is a reservoir for nearly all 
signaling receptors and is also the primary route of viral invasion into 
host cells. Thus, targeting the plasma membrane could help the immune 
system perform apoptosis of the infected cells and prevent the spread of 
viral infections. 

The “drug-target-pathway” analysis showed that some pathways are 
crucial for the survival of viruses. For example, the “pathways in cancer” 
are mapped with the majority of the genes involved in cytokine-cytokine 
receptor. This is one of the main reasons why immunosuppressants can 
be repurposed as antivirals. Signaling pathways are essential for viral 
infection and replication. Due to their small genome size, viruses need to 
hijack the host cell machinery for their survival and proliferation. 
Manipulating certain signaling pathways (e.g., PI3K-Akt, MAPK, and 
JAK-STAT) is a technique used by viruses to prolong viral replication 
and evade the host’s immune response. Drugs targeting these pathways 
could be repurposed to provide an effective countermeasure against 
viral infection. 

We found that the targets were mapped with various drugs catego-
rized as anti-inflammatories, anti-cancer drugs, and anticoagulants (e.g., 
sorafenib, imatinib, duvelisib, and acalabrutinib). Some of these drugs 
are known anti-tumor tyrosine kinase inhibitors that have been shown to 
possess antiviral and anti-inflammatory properties against SARS-CoV-2 
[70,71]. IL-6 inhibitors such as tocilizumab and siltuximab are 
approved for cancer treatment by the US FDA. These IL-6 inhibitors are 
also considered effective against the cytokine storm associated with a 
SARS-CoV-2 infection and have entered clinical trials [71]. Further-
more, prednisolone, dexamethasone, and hydrocortisone are popular 
anti-inflammatory and immunosuppressive drugs that have shown 
promising results during in vitro validations in SARS-CoV-2-infected cell 
lines. Additionally, NF-kB inhibitors such as baicalin, amygdalin, and 
mulberroside A reduce NF-κB expression and are used as anti-tumor 
drugs. These anti-inflammatory drugs are predicted to have a regula-
tory effect on the expression of pro-inflammatory genes and would be 
effective against the cytokine storm caused by SARS-CoV-2 [72]. 
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Dinaciclib is a small molecule and multi-cyclin-dependent kinase 
inhibitor that represents one of the major regulators of the cell cycle 
[73]. Kinase inhibitors such as dinaciclib have shown promising results 
in both in vitro and in vivo testing against H7N9 IAV as well as other IAV 
strains [74]. Additionally, toremifene and clomiphene are selective es-
trogen reuptake modulators that have been effective in the treatment of 
breast cancer. These drugs were found to have antiviral activity due to 
their ability to inhibit EBOV entry by more than 90 % [75]. Further-
more, Temoporfin—a photosensitizer drug originally used for the 
treatment of squamous cell carcinoma of the head and neck—has been 
shown to obstruct ZIKV replication by inhibiting the interactions be-
tween viral NS2B and NS3 proteins [76]. 

Protein-ligand interaction plays a very crucial role in various cellular 
processes. Molecular docking and dynamics are significant methods 
used to predict the best binding affinity between ligands and proteins 
[77]. In this study, 17 out of 21 molecules were sequentially docked on 
the SARS-CoV-2 S-protein complex with the ACE-2 receptor. We found 
six ligand molecules with a high binding affinity (i.e., etoposide, 
regorafenib, sorafenib, nintedanib, fostamatinib, and loxapine) against 
the SARS-Cov-2 S-protein complex with ACE-2. Etoposide and regor-
afenib have a binding affinity (− 9.2 and − 9.1 kcal/mol, respectively) 
and exhibit a large amount of interaction with the CTD/RBD domain of 
the SARS-CoV-2 S-protein complex with ACE-2. Moreover, these results 
correspond to a previous study reporting docking scores of − 7.9 kcal/-
mol for etoposide against SARS-CoV-2 Spike-RBD [78]. Awad et al. 
mentioned a binding energy of − 8.2 kcal/mol for regorafenib against 
SARS-CoV-2 Spike-RBD [79]. Furthermore, the IC50/EC50 values of these 
21 drugs were confirmed by one of our recently published artificial in-
telligence (AI)-based pipelines known as “anti-Corona” [80]. Overall, 17 
out of 21 drugs were predicted to have IC50/EC50 values ≤ 1 μM, cor-
responding to approximately 81 % accuracy. Moreover, all of the 21 
drugs were predicted to have IC50/EC50 values ≤ 5 μM. 

Through the “drug-target-drug” computational approach, the current 
study identified promising repurposed drugs against 14 viruses 
responsible for causing epidemics and pandemics. Although several 
other computational approaches (e.g., molecular simulation, RNAseq, 
and drug networks) have been used for drug repurposing, the data- 
driven “drug-target-drug” approach has not been exploited to date [15, 
81,82]. The strength of this algorithm is that we focused on the identi-
fication of repurposed drug candidates that have been experimentally 
validated. An important step that makes this a robust technique is the 
exclusion of drugs obtained through the negative dataset from the 
identified repurposed drugs of the positive dataset, which has not been 
previously performed [15]. Furthermore, the calculation of confidence 
scores makes this a more promising approach. The repurposed drugs 
identified for SARS-CoV-2 using our approach were further validated by 
molecular docking analysis and supported by our recently published 
AI-based computational method “anti-Corona” [80]. The advantage of 
the study is that some of the predicted repurposed drugs are in various 
phases of clinical trials (e.g., baricitinib, ramipril, chlorpromazine, 
enalaprilat). Thus, the predicted repurposed drug candidates could be 
potential antivirals. The identified drug candidates fall within the 
approved drug category, which could easily go through to testing trials. 
Therefore, a massive repertoire of drugs remains unexplored. As such, 
our study is critical since it has prioritized the repositioned drug can-
didates. This analysis can help speed up the discovery of effective an-
tivirals. Furthermore, this approach could also be applied to identify 
repurposed drugs for cancer, diabetes, bacterial infection, and many 
other diseases. 

3.1. Limitations of the study 

The main limitation of this algorithm is that it only focused on drugs 
whose targets are already known in the literature. Thus, other drugs are 
excluded. However, the implementation of machine learning algorithms 
would further speed up research by considering drugs with known and 

unknown targets. 

4. Material and methods 

The overall methodology used in the present study is provided in 
Figs. 8 and 9. It involves data extraction, the identification of repurposed 
drugs, and the prioritization of filtered repurposed drug candidates. We 
also performed drug-target pathway analysis, GO analysis, and the 
visualization of experimentally validated drugs effective against 14 vi-
ruses known to cause epidemics and pandemics. 

4.1. Data extraction 

The data preparation involved the following steps:  

1. Data mining was performed for the drugs experimentally tested for in 
vitro or in vivo antiviral activity against 14 viruses that cause epi-
demics and pandemics. Experimental data on the virus inhibition 
efficiency (IC50/EC50) of drugs were manually curated from the 
literature.  

2. The selection of drugs tested for antiviral activities (for the positive 
and negative datasets) was based on the IC50/EC50 values. Drugs 
with IC50/EC50 values < 10 μM were included in the positive dataset 
[15], while drugs with >50 μM IC50/EC50 were included in the 
negative dataset.  

3. Overall, the drugs used to analyze the 14 viruses were as follows: 
SARS-CoV-2 (22p21+n1), LASV (07p7+n0), CCHV (04p2+n2), SARS 
(13p7+n6), MERS (08p4+n4), MARV (07p4+n3), EBOV(23p15+n8), ZIKV 
(16p13+n3), IAV/IBV (24p14+n10), HeV (13p5+n8), NiV (14p5+n9), 
RVFV (05p1+n4), CHIKV (25p13+n12), and VARV (01p1+n0). The dis-
tribution of the positive and negative datasets for drugs tested 
against individual viruses is shown in superscript.  

4. The details of the drugs, viruses, antiviral activity, drug-targets (from 
the DrugBank database), and PubMed IDs are provided on GitHub 
(https://github.com/manojk-imtech/viralrep/blob/master/data. 
zip) and in Supplementary Table S4. 

4.2. Identification of repurposed drugs 

Following data extraction, novel and promising repurposed drugs 
were identified via the “drug-target-drug” approach (Fig. 8), which was 
conducted as follows:  

1. The targets of the drugs in the positive and negative datasets for all 
14 viruses were extracted from the DrugBank database using Python 
script. 

2. We identified new drugs with the same targets as repurposed can-
didates for individual viruses using the respective input datasets via a 
Python-based pipeline (https://github.com/manojk-imtech 
/viralrep). 

3. Various filters were set to obtain promising repurposed drug candi-
dates (excluding the repurposed drugs from the positive dataset, 
which were extracted using the negative dataset). 

4.3. Prioritization of repurposed drug candidates 

The aforementioned filtered repurposed candidates were then 
prioritized based on their confidence scores, as follows:  

1. Confidence scores were calculated based on the number of drug- 
targets. For example, for SARS-CoV-2, the experimentally validated 
drug dabrafenib (DB08912) was reported to have five targets 
(P15056, P04049, P57059, Q8NG66, and P53667). We identified 13 
drugs from the DrugBank database that possess the same targets as 
the 13 fostamatinib (DB12010) drugs with the same five targets. 
Thus, the confidence score for fostamatinib was calculated as 1.0 
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(confidence score, s = number of mapped targets/Total number of tar-
gets). However, sorafenib (DB00398) mapped with two out of five 
experimentally validated targets of dabrafenib. Thus, we calculated 
its confidence score as 0.4 (Fig. 9).  

2. The highest confidence score (s = 1) suggests the highest efficacy of a 
novel predicted repurposed drug candidate.  

3. Finally, we retained drugs from the “Approved” category and 
removed those from the “Withdrawn”, “Illicit”, and “Nutraceutical” 
categories (as per the DrugBank database). 

4.4. Drug-target and pathway analysis 

Drug-targets are important entities that are usually protein mole-
cules in the body. A drug-target is associated with a disease against 
which a drug candidate shows a significant therapeutic effect. We 
identified the drug-targets for all experimentally validated drugs using 
DrugBank [83]. The drug versus drug-target associations were depicted 

in the form of highly enriched networks. 
The “drug-target-pathway” analysis (pathway-level) was performed 

using experimentally validated drugs extracted from the literature and 
their corresponding drug-targets for each of the 14 viruses. The gene 
Entrez IDs of each target were extracted for further analysis. These gene 
IDs were then mapped onto KEGG pathways using the KEGGREST 
package in R/Bioconductor [84]. The frequency of each of the pathways 
per virus was calculated, and the top 10 pathways for each of the viruses 
were then explored. 

4.5. Gene ontology analysis 

Gene ontology analysis [85] is a common method used to annotate 
genes and gene products for identifying genes that are overrepresented 
in terms of molecular function (MF), biological process (BP), and 
cellular component (CC) attributes [86]. For the GO analysis, we used 
the targets of experimentally validated drugs extracted from the 

Fig. 8. The overall methodology undertaken for identifying repurposed drugs.  
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literature for 14 viruses known to cause epidemics and pandemics. To 
visualize the enrichment of GO terms (BP, MF, and CC), we used topGO 
[87] (an R/Bioconductor package). The Gene Entrez IDs of all 
drug-targets were extracted and used as inputs to create a topGO object. 
Fisher’s exact test was performed on the objects using the runTest 
function within the topGO package to assess the overrepresentation of 
GO terms with statistical significance. 

4.6. Molecular docking 

Protein and ligand molecules were customized using the AutoDock 
tool [88]. Furthermore, the molecular structures of proteins and ligands 
were saved in PDBQT file format. To perform docking between the 
protein (SARS-CoV-2 S-protein complex with ACE-2 receptor PDB: 
6LZG) and ligand molecules, AutoDock Vina (v1.1.2) was used with the 
default parameters [89]. A grid box was generated using the default 
settings and nine of the best docking poses were generated between 
protein and ligand molecules. To determine the best docking pose, the 
exhaustiveness parameter was set to 10. Pymol and discovery studio 
visualizer were used to visualize the interacting residues between the 
protein and ligand molecules. 

4.7. Data visualization 

All of the results were made user-friendly using various Python or R 
packages. Network visualization was performed using Gephi software 
0.9.2 (https://gephi.org/). The alluvial plots were constructed using the 
R package (https://github.com/mbojan/alluvial). The heatmaps and 
GO plots were prepared using R packages. 
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Fig. 9. Diagrammatic representation of the 
“drug-target-drug” pipeline used for the 
identification of repurposed drugs. The pos-
itive (IC50/EC50 < 10 μM) and negative 
(IC50/EC50 > 50 μM) data sets extracted 
from the literature were submitted to Github 
(https://github.com/manojk-imtech/viralr 
ep/blob/master/data.zip). The targets for 
each drug were extracted from the DrugBank 
database. Furthermore, all of the drugs with 
identified protein targets were predicted 
using a Python-based pipeline. However, the 
checkpoint of any negative repurposed drug 
is present in a positive repurposed drug. In 
the same case, the negative repurposed drug 
is removed from the list of positive repur-
posed drug candidates. Calculation of confi-
dence score for every repurposed drug: s =
number of mapped targets/Total number of 
targets. Removal of Withdrawn, Illicit, and 
Nutraceutical category drugs from the pre-
dicted drugs.   
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.104677. 
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L. Eyer, D. Ruzek, Arbidol (umifenovir): a broad-spectrum antiviral drug that 
inhibits medically important arthropod-borne flaviviruses, Viruses 10 (2018), 
https://doi.org/10.3390/v10040184. 

[62] S.L. Fink, L. Vojtech, J. Wagoner, N.S.J. Slivinski, K.J. Jackson, R. Wang, 
S. Khadka, P. Luthra, C.F. Basler, S.J. Polyak, The antiviral drug arbidol inhibits 
Zika virus, Sci. Rep. 8 (2018) 8989. 

[63] J.N. Whelan, Y. Li, R.H. Silverman, S.R. Weiss, Zika virus production is resistant to 
RNase L antiviral activity, J. Virol. 93 (2019), https://doi.org/10.1128/JVI.00313- 
19. 

[64] A. Assinger, Platelets and infection - an emerging role of platelets in viral infection, 
Front. Immunol. 5 (2014) 649. 

[65] K. Zhang, X. Zhou, H. Liu, K. Hashimoto, Treatment concerns for psychiatric 
symptoms in patients with COVID-19 with or without psychiatric disorders, Br. J. 
Psychiatr. 217 (2020) 351. 

[66] F. Vigant, B. Lee, Hendra and nipah infection: pathology, models and potential 
therapies, Infect. Disord. - Drug Targets 11 (2011) 315–336. 

[67] S.S. Seyedi, M. Shukri, P. Hassandarvish, A. Oo, E.M. Shankar, S. Abubakar, 
K. Zandi, Corrigendum: computational approach towards exploring potential anti- 
chikungunya activity of selected flavonoids, Sci. Rep. 6 (2016) 26368. 

[68] T.K. Nayak, P. Mamidi, S.S. Sahoo, P.S. Kumar, C. Mahish, S. Chatterjee, B. 
B. Subudhi, S. Chattopadhyay, S. Chattopadhyay, P38 and JNK mitogen-activated 
protein kinases interact with chikungunya virus non-structural protein-2 and 
regulate TNF induction during viral infection in macrophages, Front. Immunol. 10 
(2019) 786. 

[69] N. Zhang, H. Zhao, L. Zhang, Fatty acid synthase promotes the palmitoylation of 
chikungunya virus nsP1, J. Virol. 93 (2019), https://doi.org/10.1128/JVI.01747- 
18. 

[70] A. Catalano, D. Iacopetta, M. Pellegrino, S. Aquaro, C. Franchini, M.S. Sinicropi, 
Diarylureas: repositioning from antitumor to antimicrobials or multi-target agents 
against new pandemics, Antibiotics 10 (2021), https://doi.org/10.3390/ 
antibiotics10010092. 

[71] K.S. Saini, C. Lanza, M. Romano, E. de Azambuja, J. Cortes, B. de Las Heras, J. de 
Castro, M. Lamba Saini, S. Loibl, G. Curigliano, C. Twelves, M. Leone, M. 
M. Patnaik, Repurposing anticancer drugs for COVID-19-induced inflammation, 
immune dysfunction, and coagulopathy, Br. J. Canc. 123 (2020) 694–697. 

[72] H. Yousefi, L. Mashouri, S.C. Okpechi, N. Alahari, S.K. Alahari, Repurposing 
existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: a review 
describing drug mechanisms of action, Biochem. Pharmacol. 183 (2021) 114296. 

[73] H. Saqub, H. Proetsch-Gugerbauer, V. Bezrookove, M. Nosrati, E.M. Vaquero, D. de 
Semir, R.J. Ice, S. McAllister, L. Soroceanu, M. Kashani-Sabet, R. Osorio, A.A. Dar, 
Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma 
growth by targeting CDK2/5/9, Sci. Rep. 10 (2020) 18489. 

[74] O. Perwitasari, X. Yan, J. O’Donnell, S. Johnson, R.A. Tripp, Repurposing kinase 
inhibitors as antiviral agents to control influenza A virus replication, Assay Drug 
Dev. Technol. 13 (2015) 638–649. 

[75] P.B. Madrid, S. Chopra, I.D. Manger, L. Gilfillan, T.R. Keepers, A.C. Shurtleff, C. 
E. Green, L.V. Iyer, H.H. Dilks, R.A. Davey, A.A. Kolokoltsov, R. Carrion Jr., J. 
L. Patterson, S. Bavari, R.G. Panchal, T.K. Warren, J.B. Wells, W.H. Moos, R. 
L. Burke, M.J. Tanga, A systematic screen of FDA-approved drugs for inhibitors of 
biological threat agents, PloS One 8 (2013), e60579. 

[76] K.J. Lorenz, H. Maier, [Squamous cell carcinoma of the head and neck. 
Photodynamic therapy with Foscan], HNO 56 (2008) 402–409. 

[77] X. Du, Y. Li, Y.-L. Xia, S.-M. Ai, J. Liang, P. Sang, X.-L. Ji, S.-Q. Liu, Insights into 
protein-ligand interactions: mechanisms, models, and methods, Int. J. Mol. Sci. 17 
(2016), https://doi.org/10.3390/ijms17020144. 

[78] N. Behloul, S. Baha, Y. Guo, Z. Yang, R. Shi, J. Meng, In silico identification of 
strong binders of the SARS-CoV-2 receptor-binding domain, Eur. J. Pharmacol. 890 
(2021) 173701. 

[79] I.E. Awad, A.A.-A.A. Abu-Saleh, S. Sharma, A. Yadav, R.A. Poirier, High- 
throughput virtual screening of drug databanks for potential inhibitors of SARS- 
CoV-2 spike glycoprotein, J. Biomol. Struct. Dyn. (2020) 1–14. 

[80] A. Rajput, A. Thakur, A. Mukhopadhyay, S. Kamboj, A. Rastogi, S. Gautam, 
H. Jassal, M. Kumar, Prediction of repurposed drugs for Coronaviruses using 
artificial intelligence and machine learning, Comput. Struct. Biotechnol. J. 19 
(2021) 3133–3148. 

[81] F. Sohraby, M. Bagheri, H. Aryapour, Performing an in silico repurposing of 
existing drugs by combining virtual screening and molecular dynamics simulation, 
Methods Mol. Biol. (2019) 23–43, https://doi.org/10.1007/978-1-4939-8955-3_2. 

[82] F. Cheng, W. Lu, C. Liu, J. Fang, Y. Hou, D.E. Handy, R. Wang, Y. Zhao, Y. Yang, 
J. Huang, D.E. Hill, M. Vidal, C. Eng, J. Loscalzo, A genome-wide positioning 
systems network algorithm for in silico drug repurposing, Nat. Commun. 10 (2019) 
3476. 

[83] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, 
D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, 
N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, 
DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids 
Res. 46 (2018) D1074–D1082, https://doi.org/10.1093/nar/gkx1037. 

[84] M. Kanehisa, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res. 
28 (2000) 27–30, https://doi.org/10.1093/nar/28.1.27. 

[85] The Gene Ontology Consortium, The gene ontology resource: 20 years and still 
GOing strong, Nucleic Acids Res. 47 (2019) D330–D338. 

[86] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, 
K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, 
A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, 
G. Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium, Nat. Genet. 25 (2000) 25–29. 

[87] A. Alexa, J. Rahnenführer, T. Lengauer, Improved scoring of functional groups 
from gene expression data by decorrelating GO graph structure, Bioinformatics 22 
(2006) 1600–1607. 

[88] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A. 
J. Olson, AutoDock 4 and AutoDockTools 4: automated docking with selective 
receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791. 

[89] O. Trott, A.J. Olson, AutoDock Vina, Improving the speed and accuracy of docking 
with a new scoring function, efficient optimization, and multithreading, J. Comput. 
Chem. 31 (2010) 455–461. 

A. Rajput et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0010-4825(21)00471-6/sref49
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref49
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref49
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref50
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref50
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref50
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref50
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref50
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref51
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref51
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref51
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref51
https://doi.org/10.1128/mSystems.00431-19
https://doi.org/10.1128/mSystems.00431-19
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref53
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref53
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref54
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref54
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref55
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref55
https://doi.org/10.1038/emi.2014.88
https://doi.org/10.1038/emi.2014.88
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref57
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref57
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref57
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref57
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref58
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref58
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref58
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref58
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref58
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref59
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref59
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref59
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref59
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref59
https://doi.org/10.3390/v11040338
https://doi.org/10.3390/v10040184
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref62
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref62
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref62
https://doi.org/10.1128/JVI.00313-19
https://doi.org/10.1128/JVI.00313-19
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref64
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref64
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref65
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref65
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref65
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref66
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref66
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref67
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref67
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref67
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref68
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref68
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref68
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref68
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref68
https://doi.org/10.1128/JVI.01747-18
https://doi.org/10.1128/JVI.01747-18
https://doi.org/10.3390/antibiotics10010092
https://doi.org/10.3390/antibiotics10010092
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref71
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref71
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref71
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref71
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref72
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref72
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref72
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref73
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref73
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref73
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref73
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref74
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref74
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref74
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref75
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref75
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref75
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref75
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref75
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref76
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref76
https://doi.org/10.3390/ijms17020144
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref78
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref78
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref78
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref79
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref79
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref79
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref80
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref80
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref80
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref80
https://doi.org/10.1007/978-1-4939-8955-3_2
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref82
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref82
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref82
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref82
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/28.1.27
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref85
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref85
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref86
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref86
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref86
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref86
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref86
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref87
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref87
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref87
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref88
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref88
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref88
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref89
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref89
http://refhub.elsevier.com/S0010-4825(21)00471-6/sref89

