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Advantages of the single delay model for the
assessment of insulin sensitivity from the
intravenous glucose tolerance test
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Abstract

Background: The Minimal Model, (MM), used to assess insulin sensitivity (IS) from Intra-Venous Glucose-Tolerance
Test (IVGTT) data, suffers from frequent lack of identifiability (parameter estimates with Coefficients of Variation (CV)
less than 52%). The recently proposed Single Delay Model (SDM) is evaluated as a practical alternative.

Methods: The SDM was applied to 74 IVGTTs from lean (19), overweight (22), obese (22) and morbidly obese (11)
subjects. Estimates from the SDM (KxgI) were compared with the corresponding MM (SI), 1/HOMA-IR index and
Euglycemic-Hyperinsulinemic Clamp (M-EHC over 7 subjects) estimates.

Results: KxgI was identifiable in 73 out of 74 subjects (CV = 69% in the 74th subject) and ranged from 1.25 × 10-5 to
4.36 × 10-4min-1pM-1; SI CV was >52% in 36 subjects (up to 2.36 × 109%) and presented 18 extreme values (≤ 1.5 × 10-12

or ≥ 3.99).
KxgI correlated well with 1/HOMA-IR (r = 0.56, P < 0.001), whereas the correlations KxgI-SI and 1/HOMA-IR-SI were
high (r = 0.864 and 0.52 respectively) and significant (P < 0.001 in both cases) only in the non-extreme SI sub-sam-
ple (56 subjects). Correlations KxgI vs. M-EHC and SI vs. M-EHC were positive (r = 0.92, P = 0.004 and r = 0.83,
P = 0.02 respectively). KxgI decreased for higher BMI’s (P < 0.001), SI significantly so only over the non-extreme-SI
sub-sample. The Acute Insulin Response Index was also computed and the expected inverse (hyperbolic) relation-
ship with the KxgI observed.

Conclusions: Precise estimation of insulin sensitivity over a wide range of BMI, stability of all other model
parameters, closer adherence to accepted physiology make the SDM a useful alternative tool for the evaluation of
insulin sensitivity from the IVGTT.

Background
Insulin Resistance (IR), an impaired metabolic response
to circulating insulin resulting in a decreased ability of
the body to respond to the hormone by suppressing
Hepatic Glucose Output and enhancing tissue glucose
uptake, plays a central role in the development of Type
2 Diabetes Mellitus. In fact, IR develops long before dia-
betes, as has been described in the relatives of type 2
diabetic patients [1]. Further, the metabolic conse-
quences of elevated body mass index (BMI), such as IR,
are the critical factors that confer risk for type 2

diabetes [2] or cardiovascular disease associated with
fatness [3].
IR is present in a variety of diseases other than Type 2

Diabetes Mellitus and obesity, including hypertension
[4], coronary heart disease [5], chronic renal failure [6],
liver cirrhosis [7]. Due to the large prevalence of IR in
the general population [8] and to its correlation and
possibly causative role in many diseases [9], it has
become of considerable interest to have an accurate
measurement of the degree of IR by tests that are easy
to perform and operator-independent. While the Eugly-
cemic Hyperinsulinemic Clamp (EHC) has been long
considered as the “golden standard” in clinical research
[10], it requires careful training of the operator, and
may be potentially dangerous for the subjects investi-
gated due to the high levels of insulinemia reached
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during the test. Moreover, due to its intrinsic complexity
(the subjects must lie in bed, infusion pumps and con-
tinuous bedside measurements of glycemia are
required), this procedure is not easily applied to studies
involving large patient samples. The Insulin Resistance
Atherosclerosis Study (IRAS), for instance, performed
on 398 black, 457 Hispanic, and 542 non-Hispanic
white subjects, evaluated insulin sensitivity (SI) by the
frequently sampled intravenous glucose tolerance test
(IVGTT), analyzed by means of the Minimal Model
(MM) [11]. The MM, introduced in the late seventies,
also suffers, however, from some relevant problems, one
of which is the frequent occurrence of “zero-SI“ values,
i.e. of very low point estimates of the insulin sensitivity
index, particularly in large clinical studies [12].
Recently, on a series of subjects with BMI < 30 and

with fasting glycemia < 7 mM [13], it was shown that
the SI parameter from the MM is statistically unidentifi-
able (being estimated as not significantly different from
zero) in as much as 50% of the healthy population. The
possibility to reliably estimate an index of IR is, of
course, crucial for any model aiming at being useful to
diabetologists. Part of the problem of the lack of iden-
tifiability of the SI from the MM may reside in the MM
being actually overparametrized with respect to the
information available from the 23-point IVGTT [13].
Another important element determining this lack of
identifiability resides in the parameter estimation strat-
egy suggested by the proposing Authors [14] and com-
monly followed in applications, i.e. to use interpolated
observed insulinemias (obviously affected by experimen-
tal error) as the input function in the model for fitting
glycemias. This ‘decoupling’ fitting strategy delivers
parameter estimates which optimize the adherence of
the model to observed glycemias by considering random
fluctuations of insulinemia as the true input signal:
these estimates are, quite understandably, prone to
error. In the recently published paper introducing the
Single Delay Model (SDM) to assess insulin sensitivity
after an IVGTT [13], the effect of avoiding the above
sources of error is discussed in detail.
The appropriate mathematical behaviour of the SDM

itself has also been the object of a previous paper [15].
The SDM was designed to fit simultaneously both glu-
cose and insulin time courses with a reduced number of
parameters (six free parameters overall instead of at
least eight for the MM if both glycemias and insuline-
mias are predicted), and was shown to provide robust
and precise estimates of insulin sensitivity in a sample
of non-obese subjects with normal fasting glycemia.
The goal of the present study is to apply the same

SDM to a heterogeneous population, consisting of over-
weight, obese and morbidly obese subjects compared
with lean individuals, in order to verify the performance

of this model over the entire BMI range of interest for
diabetologists.

Methods
Experimental protocol
Data related to 74 healthy volunteers and obese subjects
(28 males, 46 females, BMI from 18.51 to 62.46 [Kg/m2],
average anthropometric characteristics reported in
Table 1) from archived, unpublished studies conducted
at the Catholic University Department of Metabolic Dis-
eases in Rome, were analyzed.
19 subjects were lean individuals (BMI ≤ 24 Kg/m2,

average 22.40 ± 1.68 SD), 22 were overweight (24<
BMI ≤ 30 Kg/m2, average 25.78 ± 1.34), 22 were obese
(30 < BMI ≤ 40 Kg/m2, average 34.34 ± 2.74) and 11
were morbidly obese (BMI > 40 Kg/m2, average 48.68 ±
6.68). All subjects had negative family and personal

Table 1 Anthropometric characteristic of the studied
subjects along with the descriptives of the 1/HOMA-IR
and HOMA2 indices and of the two insulin-sensitivity
indices KxgI and SIin the Full Sample and in the Sub-
sample (not including extreme SIvalues)

Anthropometric characteristic Full Sample

Age Height
(cm)

BW
(Kg)

BMI Gb

(mM)
Ib

(pM)

BMI ≤ 24 Mean 41.7 166.8 62.7 22.4 4.4 33.0

Std.
Dev.

18.5 9.8 9.5 1.7 0.6 13.2

Std. Err. 4.2 2.2 2.2 0.4 0.1 3.0

N 19 19 19 19 19 19

24>BMI ≤
30

Mean 47.2 166.0 71.3 25.8 4.6 46.1

Std.
Dev.

14.8 7.9 8.8 1.3 0.5 26.5

Std. Err. 3.2 1.7 1.9 0.3 0.1 5.6

N 22 22 22 22 22 22

30>BMI ≤
40

Mean 49.5 163.0 91.5 34.3 4.3 70.0

Std.
Dev.

17.5 8.3 12.4 2.7 0.5 46.4

Std. Err. 3.7 1.8 2.6 0.6 0.1 9.9

N 22 22 22 22 22 22

BMI>40 Mean 40.4 162.0 127.4 48.7 4.8 96.4

Std.
Dev.

9.7 8.4 16.2 6.7 0.4 59.7

Std. Err. 2.9 2.5 4.9 2.0 0.1 18.0

N 11 11 11 11 11 11

Total Mean 45.5 164.7 83.4 30.9 4.5 57.3

Std.
Dev.

16.2 8.6 24.3 9.3 0.5 42.7

Std. Err. 1.9 1.0 2.8 1.1 0.1 5.0

N 74 74 74 74 74 74
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histories for Diabetes Mellitus and other endocrine dis-
eases, were on no medications, had no current illness
and had maintained a constant body weight for the six
months preceding each study.
For the three days preceding the study each subject

followed a standard composition diet (55% carbohydrate,
30% fat, 15% protein) ad libitum with at least 250 g car-
bohydrates per day. Written informed consent was
obtained in all cases; all original study protocols were
conducted according to the Declaration of Helsinki and
along the guidelines of the institutional review board of
the Catholic University School of Medicine, Rome, Italy.
Each study was performed at 8:00 AM, after an over-

night fast, with the subject supine in a quiet room with
constant temperature of 22-24°C. Bilateral polyethylene
I.V. cannulas were inserted into antecubital veins. The
standard IVGTT was employed (without either Tolbuta-
mide or insulin injections) [11]: at time 0 (0’) a 33% glu-
cose solution (0.33 g Glucose/kg Body Weight) was
rapidly injected (less than 3 minutes) through one arm
line. Blood samples (3 ml each, in lithium heparin) were
obtained at -30’, -15’, 0’, 2’, 4’, 6’, 8’, 10’, 12’, 15’, 20’, 25’,
30’, 35’, 40’, 50’, 60’, 80’, 100’, 120’, 140’, 160’ and 180’
through the contralateral arm vein. Each sample was

Table 1: Anthropometric characteristic of the studied
subjects along with the descriptives of the 1/HOMA-IR
and HOMA2 indices and of the two insulin-sensitivity
indices KxgI and SIin the Full Sample and in the Sub-sam-
ple (not including extreme SIvalues) (Continued)

Full Sample

1/HOMA-IR HOMA2 KxgI SI

BMI ≤ 24 Mean 1.4 1.64 1.6E-
04

47.2

Std.
Dev.

1.1 0.51 9.3E-
05

205.8

Std. Err. 0.3 0.13 2.1E-
05

47.2

N 19 16 19 19

24>BMI ≤
30

Mean 1.0 1.37 1.3E-
04

13.8

Std.
Dev.

0.6 0.59 7.6E-
05

64.6

Std. Err. 0.1 0.13 1.6E-
05

13.8

N 22 20 22 22

30>BMI ≤
40

Mean 0.8 1.16 8.4E-
05

101.3

Std.
Dev.

0.4 0.67 7.1E-
05

246.9

Std. Err. 0.1 0.14 1.5E-
05

52.6

N 22 22 22 22

BMI>40 Mean 0.4 0.73 2.8E-
05

139.8

Std.
Dev.

0.2 0.30 9.5E-
06

270.9

Std. Err. 0.1 0.09 2.9E-
06

81.7

N 11 11 11 11

Total Mean 1.0 1.26 1.1E-
04

67.1

Std.
Dev.

0.8 0.62 8.5E-
05

203.3

Std. Err. 0.1 0.08 9.9E-
06

23.6

N 74 69 74 74

Sub-Sample

1/HOMA-IR HOMA2 KxgI SI

BMI ≤ 24 Mean 1.5 1.68 1.6E-
04

1.4E-
04

Std.
Dev.

1.1 0.53 9.6E-
05

8.9E-
05

Std. Err. 0.3 0.15 2.4E-
05

2.2E-
05

N 16 13 16 16

24>BMI ≤
30

Mean 1.0 1.40 1.3E-
04

1.1E-
04

Std.
Dev.

0.6 0.59 7.8E-
05

6.3E-
05

Table 1: Anthropometric characteristic of the studied
subjects along with the descriptives of the 1/HOMA-IR
and HOMA2 indices and of the two insulin-sensitivity
indices KxgI and SIin the Full Sample and in the Sub-sam-
ple (not including extreme SIvalues) (Continued)

Std. Err. 0.1 0.14 1.7E-
05

1.4E-
05

N 21 19 21 21

30>BMI ≤
40

Mean 0.6 0.98 5.3E-
05

7.5E-
05

Std.
Dev.

0.4 0.68 2.8E-
05

7.8E-
05

Std. Err. 0.1 0.21 8.5E-
06

2.4E-
05

N 11 11 11 11

BMI>40 Mean 0.4 0.70 2.8E-
05

3.6E-
05

Std.
Dev.

0.2 0.30 1.0E-
05

1.4E-
05

Std. Err. 0.1 0.11 3.6E-
06

4.8E-
06

N 8 8 8 8

Total Mean 1.0 1.27 1.1E-
04

1.0E-
04

Std.
Dev.

0.8 0.65 8.5E-
05

7.8E-
05

Std. Err. 0.1 0.09 1.1E-
05

1.0E-
05

N 56 51 56 56
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immediately centrifuged and plasma was separated.
Plasma glucose was measured by the glucose oxidase
method (Beckman Glucose Analyzer II, Beckman Instru-
ments, Fullerton, CA, USA). Plasma insulin was assayed
by standard radio immunoassay technique. The plasma
levels of glucose and insulin obtained at -30’, -15’ and 0’
were averaged to yield the baseline values referred to 0’.
Seven out of the 74 subjects also underwent a Hyper-

insulinemic-Euglycemic glucose Clamp study. They were
admitted to the Department of Metabolic Diseases at
6.00 p.m. of the day before the study. At 7:00 a.m. on
the following morning, indirect calorimetric monitoring
was started; the infusion catheter was inserted into an
antecubital vein; the sampling catheter was introduced
in the contralateral dorsal hand vein and this hand was
kept in a heated box (60°C) to obtain arterialized blood.
The glycemia of diabetic patients was maintained below
100 mg/dl by small bolus doses of short-acting human
insulin (Actrapid HM, Novo Nordisk, Denmark) until
the beginning of the study. At 9.00 a.m., after 12 to 14

hour overnight fast, the euglycemic hyperinsulinemic
glucose clamp was performed as described by De Fronzo
et al [16]. A priming dose of short-acting human insulin
was given during the initial 10 minutes in a logarithmi-
cally decreasing way, in order to acutely raise the serum
insulin to the desired concentration. Insulin concentra-
tion was then maintained approximately constant with
a continuous infusion of insulin at an infusion rate of
40 mIU/m2/minute for 110 minutes.

The Single Delay Model (SDM)
The schematic diagram of the mathematical model is
represented in Figure 1 and its equations are reported
below:

dG t

dt
K I t G t

Tgh
Vg

xgI
 

       (1)

G t G t G G G  where  G
Dg
Vg

b b           , , ,0 0   (1a)

Figure 1 Block diagram of the Single Delay Model. The model consists of two compartments: the glucose plasma concentrations and the
insulin plasma concentrations. Elimination of glucose from plasma occurs depending on plasma insulin concentrations.
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The meaning of the structural parameters is reported
in Table 2. The initial condition Gb+GΔ expresses the
glucose concentration as variation with respect to the
basal conditions, as a consequence of the I.V. glucose
bolus. In equation (2), the second term represents sec-
ond-phase insulin delivery from the b-cells. Its func-
tional form is consistent with the hypothesis that insulin
production is limited, reaching a maximal rate of release
Tigmax/Vi by way of either a Michaelis-Menten dynamics
or a sigmoidal shape, according to whether the g value
is 1 or greater than 1 respectively. Situations where g is
equal to zero correspond to a lack of response of the
pancreas to variations of circulating glucose, while for g
values between zero and 1 the shape of the response
resembles a Michaelis-Menten, with a sharper curvature

towards the asymptote. The parameter g expresses
therefore the capability of the pancreas to accelerate its
insulin secretion in response to progressively increasing
blood glucose concentrations. The initial condition
Ib+IΔGGΔ represents the immediate first-phase response
of the pancreas to the sudden increment in glucose
plasma concentration. The model is discussed in detail
in [13].
From the steady state condition at baseline it follows

that:
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The index of insulin sensitivity is easily derived from
this model by applying the same definition as for the
Minimal Model [11], i.e.
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and coincides therefore with one of the model struc-
tural parameters to be estimated. It is expressed in the
same units of measurement as the MM-derived SI index
(min-1 pM-1) [13].

Table 2 Definition of the symbols used in the discrete Single Delay Model

Symbol Units Definition

G(t) [mM] glucose plasma concentration at time t

Gb [mM] basal (preinjection) plasma glucose concentration

I(t) [pM] insulin plasma concentration at time t

Ib [pM] basal (preinjection) insulin plasma concentration

KxgI [min-1 pM-1] net rate of (insulin-dependent) glucose uptake by tissues per pM of plasma insulin concentration

Tgh [mmol min-1

kgBW-1]
net balance of the constant fraction of hepatic glucose output (HGO) and insulin-independent zero-order glucose
tissue uptake

Vg [L kgBW-1] apparent distribution volume for glucose

Dg [mmol kgBW-1] administered intravenous dose of glucose at time 0

GΔ [mM] theoretical increase in plasma glucose concentration over basal glucose concentration at time zero, after the
instantaneous administration and distribution of the I.V. glucose bolus

Kxi [min-1] apparent first-order disappearance rate constant for insulin

Tigmax [pmol min-1

kgBW-1]
maximal rate of second-phase insulin release; at a glycemia equal to G* there corresponds an insulin secretion equal to
Tigmax/2

Vi [L kgBW-1] apparent distribution volume for insulin

τg [min] apparent delay with which the pancreas changes secondary insulin release in response to varying plasma glucose
concentrations

g [#] progressivity with which the pancreas reacts to circulating glucose concentrations. If g were zero, the pancreas would
not react to circulating glucose; if g were 1, the pancreas would respond according to a Michaelis-Menten dynamics,
with G* mM as the glucose concentration of half-maximal insulin secretion; if g were greater than 1, the pancreas
would respond according to a sigmoidal function, more and more sharply increasing as g grows larger and larger

IΔG [pM mM-1] first-phase insulin concentration increase per mM increase in glucose concentration at time zero due to the injected
bolus

G* [mM] glycemia at which the insulin secretion rate is half of its maximum
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Insulin Sensitivity determination with the SDM
For each subject the discrete Single Delay Model [13]
was fitted to glucose and insulin plasma concentrations
by Generalized Least Squares [17], in order to obtain
individual regression parameters along with an estimate
for the glucose and insulin coefficients of variation. All
observations on glucose and insulin were considered in
the estimation procedure except for the basal levels.
Coefficients of variation (CV) for glucose and insulin
were estimated in phase 2 of the GLS algorithm,
whereas single-subject CVs for the model parameter
estimates were derived from the corresponding esti-
mated asymptotic variance-covariance matrix of the
GLS estimators.

Insulin Sensitivity determination with the MM
For the MM, fitting was performed by means of a
Weighted Least Squares (WLS) estimation procedure,
considering as weights the inverses of the squares of the
expectations and as coefficient of variation for glucose
1.5% [14]. Observations on glucose before 8 minutes
from the bolus injection, as well as observations on
insulin before the first peak were disregarded, as sug-
gested by the proposing Authors [11,18]. A BFGS quasi-
Newton algorithm was used for all optimizations [19].
The insulin sensitivity index was computed as the ratio
between the MM parameters p3 and p2 representing
respectively the scale factor governing the amplitude of
insulin action, and the elimination rate constant of the
remote insulin compartment were insulin action takes
place.

Basal insulin sensitivity measurements and HOMA
Studies conducted in a population of overweight and
obese postmenopausal women [20] and in polycystic
ovary syndrome and menopausal patients [21] have
demonstrated that surrogate measures of insulin resis-
tance, as for example the HOMA index, the fasting
insulin, the QUICKY index etc, are simple tools, appro-
priate in large sample studies, that can be used as sub-
stitutes for the EH clamp. In this study the HOMA,
though simplistic and approximate tools for a real
assessment of insulin sensitivity, was therefore used to
perform comparisons and assess coherence among the
model derived indices, as the EHC-derived M was not
available for most of the evaluated subjects.
The HOMA insulin resistance index was computed as

the product of the fasting values of glucose, expressed
as mM, and insulin, expressed as μIU/mL, divided by
the constant 22.5) [22-24]. Its reciprocal 1/HOMA-IR
[25], was used as insulin sensitivity index. The HOMA2
insulin sensitivity index was obtained by the program
HOMA Calculator v2.2.2 [26].

Statistical analysis
Model fitting was performed using Matlab version 7
(The MathWorks, Inc) whereas statistical analyses were
performed using R (version 2.6.1 Copyright 2007 The R
Foundation for Statistical Computing). The entire sam-
ple composed of 74 subjects was divided into four
groups: lean subjects (BMI less or equal to 24), over-
weight subjects (BMI between 24 and 30), obese (BMI
greater than 30 and less or equal to 40) and morbidly
obese subjects (BMI greater than 40). For each para-
meter of the SDM and MM the a-posteriori model iden-
tifiability was determined by computing the asymptotic
coefficients of variation for the free model parameters: a
CV smaller than 52% translates into a standard error of
the parameter smaller than 1/1.96 of its corresponding
point estimate and into an asymptotic normal confi-
dence region of the parameter not including zero.
One-way ANOVAs were performed to determine if a

significant difference arose among the four groups for
the variables KxgI, SI, 1/HOMA-IR and HOMA2.
The different insulin sensitivity indices were correlated

using Pearson’s r coefficient.
A further comparison was made between the insulin

sensitivity (M index) assessed with Euglycemic Hyperin-
sulinemic Clamp and either of the two model-derived
insulin sensitivity indices (KxgI and SI) on the 7 subjects
who underwent both IVGTT and EHC. Given the small
number of subjects, both the parametric Pearson’s r cor-
relation coefficient and the nonparametric Spearman
coefficient were computed.

Results
SDM and MM fitting
The two models were both able to satisfactorily fit all
the available data sets (but see discussion in [13]). Figure
2 shows the experimental data of glucose and insulin
concentrations as well as the corresponding time course
predictions from the SDM for four subjects, each from
one of the four different BMI subgroups. Figure 3 shows
the same four subjects fitted with the MM. In this case
only glucose concentrations were fitted, whereas insulin
observations were linearly interpolated as the MM
Authors suggest.
The sensitivity index KxgI from the SDM was identifiable

(CV < 52%) in 73 out of 74 subjects. For the remaining
subject the CV was equal to 68.83% (KxgI = 2.87 × 10-4).
The sensitivity index SI from the MM was not identifi-

able (CV ≥ 52%) in 36 subjects out of 74, where coeffi-
cients of variation ranged from 52.76% to 2.36 × 10+9 %.
In 18 of these subjects the SI estimates were either sus-
piciously large (from 3.99 to 890 in 11 subjects) or very
small (less than or equal to 1.5 × 10-12, the so called
“zero-SI“, in 7 subjects).
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Figure 2 Glucose and Insulin observed concentrations (circles) along with their Single Delay Model time predictions (continuous line)
for four subjects belonging to different BMI classes. Panel A: one subject with BMI ≤ 24, Panel B: one subject with 24 < BMI ≤ 30, Panel C:
one subject with 30 < BMI ≤ 40, Panel D: one subject with BMI > 40
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Figure 3 Glucose and Insulin observed concentrations (circles) along with the Minimal Model glucose time predictions and
interpolated insulin observations (continuous line) for four subjects belonging to different BMI classes. Panel A: one subject with BMI ≤
24, Panel B: one subject with 24 < BMI ≤ 30, Panel C: one subject with 30 < BMI ≤ 40, Panel D: one subject with BMI > 40.
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Comparison between KxgI, SI, 1/HOMA-IR and HOMA2
The relationship between the four indices was examined
by means of the Pearson correlation coefficient. Two
situations were examined, either considering the entire
74-subject sample (the “whole sample”), or considering
a sub-sample (the “reduced sub-sample”) obtained by
eliminating those 18 subjects whose SI values were
extreme (11 very large, > 3; 7 very small, = 1.5 × 10-12).
The computation of HOMA2 was not performed for 5
subjects whose basal insulin values were below 20 pmol.
No of these subjects presented extreme SI values.
The correlations between KxgI and 1/HOMA-IR and

between KxgI and HOMA2 were positive and highly sig-
nificant both in the whole sample (r = 0.565, P < 0.001
and r = 0.581, P < 0.001 respectively) and in the reduced
sub-sample (r = 0.572, P < 0.001 and r = 0.558, P <
0.001 and respectively).
The correlations between SI and 1/HOMA-IR and

between SI and HOMA2 were positive and significant (r
= 0.525, P < 0.001 and r = 0.454, P = 0.001 respectively)
only when the reduced sub-sample was considered,
whereas in the whole sample no correlation was appar-
ent (r = -0.074, P = 0.529 and r = 0.015, P = 0.904
respectively).
In the reduced sub-sample, where the extreme-SI sub-

jects are not considered, correlation between KxgI and SI
was clearly positive and significant (r = 0.864, P <
0.001), see Panel A of Figure 4. In this reduced sub-
sample, absolute values also agreed very well (mean KxgI

= 1.07 × 10-4 vs. mean SI = 1.01 × 10-4).
The results of a Bland-Altman procedure on KxgI and

SI are reported in Panel B of Figure 4. Because of the
non-uniformity of the variance (the differences between
each pair of insulin sensitivity indices depend on the
values of the computed indices), the logarithms of the
ratios instead of absolute differences are reported on the
ordinates. The 95% interval around the average mean is
reported along with the individual points. From an
inspection of the graph it can be easily seen that, in the
sub-sample without extreme SI values, the two methods
are equivalent. An equivalent Bland-Altman procedure
could not be performed on the whole sample, given the
extreme values attained by the MM-derived SI.

Comparison between the four BMI-classes
Table 1 reports the average anthropometric characteris-
tic of the Full sample along with the mean values over
the two samples (the Full Sample and the reduced Sub-
Sample) of the four insulin sensitivity indices in the four
BMI-identified classes. The ANOVA analysis among
patient groups resulted significant for 1/HOMA-IR,
HOMA2 and for KxgI both in the whole sample
(P < 0.001 for the KxgI, P = 0.002 for the 1/HOMA-IR
and P = 0.001 for the HOMA2) and in the reduced sub-

sample (P < 0.001 for the KxgI, P = 0.005 for the 1/
HOMA-IR and P = 0.001 for the HOMA2). SI was sig-
nificantly different in the four groups only when the
reduced sub-sample was considered (P = 0.006) and not
significantly different among groups on the whole sam-
ple (P = 0.297). Figure 5 summarizes the comparison
between the average values of SI and KxgI in the four
BMI patient groups.

Comparison with the EHC results
Only 7 subjects were available in the present series, who
also underwent an Euglycemic Hyperinsulinemic Clamp.
On these, a further comparison was performed, given
the widespread opinion that the EHC is the gold stan-
dard in the determination of insulin sensitivity. Figure 6
reports the values of the insulin sensitivity assessed with
EHC (M index), along with the two insulin sensitivity
indices, KxgI and SI: the two model-derived insulin sensi-
tivity indices (KxgI and SI on the ordinate) are plotted
against the clamp-derived insulin sensitivity M index
(on the abscissa). It is to be noticed that these seven
subjects happened to fall within the “good estimates”
subgroup for the MM (SI CV < 52%). The points show
a linear correlation between the two model-derived
indices and the M. Given the small number of available
subjects, the non parametric Spearman index was com-
puted along with the parametric coefficient of correla-
tion (Pearson’s r). When the non parametric correlation
is considered the P values are not significant, even if for
the KxgI the P value is borderline (Spearman’s rho =
0.75, P = 0.052 for the correlation KxgI-M; Spearman’s
rho = 0.571, P = 0.181 for SI-M); when the Pearson’s r
coefficient is computed both correlations result positive
and significant (Pearson’s r = 0.918, P = 0.004 for KxgI

and Pearson’s r = 0.832, P = 0.020 for SI). A thorough
study is clearly necessary, involving a larger number of
subjects.

Relationship between the AIR and the KxgI
In order to evaluate the ability of the SDM to reproduce
known physiologic relationships, the Acute Insulin
Response (AIR) was computed [27,28] as the ratio of
the difference of estimated initial condition and
observed basal insulin (IΔ = I0-Ib), over the first order
insulin disappearance rate (AIR = IΔ/Kxi). Figure 7
shows the scatter plot of available subjects over the
SDM-KxgI and Acute Insulin Response plane. A one-way
ANOVA test on AIR, with factor the BMI class, resulted
significant (P = 0.001). The average values in the four
classes were: 5666 ± 4053 for BMI ≥ 24, 7519 ± 5077
for 24 < BMI ≤ 30, 17069 ± 19690 for 30 < BMI ≤ 40
and 22956 ± 15606 for BMI > 40. The Disposition
Index DI (computed as the product between AIR and
KxgI) resulted instead not significantly different among
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Figure 4 Panel A: scatter plot of the two Insulin Sensitivity Indices from the Single Delay Model (KxgI) and from the Minimal Model
(SI) on the reduced Sub-Sample obtained eliminating the 18 extreme-SI subjects. Panel B: Bland-Altman Procedure; on the abscissas are
reported the averages of each pair of Insulin Sensitivity Indices (one from the Single Delay Model KxgI and one from the Minimal Model SI) from
the reduced Sub-Sample (obtained eliminating the 18 extreme-SI subjects); on the ordinates are reported the logarithms of the ratios between
each subject’s KxgI and SI.
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Figure 5 Mean values and standard errors for the Insulin Sensitivity Indices from the Single Delay Model (KxgI) and from the Minimal
Model (SI). For the KxgI the average values were computed both in the Full Sample and in the reduced Sub-Sample. The average values of the
SI index over the Full Sample were out of scale for all four groups and could not be plotted. Black bar = KxgI in the Full Sample, white bar = SI
in the reduced Sub-Sample, striped bar = KxgI in the reduced Sub-Sample. Post-Hoc analysis by LSD test: for the KxgI in the Full Sample the
significant comparisons were 1 vs 3 (P = 0.001), 1 vs 4 (P < 0.001), 2 vs 4 (0.001) and 3 vs 4 (P = 0.047); for the KxgI in the reduced Sub-Sample
the significant comparisons were: 1 vs 3 (P = 0.001), 1 vs 4 (p < 0.001), 2 vs 3 (P = 0.008), 2 vs 4 (P = 0.002); for the SI in the reduced Sub-
Sample the significant comparisons were: 1 vs 3 (P = 0.019), 1 vs 4 (P = 0.001), 2 vs 4 (P = 0.016).

Figure 6 Scatter plot of the two Insulin Sensitivity Indices (KxgI and SI) versus the M clamp-derived index of insulin sensitivity in seven
subjects undergoing both IVGTT and Clamp. Each couple of points has been labelled with the subject’s BMI. Solid triangles = Single Delay
Model KxgI, blank squares = Minimal Model SI.
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the four BMI classes by one-way ANOVA (P = 0.718,
average values: 0.69 ± 0.32 for BMI ≥ 24, 0.68 ± 0.25
for 24 < BMI ≤ 30, 0.76 ± 0.44 for 30 < BMI ≤ 40 and
0.61 ± 0.39 for BMI > 40).
A linear regression was also performed to evaluate

whether the increase in AIR is linked to an increase
in BMI: the beta coefficient was positive (b = 764) and
significant (P < 0.001).

Discussion
In the quest for simpler and more effective methods to
evaluate the degree of sensitivity to insulin, the Intra-
Venous Glucose Tolerance Test (IVGTT) has been pro-
posed as an alternative to the established, but undoubt-
edly cumbersome, Euglycemic Hyperinsulinemic Clamp
(EHC). The IVGTT-generated data, however, need to be
interpreted by fitting onto them a suitable mathematical
model: in the choice of the model to be applied, the
possibility of reliably and precisely estimating an index
of insulin sensitivity should be a major consideration,
together with physiological plausibility, if the model is
to be really useful to the diabetological community.
The aim of the present work is to evaluate a recently

published model (the Single Delay Model, SDM) [13]
for the glucose and insulin concentrations observed dur-
ing a standard IVGTT, by applying it to a heterogeneous
population composed of lean, overweight, obese and
morbidly obese subjects. A further goal is to compare

the SDM-derived insulin sensitivity index KxgI with the
well known SI from the Minimal Model (MM).
The SDM, as presented in this work and as appeared

in previous publications [13,15], was selected from a
group of four two-compartment models, which differed
according to the presence or absence of an insulin-inde-
pendent glucose elimination rate term and according to
the presence or absence of an explicit delay term for
the action of insulin in stimulating tissue glucose uptake
[13].
It is widely accepted that the observed effectiveness of

insulin in producing appreciable decrease in glycemia
lags behind the corresponding increase in insulinemia
[28]. Explanations of this phenomenon may include the
fact that interstitial insulin, rather than serum insulin, is
responsible for glucose disappearance. The delay in the
appearance of the insulin effect, besides being produced
by the progressive (rather than instantaneous) lowering
of glucose by tissues when stimulated by the hormone,
may also depend on a specific delay of insulin action on
those tissues. This delay in tissue insulin stimulation
(which could stem from insulin distribution from
plasma into interstitial space) can be mathematically
represented by using either an unknown quantity
(a further state variable representing an intermediate
compartment, as in the MM, or even by a chain of simi-
lar added compartments) or by incorporating an explicit
delay (discrete, distributed, etc.) in the action of serum

Figure 7 Relationship between the SDM Insulin Sensitivity Index (KxgI) and the Acute Insulin Response (AIR = IΔG/KxgI) in the 74
subjects.
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insulin (which has to be transferred to the interstitium
before exerting its effects). This last mathematical for-
mulation allows the experimental assessment of whether
such delay is indeed significantly different from zero, or
whether it is relatively small and therefore practically
negligible for data fitting. In fact, there is little doubt as
to the fact that insulin needs to be transferred from
plasma to, say, muscle cell surface, in order to produce
its action. On the other hand, the actual time needed
for this to happen may well be relatively small (if we
think, for instance, that recirculation time is of the
order of 1 minutes, including passage through both per-
ipheral and lung capillaries, compared with the relatively
long delay in lowering glycemia (which may be appre-
ciated in tens of minutes). The comparison of models
conducted in order to select the final form of the SDM
showed that no explicit delay term was necessary for fit-
ting available IVGTT data, which does not mean, as dis-
cussed before, that a delay does not exist.
The same can be said regarding the lack of a “glucose

effectiveness term”, i.e. of a first-order, insulin-indepen-
dent tissue glucose uptake term. There appears in fact
to be no normal physiological mechanism to support
first-order glucose elimination from plasma: tissues in
the body, except for brain, do not take up glucose irre-
spective of insulin; brain glucose consumption is rela-
tively constant, and is subsumed, for the purposes of the
present model, in the constant (zero-order) net hepatic
glucose output term. A mass effect could indeed exist in
the case when glycemias are above the renal threshold,
where urinary glucose elimination, roughly proportional
to above-threshold glycemias, is observed; and in the
case when diffusion of glucose between compartments
takes place. It must be emphasized that none of the sub-
jects studied exhibited sustained, above-renal-threshold
glycemias and that the rate of transfer attributable to
plasma/interstitium equilibration (given again the
observed circulation time of about two minutes) is
much faster than what would be needed for insulin-
independent tissue glucose uptake to contribute to the
observed glycemia time course (with variations in the
order of half-hours). A further substantial observation,
against compartment equilibration playing a major role,
is the estimated value of the volume of distribution for
glucose, around 0.16 L/KgBW, comprising therefore
interstitial water together with plasma volume. For all
these reasons it would seem that no actual physiological
mechanism would support the inclusion of an insulin-
independent tissue glucose uptake term for the purpose
of modeling the present series of subjects. It was in fact
observed that, even if such a first-order mechanism
were indeed present, its explicit representation did not
prove necessary for the acceptable fitting of the present
data series.

In future analyses it may however well be necessary to
reintroduce insulin action delay or first order insulin-
independent glucose uptake or both to explain observa-
tions under different conditions.
In the present series the two indices were compared

also with the 1/HOMA-IR, the HOMA2 and (over a
subsample) with the clamp-derived “M” index of insulin
sensitivity.
The first result of the present assessment is that while

in 50% of the subjects, the MM-derived SI is not signifi-
cantly different from zero, and while several subjects
exhibit questionably large or small SI values, the SDM-
derived index of insulin sensitivity, KxgI, exhibits esti-
mates with coefficient of variation less than 52% in
every subject except one (whose estimated CV is in any
case 69%) and with actual values covering a reasonable
range (1.25 × 10-5 to 4.36 × 10-4).
This result points to a marked degree of variability in

the estimation of the parameters of the MM, compared
with a very good numerical stability in the correspond-
ing estimation of the SDM parameters. The instability of
the SI index appears clearly also when considering cor-
relation with the HOMA indices: it runs out when
extreme SI values are considered, while it still persists
between HOMA and KxgI. Reasons for this different
behaviour have been discussed elsewhere [13], and can
be summarised as a mathematical formulation more
respectful of physiological understanding, of a smaller
number of free parameters (the SDM is in fact more
“minimal” than the MM because it fits both glycemias
and insulinemias simultaneously using six free para-
meters instead of at least eight for the MM, having
therefore a larger ratio of observations to estimable
parameters), and in the avoidance of the statistically
incorrect procedure of assuming interpolated noisy insu-
lin concentrations as the true forcing function for glu-
cose kinetics. Figures 2 and 3 show the performance of
the two models in terms of their ability to describe the
observed data. The apparent better fit of the Minimal
Model is discussed at a great level of detail in [13].
Briefly, by using interpolated noisy observations as
model input, the Minimal Model exploits the random
variations of a single realization of the insulin kinetics
to adapt coefficients in order to retrieve observed char-
acteristics of the time course of glycemia. When fitting
simultaneously glycemias and insulinemias, the Minimal
Model (integrating Toffolo’s [18] equation with the
Bergman’s original equations [11], see for example [14])
loses its ability to do so, fits more poorly than the SDM,
and in fact loses the ability to reproduce the secondary
insulin secretion phase ‘hump’. Notice that in Figure 2
both insulin and glucose equations are fitted onto the
data, while in figure 3 the insulin data are merely line-
arly interpolated. Finally, while the close adaptation to
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the data is certainly an important requisite of a good
model, it is certainly not the primary consideration. If it
were so, then polynomial or spline approximations
would systematically outperform mechanistic models.
The point is to find a simple mechanistic model, whose
elements have a direct biological meaning, which closely
fits available data, and the qualitative behaviour of
whose solutions is compatible with physiology. For a cri-
tique to the Minimal Model from this point of view see
[29].
There remains however the concern that, whatever the

sophistication of the model, the well-known variability
of insulin clearance makes it so that no insulin secretion
analysis based on insulin levels alone can be expected to
be fully accurate. It would be helpful to validate the
results obtained for insulin secretion from the SDM
against some gold standard indices of insulin secretion:
indices based on C peptide measurement and the recon-
struction of prehepatic insulin profiles could in fact be a
possible candidate. However, not only the present data
series, available to us, did not include C-peptide mea-
surements for all 74 subjects, but the very deconvolution
methods proposed so far in the literature to address this
issue rely, themselves, on ad-hoc assumptions: one such
being, e.g., the threshold based identification of the
number of peaks from noisy C-peptide observed con-
centrations [30]. This problem deserves further study.
Even without considering the possible fitting of insulin

observations to obtain information about the pancreatic
response to circulating glucose, and limiting therefore
the discussion to the estimation of insulin sensitivity by
fitting glycemias, there are some problems in the stan-
dard approach. One is the phenomenon of the “zero-SI“
[12], but even more important from a practical view-
point is the large fraction of extreme estimates of the SI
(18 out of 74, or 24.3% in the present series) and more
generally of estimates of SI whose confidence interval
contains zero, and to which therefore no meaningful
estimate can be attributed (about 50% in the present
series). Several recent publications [31-33] have
addressed the improvement of estimation methods for
the Minimal Model. The contention in the present work
is that once the model itself is improved, then standard
estimation methods are sufficient to obtain precise esti-
mates. Furthermore, better estimation procedures, baye-
sian approaches, or population methods could be used
for any model, for the SDM as well as for the Minimal
Model.
The second result of the present work concerns the

physiological correctness of the obtained estimates.
While, in principle, estimates could be precise but
biased, this in fact does not seem to be the case for the
KxgI index as shown by the actual range of values, by
the correlation with the 1/HOMA-IR and HOMA2

indices, by the correlation with the M index from the
EHC, and by the very correlation with the SI, when
questionable SI values are excluded. In fact, when
excluding the 18 extreme SI values, the correlation SI-
KxgI is very high and significant, and furthermore the
Bland and Altman procedure shows the two measures
to be equivalent.
While the SI suffers from the presence of questionable

and extreme values, the KxgI correlates uniformly, and
better than the SI, with the 1/HOMA-IR, HOMA2 and
with the clamp-derived M-index over all available sub-
jects. The limited size of the available sample of subjects
who underwent both clamp and IVGTT does however
represent a limitation of the present study, which should
be addressed in the future by applying the SDM to other
series of subjects simultaneously studied with both EHC
and IVGTT.
The performance of the KxgI index has also been

tested with regards to its ability of reproducing the well-
known existing relationship between insulin resistance
and body mass index. This is clearly visible in Table 1,
where the considered population has been divided into
four BMI subpopulations. Table 1 shows that increasing
BMI is accompanied by a gradual decrease in insulin
sensitivity, as estimated by either 1/HOMA-IR and
HOMA2 or KxgI (in the full sample) or by SI (in the
reduced sample only). The ANOVAs performed on the
KxgI and on the 1/HOMA-IR and HOMA2 highlight sig-
nificant differences of insulin sensitivity among the four
classes. This result is obtained both in the full and in
the reduced samples. For the SI the ANOVA resulted
significant only when the reduced sub-sample is
considered.
The lack of correlation of any insulin sensitivity index

with the HOMA at extremes of insulin sensitivity may
in fact reflect a limit of validity of HOMA in these
ranges of insulin sensitivity values. Since the accuracy of
HOMA mostly relies on the ability of fasting insulin to
mirror insulin resistance, in the extreme insulin sensitiv-
ity ranges (high or low, e.g. athletes and T2DM subjects)
the overall approximately hyperbolic relationship of
HOMA and insulin sensitivity appears as a (respectively
horizontal and vertical) asymptote, and correlation
between insulin sensitivity and HOMA in both extreme
ranges is lost. If this were the explanation of the lack of
correlation of the HOMA with the SI, such lack should
be apparent also between HOMA and KxgI, which is not
the case, the values of correlation between HOMA and
KxgI being essentially the same whether including or
excluding the extreme ranges. The facts that this beha-
viour is the same both for the HOMA and for the
newer and more accurate HOMA2, and that the large
variability of SI index values would in any case produce
lack of correlation by itself, lead us to hypothesize that
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the cause of the lack of correlation of the SI with the
HOMA is essentially due to unreliable estimation of the
SI itself.
The increase in AIR with increasing BMI is consistent

with the current consensus. In non-diabetic subjects,
fasting insulin secretion increases with BMI in an
approximately linear fashion [34]. Similar results are
obtained after an oral load of 75 g of glucose where
total insulin output over the 2 h following ingestion
increases in linear proportion with BMI [34]. It is also
well known that there is a hyperbolic relationship
between early insulin secretion, measured e.g. by the
Acute Insulin Response (AIR) index, and insulin action,
as expressed by an insulin sensitivity index, which, in
the present case, is the model parameter KxgI.
This hyperbolic relationship of AIR with insulin sensi-

tivity is well reproduced using the obtained SDM para-
meter estimates (the corresponding graph based on the
full sample of SI estimates is not shown, given the
extreme values which the SI index takes in some sub-
jects). While not offering anything new from the physio-
logical viewpoint, the confirmation of this relationship
gives further support to the stability and meaningfulness
not only of the insulin sensitivity index KxgI, but also of
other SDM parameters, the AIR index being obtained in
this case by the model-estimated IΔGand Kxi.
The observation that no significant relationship exists

between the Disposition Index and BMI indicates that
in the present series no progression of disease is appar-
ent, in the sense that all subjects, whatever their body
composition, seemed adequately compensated.

Conclusions
The present model is obviously not supposed to
describe all possible mechanisms intervening in the fate
of secreted insulin and glucose uptake, but intends, in
the present form, to relate peripheral serum insulin con-
centrations (an index of the actual insulin concentra-
tions in interstitium, portal system, target tissues etc.) to
observed glucose kinetics. Its purpose is exactly the
same as that of the original Minimal Model, i.e. to pro-
vide the diabetologist with a simple mathematical way
to interpret the IVGTT, and the contention made here
is that the new model improves our ability to compute a
robust, precise index of insulin sensitivity.
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