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The study on the inverse problem 
of applied current thermoacoustic 
imaging based on generative 
adversarial network
Liang Guo*, Su Li, Xiangye Wang, Caihong Zeng & Chunyu Liu

Applied Current Thermoacoustic Imaging (ACTAI) is a new imaging method which combines 
electromagnetic excitation with ultrasound imaging, and takes ultrasonic signal as medium and 
biological tissue conductivity as detection target. Taking the high contrast advantage of Electrical 
Impedance Tomography (EIT) and high resolution advantage of ultrasound imaging, ACTAI has 
broad application prospects in the field of biomedical imaging. Although ACTAI has high excitation 
efficiency and strong detectable Signal-to-Noise Ratio, yet while under low frequency electromagnetic 
excitation, it is still a big challenge to reconstruct a high-resolution image of target conductivity. 
This paper proposes a new method for reconstructing conductivity based on Generative Adversarial 
Network, and it consists of three main steps: firstly, use Wiener filtering deconvolution to restore 
the electrical signal output by the ultrasonic probe to a real acoustic signal. Then obtain the initial 
acoustic source image with filtered backprojection technology. Finally, match the conductivity image 
with the initial sound source image, which are used as training samples for generating the adversarial 
network to establish a deep learning model for conductivity reconstruction. After theoretical analysis 
and simulation research, it is found that by introducing machine learning, the new method can dig out 
the inverse problem solving model contained in the data, which further reconstruct a high-resolution 
conductivity image and has strong anti-interference characteristics. The new method provides a new 
way to solve the problem of conductivity reconstruction in Applied Current Thermoacoustic Imaging.

As a new type of functional imaging technology, Electrical Impedance  Tomography1–3 is capable of nondestruc-
tive detection of changes in electrical parameters of biological tissues, and then obtain the physiological and 
pathological states of the tissues. It has a broad application prospect in the field of biomedical imaging. However, 
the low resolution of traditional Electrical Impedance Tomography has become a bottleneck restricting its fur-
ther development. In order to improve the resolution of Electrical Impedance Tomography, the Multi-Physics 
Coupling Imaging technology based on the combination of electromagnetic field and sound field has become a 
research  hotspot4–6, as it can improve the resolution while at the same time retaining the high contrast advan-
tage of Electrical Impedance Tomography. Examples include Microwave Thermoacoustic  Imaging7,8, Magneto-
mediated Thermoacoustic  Imaging9, and Applied Current Thermoacoustic  Imaging10,11, etc.

Microwave Thermoacoustic Imaging uses pulsed microwaves to irradiate biological tissues to produce tran-
sient thermal expansion, which in turn excites ultrasound signals. However, its penetration depth is limited by 
the working frequency of the excitation source, so it is difficult to penetrate deep into tissues and organs. In order 
to increase the penetration depth, Zheng Research Group of Nanyang Technological University in Singapore 
proposed a Magneto-mediated Thermoacoustic Imaging method. The principle is to apply a MHz-level alternat-
ing magnetic field to a conductive target by using the excitation coil to generate an induced electric field inside 
the target, and then stimulate the Joule heat to obtain thermoelastic ultrasonic signals. The excitation frequency 
of magneto-mediated thermoacoustic imaging is 20 MHz, and the penetration depth of electromagnetic wave 
to biological tissues can reach 15 cm. They detected magneto-mediated thermoacoustic signals using high-
conductivity metal block samples and obtained thermoacoustic images of the samples. However, for targets 
with low conductivity, as the detection depth increases, the induced electric field gradually decreases, and the 
Signal-to-Noise Ratio of the ultrasonic signal continuously decreases, which increases the difficulty of detection. 
In 2016, Liu research team of the Institute of Electrical Engineering, Chinese Academy of Sciences proposed 
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the Applied Current Thermoacoustic Imaging (ACTAI). Instead of using the above-mentioned induced electric 
field, they utilize the applied current signal with microsecond pulse width to generate an ultrasonic signal with 
a stronger Signal to Noise Ratio (SNR). Compared with the induced current, the excitation frequency of the 
applied current is easier to adjust and it has a higher penetration depth, which improves the energy conversion 
efficiency and detectable SNR.

As a new type of thermoacoustic imaging technology, ACTAI still has many problems in the high-resolution 
reconstruction of conductivity, which need to be further solved. In terms of image reconstruction, the current 
research mainly focuses on the reconstruction algorithm of sound source image, such as time inversion method, 
filtered back  projection12 and so on. Although these algorithms can reflect the distribution characteristics of 
thermoacoustic sources, they cannot obtain the true conductivity distribution. The fundamental reason is that 
the Signal-to-Noise Ratio of the ultrasound signal is low, while the inverse problem of rebuilding the conductiv-
ity image from the ultrasound signal has a strong nonlinearity, which makes the reconstruction process greatly 
affected by noise, and the reconstruction results of conductivity cannot meet the requirements of functional 
imaging.

In recent years, inverse problem reconstruction algorithms based on deep learning have been widely studied 
in the field of medical imaging, such as magnetic resonance super-resolution imaging, low-dose CT imaging, 
and so on. From the existing research, we find that the deep learning method has such unique advantages as high 
degree of nonlinearity, fast solving speed, easy access to simulation training dataset, etc. in resolving large-scale 
nonlinear reconstruction problems. Generative Adversarial  Network13–15 (GAN) can reconstruct image based on 
limited data, remove the view  artifact16 and improve the image  SNR17, improve the image similarity and get higher 
image quality. ACTAI, as a complex Multi-Physics Coupling Imaging mode, its inverse conductivity reconstruc-
tion problem precisely meets the above characteristics. Therefore, this paper proposes to apply the deep learning 
network to conductivity reconstruction in ACTAI in order to obtain the real conductivity distribution image.

Method
The implementation of the new method consists of the following steps: first, the electrical signal measured by the 
ultrasonic probe is preprocessed by Wiener filter  deconvolution18,19 to obtain the original acoustic signal emitted 
by the measured sample. Then the filtered back projection (FBP) is used to reconstruct the sound source image, 
match the reconstructed sound source image with the conductivity image of the measured sample, and use it as 
a training sample to train a Generative Adversarial Network. Finally, the trained network is used to process the 
sound source image to obtain high-resolution conductivity images. This method comprehensively considers the 
characteristics of the physical model as well as the data-driven model, and constructs a deep neural network spe-
cifically for the ACTAI inverse problem, which can effectively improve the imaging resolution and imaging speed.

In ACTAI, the duration of the pulse current is much shorter than the heat conduction time inside the sample, 
so only the thermoacoustic signal caused by the adiabatic expansion of biological tissues needs to be considered. 
The thermoacoustic pressure p(r, t) generated at field point r can be described as below:

Refer to (1), cs represents the speed of sound, Cp and β represent the specific heat capacity and volume expan-
sion coefficient of the target body respectively, while r and r ′ respectively indicate the position of the ultrasound 
probe and the sound source. H(r

′

, t) is the Joule heat absorbed by the biological tissue per unit time and volume, 
and it can be expressed as H(r

′

, t) = H(r
′

)I(t) , among which, H(r
′

) indicates the spatial heat absorption distribu-
tion, and I(t) is the time domain distribution of pulse excitation intensity. Using the integral solution of Green 
function, p(r, t) can be further expressed as below in (2):

Refer to (2), � represents the integral domain containing all sound sources, δ(t−|r
′
−r|/cs)

4π |r
′
−r|

 is the Green function 
of the sound field. According to (2), the thermoacoustic signal p(r0, t) detected at probe r0 at time t = |r0 − r|/cs 
is the integral of all points along the projection arc, as shown in Fig. 1. The electrical signal p0(r0, t) output by 
the ultrasonic probe is the result of convolution of the thermoacoustic signal p(r0, t) and the probe impulse 
response, which is expressed as below in (3):

Refer to (3), * represents convolution, p(r0, t) means an ideal thermoacoustic signal without noise, i(t) is the 
time domain impulse response of the ultrasonic probe, and γ (t) represents random noise. This formula can be 
expressed in the frequency domain as below p0(r0, t):

P0(r0,ω) , P(r0,ω) , I(ω) and γ (ω) are the frequency spectrum of p0(r0, t) , p(r0, t) , I(t) and γ (t) , respectively.
The original acoustic signal at the ultrasound probe can be restored by the Wiener filter deconvolution 
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Refer to (5), G(ω) is the Fourier transform spectrum of the Wiener filter, C = 1/(α|I(ω)|) is the regularization 
factor, and α is a mature factor to match the ratio of the power spectrum of the input signal and the noise signal 
in the entire period. FFT−1 represents the inverse fast Fourier transform. Using formula (6), the acoustic signal 
p0(r0, t) collected by the ultrasonic probe can be converted into the original acoustic signal p(r0, t).

According to the above original sound signal p(r0, t) , the thermal sound source H(r
′

) can be reconstructed 
by the Filtered backprojection algorithm, as shown below in (7):

Refer to (7), η = β/Cp , and φ0 is the circumferential angle of the location where the ultrasound probe is 
located.

The inverse problem of acoustic field is to reconstruct the thermoacoustic source from the collected ther-
moacoustic signals, while the inverse problem of electromagnetic field is to reconstruct the conductivity of the 
measured sample from the thermoacoustic source. Assuming that the target body is an acoustically homogene-
ous medium with electrical conductivity of σ(r ′) , and that the ultrasonic probe and the target body are both 
immersed in the insulating medium, with low-frequency electromagnetic excitation and electrical quasi-static 
approximation, the boundary conditions and governing equations that the target area meets are described as 
below in (8):

where φ represents the electric scalar potential, 
∑

1 is the plane where the high voltage plate is located,  
∑

2 is the 
ground plate plane, and 

∑

3−6 are the other four boundaries of a cube imaging region except for the electrode. 
According to the governing equation given in (8), the electric field intensity in the target body can be calculated 
as below:

The relationship between the thermal sound source term and the conductivity of the target body can be 
expressed as follows in (10):

Refer to (10), the scalar potential φ is also a function of the target body’s conductivity σ , therefore it is a non-
linear optimization problem to reconstruct the conductivity with known thermoacoustic source H(r

′

).
A two-dimensional ACTAI area is established for the imaging tomographic plane, which is discretized 

into rectangular cells with M rows and N columns, and converted into M × N-dimensional column vectors. 
Let n = M × N, and assume that the conductivity inside the j-th rectangular area is uniform, where j = 1,2,…,n. 
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Figure 1.  Circular scan projection principle.
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According to the ACTAI forward problem model, the thermal function in the imaging area can be calculated as 
H(r

′

) = f ∈ Rn×1 , and the thermal sound source reconstructed by filtered back projection is y ∈ Rn×1.
The least square method is adopted to find the optimal solution, and the optimization problem is established 

as follows:

Then the problem of reconstructing the conductivity of the target body σ is transformed into finding the 
optimal combination of σ to minimize the objective function S.

The conductivity reconstruction algorithm based on least squares solves the nonlinear problem through 
approximate linearization. However there are problems of low image reconstruction accuracy and poor anti-
noise performance. In addition, multiple iterations are often required in the calculation process, and the calcu-
lation cost is very high. Therefore, it is necessary to explore a more efficient, accurate and stable conductivity 
reconstruction method.

The Generative Adversarial Network draws on the idea of a two-player game, and is composed of two inde-
pendent units: a Generator Network (GN) and a Discriminator Network (DN). As shown in Fig. 2, in the train-
ing process, the output of GN, that is, the generated sample, is usually used as the input of DN to complete the 
forward propagation process of the network. For the applied current thermoacoustic imaging problem, we use 
the thermoacoustic source image as the input of GN, and pair the conductivity image output by GN with the 
real conductivity image to generate samples, which together serve as the input of DN. In the back propagation 
process, GN and DN networks need to be separately trained to optimize the weight and bias of each network. 
When training DN, the pairing of the “fake image” generated by GN and the real conductivity image is marked 
as FALSE; while training GN, the pairing of the “fake image” generated by GN and the real conductivity image 
is marked as TRUE. In other words, the ultimate goal of training the GN network is to make the “fake images” 
generated by the GN deceive the DN network as much as possible, so that the DN network thinks this is a real 
pairing. While the ultimate goal of training the DN network is to make the DN network be able to identify as 
much as possible the “Fake image” generated by GN network. Through batch and repeated training of a large 
amount of data, the probability of FALSE and TRUE in the output result of DN is each 50%, that is, the DN 
network cannot judge the authenticity of the image generated by the GN network. At this time, the conductivity 
image generated by the GN network can “mix the false with the genuine” to satisfy the matching relationship 
with the real conductivity image.

The Generator Network of GAN is demonstrated in Fig. 3a. We use an improved U-shaped convolutional 
neural  network20 structure based on the residual network (ResNet). Firstly, the addition of the ResNet network 
avoids the degradation phenomenon that occurs with the increase in the number of network layers. Secondly, 
we also introduced a new convolutional layer and activation function  Relu21,22 in the front end of  ResNet23, 
and the back end uses the Dropout layer to prevent over-fitting. The U-shaped symmetric structure and jump 
connection mode of the generating network can further improve the problem of gradient disappearance in the 
training process of the deep learning network. All convolutional and deconvolutional layers used in this paper 
have a convolution kernel size of 3 × 3, and the sliding step size is 2. The overall structure of the number of feature 
maps and the size of feature maps is shown in Fig. 3a.

The Discriminator Network of GAN is demonstrated in Fig. 3b. It adopts Patch-GAN (Markov Discrimina-
tor) structure and consists of 4 fully convolutional layers. First, the image is divided into 30 N × N patches, then 
each patch is judged, and finally the input is mapped to a matrix X. The average value of each element in X is the 
final output of the discriminator.

The loss function of a standard GAN network is:

In addition to the loss function of standard GAN network, the loss function of pix2pix also introduces the 
loss function of L1:

(11)S = min(y − f (σ ))T (y − f (σ ))

(12)LcGAN (G,D) = Ex,y∼Pdata(x,y)

[

logD(x, y)
]

+ Ex∼Pdata(x)

[

log(1− D(x,G(x)))
]

Figure 2.  Generative adversarial network principle diagram.
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Therefore, the final GAN network’s loss function is:

where x is the input image, y is the true image, G is the generator, and D is the discriminator. The loss of the 
standard GAN network is responsible for capturing the image, and L1 is responsible for capturing low-frequency 
features such that the generated result is both true and clear.

After the GAN training, the parameters of the Generator Network are fixed and saved for the reconstruction 
of the conductivity image. We can then use the simulation data to test the above-mentioned GAN network. The 
specific process is as follows: first, for each new conductivity sample, calculate the sound field distribution in the 
COMSOL software according to the multi-physics coupling positive problem model, and then the measurement 
signal is obtained after convolution probe characteristics to solve the positive problem; secondly, the original 
sound signal is obtained by wiener filtering deconvolution and the sound source distribution is reconstructed 
through filtered back projection; finally use the reconstructed sound source as the input of the generator in the 
GAN network, the output of which is the conductivity image to be solved.

(13)LL1(G) = Ex,y∼Pdata(x,y)

[

||y − G(x)||
]

(14)G
∗ = arg min

G
max
D

LcGAN (G,D)+ �LL1(G)

Figure 3.  Main components of generative adversarial network (a) generator network; (b) discriminator 
network.
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Result
The simulation model shown in Fig. 4 is established, and the conductivity samples adopt the MNIST handwrit-
ten digit set that has been widely used in machine learning. The size of the target volume is 4cm× 4cm× 4cm , 
and its xoy interface is evenly divided into 64× 64 grids. The handwritten digital image is assigned to the target 
plane as the conductivity distribution data and its size is consistent in the Z direction, in which the digital region 
conductivity is set as 1 and the conductivity of other regions is set as 0. 1000 handwritten digital images are 
selected as conductivity samples, and the electric field intensity, thermal sound source and sound field distribu-
tion are calculated by formulas (1), (8) and (10) using the finite element method. The 1000 sets of data obtained 
are randomly divided into two groups, with one set of 900 pieces targeted for network training, and the other 
set of 100 pieces for network testing.

Assuming that the volume expansion coefficient of the tissue is β = 3.8× 10−4K−1 , the heat capacity is 
Cp ≈ 3.94mJ/(gmK) , the propagation velocity of the thermoacoustic signal in the tissue and the ultrasonic 
coupling medium is 1404m/s , and the voltage applied by the electrode plate is U(t) = 104 × e

−(t−b)2

2c2  , where 
b = 1× 10−6 and c = 1× 10−7 , then the thermal sound source generated by the target body at time 0.8µs is 
shown in Fig. 5.

If 72-channel ultrasound probes are placed around the target, then the acoustic signal they receive contains 
the frequency response characteristics of each probe. Figure 6 below demonstrates the comparison between the 
reconstructed sound source directly using FBP and the reconstructed sound source after preprocessing the sound 
signal with Wiener filter deconvolution. It can be found that the sound source reconstructed after deconvolution 
using Wiener filtering can more accurately restore the sound source distribution inside the target body. Due 
to the limitation of calculation amount, this paper only divides the tomographic plane into 64× 64 grids. For 
future research, a tighter grid division can be used to get higher-quality results of sound source reconstruction.

Input the sound source in Fig. 6b as a test sample into the GAN network, and the reconstruction result is 
shown in Fig. 7.

Figure 4.  Applied current thermoacoustic imaging principle.

Figure 5.  Calculation results of electric field (a) conductivity; (b) Joule heat density.
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Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) evaluation indicators are introduced to 
perform quantitative evaluation on the reconstructed image quality of conductivity, which is expressed in the 
following formula:

Refer to (15), µx is the average value of image x , µy is the average value of image y , σx is the variance of x , σy 
is the variance of y , and σxy is the covariance of x and y . c1 = (k1L)

2 , c2 = (k2L)
2 is a constant used to maintain 

stability, usually taking the following values: k1 = 0.01 , k2 = 0.03 , L = 255 . The value range of SSIM is 0–1, and 
when two images are exactly the same, the value of SSIM is 1.

When solving the PSNR value, it is necessary to first calculate the Mean Squared Error (MSE) of each target 
image, as indicated in (16):

Then calculate the Peak Signal to Noise Ratio of the reconstructed image according to the MSE, as shown 
in (17):

In the above formula, MAXI is the maximum pixel value in image I. The larger the PSNR value, the smaller the 
distortion. The conductivity reconstruction quality in Fig. 7 is shown in Table 1. Compared with Fig. 6, GAN not 
only accurately reconstructs the conductivity image of the target body, but also effectively suppresses the ripple 
noise generated during the reconstruction process. It is also worth mentioning that a well-trained GAN network 
can reconstruct a conductivity image in less than 1 s, which is much more efficient than traditional algorithms.

For the network trained by digital conductivity samples, we continue to use digital conductivity samples 
for testing. Although the test samples have never appeared in the training set, they are still lack of persuasion. 
Therefore, we use the sample which is quite different from the digital conductivity to test. In Fig. 8, the image of 
the thermoacoustic source as an input to the GAN network is shown. At the same time, in order to better verify 
the superiority of conductivity distribution reconstruction by GAN network, the conductivity reconstruction 
results of traditional method are also given for comparison. The traditional method used in this paper is the least 

(15)SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)

(16)MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

||I(i, j)− K(i, j)||2

(17)PSNR = 10log10

(

MAX2
I

MSE

)

Figure 6.  Calculation results of acoustic field: (a) direct reconstruction; (b) reconstruction after preprocessing.

Figure 7.  Reconstruction results of conductivity.
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squares iterative  algorithm24. By giving an initial conductivity value, the solution of conductivity is transformed 
into the solution of the objective function of conductivity. On the premise of meeting the calculation accuracy, 
the optimal solution is the conductivity. The conductivity reconstruction quality in Fig. 8 is shown in Table 2.

It can be found that compared with the traditional method, the conductivity image reconstructed by GAN 
has less artifacts and higher resolution. In addition, GAN takes less time to reconstruct the conductivity image, 
which meets the real-time requirements of medical imaging.

We also tested the generalization ability of the GAN network: after training the network with handwritten 
digital samples, other samples that are significantly different from the training samples (handwritten digital 
samples) are used for imaging tests. Firstly, establish the phantom model of conductivity distribution as shown 
in Fig. 9. Set the major axis of outer ellipsoids to be 18 mm and its conductivity to be 0.1 S/m, the conductivity 
of two internal centered big ellipsoids to be 0.5 S/m and conductivity of other internal ellipsoids to be 1 S/m. 
According to the test sample, during the GAN network training, we make a complex upgrade to the traditional 
MNIST data set: any two different handwritten numerals are merged to form an irregular graph, and the con-
ductivity is inconsistent. Although the background of phantom model is not uniform, the different conductivity 
values can be found in the training set. The complex training samples are shown in Fig. 10.

Secondly, place the ultrasound probe with a dominant frequency of 1 MHz at 0.02 m from the center of the 
phantom. When then probe position is at (− 0.02, 0) m, the time curve of the received acoustic signal is shown 
in Fig. 11a, and the time curve of acoustic signal after Wiener filter deconvolution is shown in Fig. 11b.

Table 1.  Reconstruction quality of digital conductivity samples.

Ground truths for testing SSIM PSNR

0.9271 21.7999

0.9486 23.0278

0.9910 31.4483

0.9529 23.1697

0.9788 28.3142

0.9687 24.6419

0.9515 23.6432

0.9494 22.8817

0.9716 24.8629

Figure 8.  Thermoacoustic source images and conductivity reconstruction results of the models (a) simple 
model (b) complex model.
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Thirdly, Fig. 12 shows two results of two different reconstruction methods with the FBP algorithm: one is with 
the detected signal directly, and the other is with signal preprocessed by Wiener filter deconvolution.

The next step is to take the sound source image of Fig. 12b as the input of GAN, and reconstruct the con-
ductivity image. The results are shown in Fig. 13 and Table 3. It can be found that although some noisy points 
are generated at the boundary of the reconstruction result, its main distribution is basically consistent with the 
real model.

Finally, in order to verify the anti-noise performance of the GAN network, white noise of different intensities 
is introduced into the thermal sound source image. Figure 14 displays the conductivity reconstruction results 
after applying noise with different Signal to Noise Ratio (SNR). It can be found that the error between the recon-
structed conductivity and the conductivity of the original model increases as the SNR decreases. GAN network 
can get better reconstruction results when the SNR is 20 dB and 10 dB.

In order to ensure the feasibility of the method, we use cooled sodium chloride gel solution to prepare 
the target, and the concentration of sodium chloride determines the conductivity of the target. We conducted 

Table 2.  Reconstruction results of the test model.

Ground truths for testing Method SSIM PSNR

GAN 0.7319 23.6804

Traditional  method24 0.4094 11.5926

GAN 0.7349 19.4738

Traditional  method24 0.4133 11.4914

Figure 9.  Conductivity distribution of the models.

Figure 10.  Complex training samples.
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Figure 11.  Acoustic signal (a) acoustic signal at ultrasonic probe (b) acoustic after preprocessing.

Figure 12.  Reconstruction results of acoustic source (a) direct reconstruction (b) reconstruction after 
preprocessing.

Figure 13.  Reconstruction results of conductivity.

Table 3.  Conductivity reconstruction quality of simulation models.

Ground truths for testing SSIM PSNR

Phantom model 0.9271 21.7999
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experiments on a mimic composed of two different electrical conductivities, and the measured model is shown 
in Fig. 15, in which the conductivity was for the central portion of the mimic, at the periphery of the mimic, the 
outer circle diameter of the mimic was about 6 cm, and the inner circle diameter of the mimic was about 3.5 cm.

The sources were reconstructed using filtered back projection method. The reconstruction results are shown 
in Fig. 16a. It can be seen that for the measured acoustic signal received by the ultrasound probe using the filtered 
back projection method, the conductivity information at the target body contour can be reconstructed more 
completely, but how its inner specific conductivity distribution can not be reconstructed well and the reconstruc-
tion results have more serious artifacts.

After obtaining the preliminary sound source reconstruction results, input them into the built GAN network 
for conductivity imaging. The results are shown in Fig. 16b. It can be seen that the designed network can still 
reconstruct the conductivity distribution of the target according to the measured ultrasonic data.

Figure 14.  Reconstruction results of conductivity (a) SNR = 20 dB (b) SNR = 10 dB.

Figure 15.  Multiconductivity gel mimics.

Figure 16.  (a) Reconstruction of the acoustic source by the FBP (b) reconstructed conductivity results of GAN 
network.
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Discussion
Although the network we built is specifically trained on MNIST handwritten digit samples, satisfactory recon-
struction results can still be obtained for other types of test samples. This indicates that in the Applied Current 
Thermoacoustic Imaging system, the GAN network has learned the mapping relationship between the input 
thermoacoustic source and the output conductivity. In other words, it can not only complete the image matching 
between input and output, but also has the ability to learn nonlinear problems.

To conclude, this study focuses on Applied Current Thermoacoustic Imaging, mainly exploring the recon-
struction method of inverse problem based on GAN network. Firstly, a physical model of electromagnetic and 
acoustic fields of Applied Current Thermoacoustic Imaging is established. Then the electric field in the model 
is calculated by finite element method, and the acoustic signal detected by the ultrasonic probe is simulated by 
the coupling relationship between electric field and acoustic field, and the thermoacoustic source distribution 
is reconstructed. In response to the problem of conductivity reconstruction, the research proposes an imaging 
method based on Generative Adversarial Network, and finally, with conductivity-based handwritten digit set 
training, it finally verifies that the network can learn the non-linear mapping relationship between the sound 
source and the conductivity, and thus realizes the deep learning reconstruction process of conductivity. Theo-
retical analysis and simulation results show that the method proposed in this paper can quickly and accurately 
reconstruct the conductivity image from the sound source image under the condition of low Signal to Noise 
Ratio, which verifies the applicability of the GAN network in the ACTAI problem.
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