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Abstract This article presents properties of the clock–

counter model with a periodic generator employed as the

source of regularly emitted pulses. The pacemaker and

accumulator mechanisms are often considered in research

in neurobiology and cognitive science: neurons or their

groups serve as oscillators, and the number of spikes

emitted while a stimulus lasts becomes an estimate of

the length of the stimulus. The article integrates three

approaches: a theoretical model to present the general

concept, a working implementation of this model to per-

form intensive simulation experiments, and the analytical

description of the behavior of the model. Oscillators that

exhibit some degree of regularity have been compared to

the Poisson ones, and the corresponding probability dis-

tributions have been presented that describe the number of

pulses accumulated over time. Several continuous and

discrete interpulse distributions have been investigated, and

the influence of generator parameters on the possible out-

comes of the measurement have been described. Particular

attention has been paid to the relationship between mea-

surement variability and the mean number of pulses

observed. Issues concerning practical realizations of peri-

odic generators: discrete time, dependence of the generator

start time on the stimulus, and relation to Weber’s law have

been discussed as well.

Keywords Clock–counter model � Spike � Neuron �
Periodic � Time � Scalar

Introduction

The motivation of this research is to investigate properties

of a clock–counter (or a pacemaker–accumulator) archi-

tecture that is used to measure continuous or discrete

quantities, and employs a periodic generator as a source of

pulses. Such generators can be constructed—both in bio-

logical systems and in engineering—from simple oscilla-

tors, and can be used to transform magnitudes of ‘‘analog’’

phenomena (time, frequency, brightness, temperature,

force, and pressure) to their discrete estimates. This is

equivalent to a digital measurement of a quantity.

It is interesting to note that in engineering and electronics

several approaches are known to convert an analog signal to

its discrete representation. Employing an oscillator (or a

‘‘clock’’) to estimate the magnitude of some quantity is one

of these approaches—one that is particularly suitable for

biological systems. In nature, the oscillator can take the form

of a neural circuit, where groups of neurons generate oscil-

latory activity with modulated frequency (Matell 2004;

Gerstner 1999). This activity serves as a spike generator;

spikes are then accumulated into a discrete estimate that

reflects the actual amount of the perceived phenomenon, as

shown in Fig. 1. An attractive property of this architecture is

that the generator and the counter can be separated from the

stimulus; the stimulus is only used for gating and does not

directly affect other components of the measuring system.

This article discusses properties of such architecture,

specifically, the precision of measurements that can be

achieved when using periodic generators. The relationship

between the magnitude of the stimulus and the uncertainty of

its estimate is important, as this relationship is known to obey

specific laws in animals and humans (Grondin 2001; Gibbon

1977; Gescheider 1997); still, there are various controversies

on this subject (Wearden 2008; Bizo 2006; Lewis 2009;
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Rammsayer 2001; Rammsayer 2000; Kang et al. 2010).

Similar models have been studied earlier as the models of

perception and making judgments regarding stimuli magni-

tudes; see for example (Gibbon 1992; Gibbon et al. 1984;

Rammsayer 2001), cf. also (Wearden et al. 2007; Wearden

1999; Buhusi 2005; Ulrich et al. 2006; Ivry 2008).

To illustrate characteristics of this model and the influ-

ence of generator parameters on the possible outcomes of

the measurement, specialized computer simulations of the

pulse generation and counting processes have been devel-

oped and performed. For precision, some of the presented

results are averages from as many as 1010 simulation runs.

The model and its properties

The following setting is considered: an oscillator is available

that can generate pulses with known mean interpulse (in-

terspike) interval length lD and variance rD
2 . The number of

pulses K counted within time t is investigated; in particular,

the average number of pulses lK and its variance rK
2 .

Note that this is different from the setting where it is the

number of pulses, k, that is assumed to be fixed (rK
2 = 0),

and the time T is the random variable, its mean and variance

being investigated. This would correspond to these situa-

tions when exactly k pulses must occur and one is interested

in the time it takes for the pulses to occur (Killeen 1987;

Getty 1976). In this work, another situation is considered: it

is the time t that elapses, and one is interested in the number

of pulses K that could have occurred within this time (the

number of pulses K is an estimate of time t). Both situations

are related; but, since time is continuous and the number of

pulses is discrete, they are not equivalent.

The considered architecture corresponds to a stochastic

process known as a counting process, with pulses being

counted events (also called arrivals). Since time intervals

between pulses are assumed to be independent and iden-

tically distributed, this counting process is a renewal pro-

cess (Smith 1958; Cox 1962). Indeed, each pulse is a

renewal: once it occurs, the interpulse cycle repeats.

Characteristics of the generator

The time between spikes varies according to some distri-

bution D with mean lD and variance rD
2 . In particular, the

following distributions have been tested in simulation:

• Exponential distribution, Exp(k). Since lD is the mean

interval length, k ¼ 1=lD:

• Normal distribution, NðlD; rD
2Þ:

• Uniform continuous distribution, U(lD � rD

ffiffiffi

3
p

; lDþ
rD

ffiffiffi

3
p

).

• Two-point distribution, a spike generated with proba-

bility 1=2 at lD - rD or lD ? rD.

The exponential distribution of interval length corre-

sponds to the case where the pulse generation is a Poissonian

process. The normal, uniform, and two-point distributions

require that a generator (an oscillator) is more complex and

can generate pulses with some degree of regularity, albeit not

necessarily perfectly periodically (hence rD
2 [ 0).

The memoryless generator

For a Poisson process, where the events occur continuously

and independently at a constant average rate k, intervals

between events follow the exponential distribution, Exp(k),

and k ¼ 1
lD
: The mean number of pulses occurring in time

t depends linearly on t; lK ¼ t
lD
¼ kt: The variance of the

number of the pulses in time t and its relations to the mean

number of pulses are as follows:

rK
2 ¼ lK

rK
2

lK

¼ 1

rK

lK

¼ 1
ffiffiffiffiffiffi

lK
p

Periodic generators: the triggered

and the non-triggered case

For periodic generators, two cases are considered. In one

case, it is assumed that pulse generation and observation

Fig. 1 The considered method for measurement of quantities. The

generator is often called a clock or a pacemaker. Note that the terms

masking and gating have different meanings in neurobiology,

psychology, and technology. This method is used in the well-known

clock–counter models (Grondi 2010; Grondi 2001; Ivry 2008; Ulrich

et al. 2006; Bueti 2011)
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are related: either pulse generation is somehow triggered

by the fact of the observation, or the observation begins in

response to the generated pulse. In the other case, these two

processes are independent. The former case where the first

pulse is not counted is the ordinary renewal process, while

the latter one is the equilibrium renewal process (Cox

1962).

Fig. 2 shows the average number of pulses that occur in

time moment t, assuming that the first pulse was generated

at time -1. In the long term, for generators with interpulse

interval distribution that has a continuous component, the

probability of observing a pulse in a specific moment does

not depend on the particular distribution of D.

In the non-triggered case, the generator is not influenced

by the ‘‘start time’’ effect illustrated in Fig. 2—it is inde-

pendent from the stimulus. In other words, all start times of

the generator are equally probable. Differences between

triggered and non-triggered generators are further dis-

cussed in sections ‘‘Periodic generators’’ and ‘‘Independent

(non-triggered) versus triggered generators’’.

The independence of pulse generation and observation

guarantees that for any distribution of interpulse intervals,

the mean number of pulses

lK ¼
t

lD

ð1Þ

which ensures that there is no systematic error introduced

by the generator, and on average, K reflects the length of

the stimulus, t (which may in turn correspond to the

magnitude of the measured, primary stimulus, were it not

time). This intuitive relation is an important property

known as mean accuracy (Wearden 2003).

Since the oscillator is characterized by lD [ 0 and rD
2 ,

and these two values are assumed to be invariable, a

parameter

c ¼ rD

lD

� �2

ð2Þ

(squared coefficient of variation) is introduced that describes

an oscillator and is constant for a particular oscillator.

Periodic generators

The random variable K is the number of pulses

k (k ¼ 0; 1; 2; . . .) in time t, given the pulse generator

Fig. 2 The relative number of pulses (vertical axis) occurring in time

(horizontal axis) in the triggered setup. The first generated pulse

occurs at time moment -1 (i.e., one time unit before the observation

period starts). Mean interpulse time is lD = 20. From top to bottom,

left to right: exponential (k ¼ 1
20

), normal, uniform, and two-point

distribution of interpulse time D. For normal, uniform, and two-point

distributions, rD
2 ¼ 25

3
;rD � 2:9:
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characterized by lD and rD
2 . K has a discrete distribution

denoted here asMðt; lD; rD
2Þ and illustrated in Fig. 3. This

distribution will be characterized below to show how it

arises from D and to provide a link between distributions

enumerated in ‘‘Characteristics of the generator’’ section

and the outcomes shown in Figs. 2 and 3. For a more

extensive analytical treatment of the renewal processes,

refer to (Cox 1962).

Let us first consider the triggered case, when the first

counted pulse in time interval of length t always occurs

immediately once the interval begins. The following pulses

are generated independently and the mean interval between

consecutive pulses has a length of lD. Therefore, the prob-

ability that k pulses fit the interval of length t is described by

the following cumulative distribution function1 of K:

Ftriggered
K ðk; t; lD; rD

2Þ ¼ PðK� kÞ
¼ 1� Fnormalðt; l ¼ k � lD; r

2 ¼ k � rD
2Þ

¼ 1� U
t � k � lD
ffiffiffiffiffiffiffiffiffiffiffiffiffi

k � rD
2

p
� �

ð3Þ

In the non-triggered setup, one has to take into account the

fact that the observation period t occurs anywhere in the

sequence of pulses. Therefore, the first pulse that occurs in

time window t needs to be considered specially. The

probability of the time moment when the first pulse occurs,

T1, depends on D, and consequently should be determined

specifically for each D. As an example, T1 is determined here

for the uniformly distributed interpulse time. Let lD be the

mean interpulse time, and s—half the width of variability of

interpulse time, lD C s and s C 0, as shown in Fig. 4.

The mean and variance of time of the first pulse

occurring, T1, are therefore

EðT1Þ ¼
Z lD�s

0

t

lD

dtþ
Z lDþs

lD�s

t
lD þ s� t

2slD

dt ¼ lD

2
þ s2

6lD

VarðT1Þ ¼
Z lD�s

0

ðt� EðT1ÞÞ2

lD

dt

þ
Z lDþs

lD�s

ðt� EðT1ÞÞ2 � ðlD þ s� tÞ
2slD

dt

¼ lD
2

12
� s4

36lD
2
þ s2

6

and since for uniform distribution that has been considered

s¼ rD

ffiffiffi

3
p

; the first pulse has the following expected time

and variance:

EðT1Þ ¼
lD

2
þ rD

2

2lD

VarðT1Þ ¼
lD

2

12
� rD

4

4lD
2
þ rD

2

2

Fig. 3 Probability (vertical
axis) of observing K pulses in

time t in the non-triggered

setup. The K axis is discrete,

and the lines are only guides for

the eye. Mean interpulse time

is lD = 10. Top: a perfectly

periodic oscillator, rD
2 = 0.

Middle: interpulse time is

normally distributed, rD
2 = 4.

Bottom: interpulse time is

exponentially distributed,

k ¼ 1
lD
:

1 To define FK(k) for non-negative real k, replace k with bkc on the

right side. FK(k) = 0 for k \ 0.
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The offset of the first pulse has to be included in time

period of length t along with the k intervals between pulses.

Note that T1 has a different distribution than D so adding

their means and variances together will not represent the

pulse generation process perfectly accurately; this will be

illustrated in ‘‘The r component of variance rK
2’’ section.

Considering probability of time of the first pulse, T1, yields

the cumulative distribution function of K for the non-

triggered case to be

FKðk; t; lD; rD
2Þ ¼ 1� Fnormalðt; l ¼ k � lD þ EðT1Þ;

r2 ¼ k � rD
2 þ VarðT1ÞÞ

¼ 1� U
t � k � lD � EðT1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � rD
2 þ VarðT1Þ

p

 !

ð4Þ

and one can note that the triggered setup is a special case of

the non-triggered one, where E(T1) = 0 and Var(T1) = 0.

Probability mass function

fKðkÞ ¼ PðK ¼ kÞ ¼ FKðkÞ � FKðk � 1Þ

and FK(k) = 0 for k \ 0. The mean value of K

lK ¼
X

1

k¼0

k � fKðkÞ

which, for the non-triggered case, follows Eq. 1.

The remainder of this section discusses the behavior of

the variance of K.

A perfectly periodic oscillator

Consider a perfect, periodic, non-triggered generator with

rD = 0. Since there elapses exactly time lD between each

pair of generated pulses, the variance of K for time t will

only depend on the relation between t and lD. It will

specifically depend on the remainder of t and lD and will

therefore be periodic in t with a period of lD. This is

illustrated in the top plot in Fig. 3.

If t is a multiple of lD, then the number of observed

pulses K is always lK (Eq. 1); K does not depend on the

generator offset (or start time) and thus rK
2 = 0. On the

other hand, for lD twice as long as t, the number of pulses

K that occur in time t varies: in fifty percent of cases one

pulse occurs, and in the remaining cases no pulse is found

in time t. The variance of K contributed by this situation

will therefore be maximum. Between these two extreme

cases, the values of rK
2 will be intermediate depending on

the remainder of the (integer quotient) division of

t by lD, as illustrated in Fig. 5, left.

When performing x experiments, the variance of K is

rK
2 ¼

Px
i¼1 k2

i �
Px

i¼1 ki

� �2
=x

x� 1

where ki is the number of pulses observed in the i-th

experiment. Since a generator with rD
2 = 0 is considered,

the number of pulses counted in the intervals of length

Fig. 4 Probability density

function of the time of first

pulse, T1 (right graph) for

uniformly distributed interpulse

time D (left graph)

Fig. 5 Oscillations of rK
2 . Note that the horizontal axis shows the

mean number of pulses, not t—see Eq. 1. Left: a perfectly periodic

generator (c = 0). Right: comparison of convergence of the compo-

nent r of rK
2 for two generators characterized by c1 and c2 (see Eq. 2).

For small c, the rate of convergence is approximately proportional to

c: since c1 is four times bigger than c2, the convergence of r for the

first generator is four times faster than for the second one, cf. Fig. 8
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t may only differ by one, i.e., there may be k or k ? 1

pulses, where k ¼ b t
lD
c: Let us assume that among

x experiments, in y B x experiments k pulses were

observed, and in the remaining x - y experiments, k ? 1

pulses occurred. Therefore, the variance

rK
2 ¼ y � k2þðx� yÞ � ðkþ 1Þ2� y � kþðx� yÞ � ðkþ 1Þð Þ2=x

x� 1

¼ yðx� yÞ
xðx� 1Þ

and it does not depend on k. The variance is zero for

y = x or y = 0. For a large number of experiments

(x!1), the variance is maximum (0.25) for y ¼ x=2: For

a small number of experiments x, the maximum rK
2 is x

4ðx�1Þ
for even x and xþ1

4x for odd x.

Since the variance of K is periodic in t with a period

of lD, for each period of length lD, y changes from x to 0.

The end of each period (y = 0) is the beginning of the next

one (k increases by 1 and y = x), therefore the mean var-

iance of K for all t is

EðrK
2Þ ¼

P

x

y¼1

yðx�yÞ
xðx�1Þ

x
¼ 1

6
þ 1

6x
ð5Þ

which approaches 1=6 as the number of experiments

x grows.

A non-perfectly periodic oscillator

For oscillators with rD
2 [ 0, for short times t, the behavior

is similar to the perfect rD
2 = 0 oscillator as the influence

of the oscillator variance rD
2 on the variance of K is small.

As t grows, the effect of randomness of consecutive pulse

intervals cumulates and thus the number of different values

K may take in each experiment increases (it is not just two

values, k and k ? 1, as in the rD
2 = 0 case).

The variance of the number of pulses observed in time

t can be described as a sum of two components:

rK
2 ¼ t � rD

2

lD
3
þ r1ðt; lD; rD

2Þ

Considering Eqs. 1 and 2 yields

rK
2 ¼ lK � cþ r2ðt; lK ; cÞ ð6Þ

The first component causes the variance to grow linearly

with t (Rammsayer 2001). The second component, r (of

which r1 and r2 are just two alternative parametrizations),

is the result of the regularity of the generator and the

interplay between t and lD discussed in ‘‘A perfectly

periodic oscillator’’ section. The r component constitutes

rK
2 for the perfectly periodic generators; for c [ 0 and non-

triggered generators with non-skewed D, this component

oscillates around c2

2
þ 1

6
(Cox 1962). For continuous D, the

r component will converge while t grows; for small c, the

convergence is faster for less regular oscillators (i.e., with

higher c), as illustrated in the right graph in Fig. 5, the

bottom left graph in Fig. 7 and in Fig. 8, left.

The c parameter is close to zero for highly regular

oscillators; the lD C s inequality that has been assumed

for the uniformly distributed D, shown in Fig. 4, insures

that c� 1=3: For uniformly distributed D, this condition

guarantees that time that passes between consecutive pul-

ses is nonnegative. Other distributions of D that yield

periodic behavior of the generator may be characterized by

higher values of c while still providing non-negative

lengths of all interpulse intervals. An example is the two-

point distribution defined in ‘‘Characteristics of the gen-

erator’’ section with rD B lD and thus c B 1.

Fig. 6 Variance-to-mean ratio and the coefficient of variation for a periodic generator with lD ¼ 12;rD
2 ¼ 1; c ¼ 1=144 � 0:007: The left plot

shows an enlarged fragment of the right plot

108 Theory Biosci. (2012) 131:103–116

123



Asymptotic behavior of rK
2

For a large number of experiments with the non-triggered

generator and non-skewed D, variance of the number of

pulses observed in time t can be approximated and sim-

plified from Eq. 6 to

rK
2 � lK � cþ

c2

2
þ 1

6
ð7Þ

Therefore, the variance-to-mean ratio

rK
2

lK

� cþ 3c2 þ 1

6lK

ð8Þ

and the coefficient of variation

rK

lK

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lK � cþ c2

2
þ 1

6

q

lK

ð9Þ

As lK grows to infinity (which is equivalent to

t approaching infinity and an oscillator with finite lD),

lim
lK!1

rK
2 ¼ 1 ð10Þ

lim
lK!1

rK
2

lK

¼ c ð11Þ

lim
lK!1

rK

lK

¼ 0 ð12Þ

The limiting behavior of the coefficients in Eqs. 8 and 9

is important because it allows to distinguish between

Poissonian, regular, and scalar (i.e., constant, non-zero

coefficient of variation) models (Gibbon 1977), as

discussed in ‘‘Relation to Weber’s law’’ section. Note

that depending on the characteristics of the oscillator, c, the

specific requirements of some experiment, and the

available precision of measurements, the time t needed

for subjective stabilization of the coefficient of variation,

and the variance-to-mean ratio may vary, and may be

considered ‘‘short’’ (i.e., not infinite as the equations above

show), as illustrated in Fig. 6.

Comparing the variance of K for the Poisson generator

against periodic generators, the difference is primarily

caused by the c coefficient as shown in Fig. 7. To minimize

rK
2 , it is generally desirable to have c as small as possible

(ideally, zero)—for c& 0, the value of rK
2 grows very

slowly with t, yet its oscillations persist. On the other hand,

in biological or biologically inspired systems, c may be

much higher and the regularity of the oscillator much lower

(or variable), thus making pulse generation more similar to

the Poisson process that is often assumed in studies of the

Fig. 7 Comparison of Poissonian and periodic generators for varying

c: four relations presented often in literature. All graphs show

variance approximated by Eq. 7 (i.e., without oscillations of the

component r). The bottom left graph additionally shows the actual

variance (Eq. 6) as solid lines
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nervous system (Sejnowski 1999; Gibbon 1992; Ramm-

sayer 2001), cf. (Kang et al. 2010).

The r component of variance rK
2

The character of the oscillations of the r component around

the base value depends on the interplay between proba-

bility distributions of consecutive pulses D, and—in case

of the non-triggered generator—on T1. The oscillations

decay with time for continuous distributions of D.

Characterizing D and T1 in terms of their means and

variances suffices to describe asymptotic behavior of lK

and rK
2 (Eq. 4), but more information about D and T1 is

required to describe oscillations of r around the base value.

Fig. 8 illustrates behaviors of these oscillations for the

continuous uniform distribution and for the discrete two-

point distribution of D. The c parameter varies from 0 to

0.3.

While continuous interpulse time distributions result

in fading oscillations because probability distributions of

consecutive intervals can interact and add, the discrete

distribution of D produces a complex quasi-periodic land-

scape. Depending on the delay between pulses for the two-

point D and the value of c, the pattern of oscillations

varies. In particular, for discrete D the pattern will depend

on the remainders of sums of delays between pulses

and lD. Note that in biology such discrete, extremely

reproducible interpulse time distributions are unlikely to

occur, and due to inherent inaccuracies of the substrate of

the oscillator, the oscillations would eventually die out.

Realizations of periodic generators

This section discusses in more detail three issues that

concern practical implementations and existing realizations

of periodic generators.

Continuous versus discrete time

In experiments concerning time—which constitute a large

part of experiments performed in biological and cognitive

Fig. 8 Comparison of oscillations of the r component of rK
2 for non-triggered generators with continuous uniform D (top left plot) and two-point

D (top right plot), and a range of c. The bottom plot is based on Eq. 4. Note the shift in the locations of the extrema for increasing c

110 Theory Biosci. (2012) 131:103–116
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sciences—time is measured with a limited precision, using

some kind of an external, discrete clock. This does not

conflict with analyses presented in this article; here, time

t is regarded as continuous, yet this concerns the internal

time of the generator or oscillator, and not the external

measurements of time performed while observing the

behavior of the generator.

A different situation takes place when the architecture of

the oscillator itself employs the concept of discrete time.

This can result from some topologies of neural networks—

one example is a helper periodic oscillator that feeds its

pulses to the main oscillator. Discrete time is often

encountered in simulations of biological processes and in

technology, where it is implemented as a discrete variable

(hence the notion of ‘‘time steps’’). This is also convenient

in settings where the generator is embedded in a network of

units working synchronously (Adamatzky and Komosinski

2009; Komosinski and Adamatzky 2009), i.e., the network

is not event-driven. Considerations presented here gener-

ally hold for such discrete-time settings as long as time

steps are small enough; however, care must be taken to

accurately estimate variances. This is obviously required

when time steps are large and the difference between

characteristics of the discrete and the continuous becomes

apparent (e.g., for a discrete quasi-normally distributed

pulse generator).

If generator time is considered discrete, the Poisson

process of emitting pulses can be modeled by the me-

moryless Bernoulli process, where the time between pulses

follows the geometric distribution, and the number K of

pulses generated with probability p in time t is described

by the binominal distribution, B(t, p). Since p ¼ 1=lD and

lK ¼ p � t;
rK

2 ¼ pð1� pÞ � t ¼ lKð1� pÞ
rK

2

lK

¼ 1� p

rK

lK

¼
ffiffiffiffiffiffiffiffiffiffiffi

1� p

lK

s

Arbitrary interpulse distributions where the oscillator

architecture implements discrete time are accurately

described by the discrete-time renewal process (Muntner

1971; van Noortwijk 2008).

Independent (non-triggered) versus triggered

generators

The case where the generator is non-triggered, unrelated to

the stimulus, concerns situations when the generator works

continuously and pulses are accumulated only during the

time window of the stimulus. The triggered case is more

particular and only concerns periodic (i.e., not memoryless)

oscillators: the beginning of the stimulus triggers the gen-

erator. In biology, such condition may be related to the

mechanisms of attention, awareness (Steinmetz et al.

2000), and expectation, when a neural circuit of the

generator or the accumulator is synchronized to stimulus

events, or it is started in some circumstances, and is

otherwise idle. In engineering, a clock circuit may be

switched on in reaction to some event, and may be other-

wise inactive to save energy.

In this section, two specific scenarios are studied where

the generator starts generating pulses based on some

information regarding stimulus appearance. The generator

starts working when the stimulus appears at time = 0,

• just before the accumulation of pulses begins (generator

start time ¼ �e1), or

• just after the accumulation of pulses begins (generator

start time ¼ þe2).

Fig. 9 summarizes characteristics of these two scenarios

(with e1 ¼ 1 and e2 ! 0þ) and compares them to the

oscillator independent from the stimulus. The dependency of

the clock start time on the stimulus appearance results in a

specific variation of the mean in the beginning phase (top left

plot). With time means stabilize and are offset to the non-

biased mean by a constant factor that depends on c and on the

shift e of the generator start time with respect to time zero.

Since the start time is fixed in both triggered scenarios,

the variance of K is consequently lower and needs more

time to stabilize (top right plot). In the beginning, there are

intervals where the variance is zero due to the entirely

determined behavior of the oscillator (a pulse is guaranteed

to occur in some intervals and is impossible in the other

intervals). This causes the extrema of variance to be shifted

in phase compared to the independent generator.

The ratios plotted in the bottom panel of Fig. 9 are a

consequence of lower variance and biased mean in the two

triggered scenarios compared to the independent oscillator.

Note that these discrepancies may cause the ratios to be

higher than for the independent oscillator, and their mag-

nitude is based on the amount of shift e of the start time with

respect to time zero. Based on the simulations and the

numerical analysis of formulas presented earlier (in partic-

ular Eq. 4), for non-skewed D, the r component of variance

oscillates around approximately 1
12
þ 5

4
c1:5 for the first trig-

gered scenario and around 3
4
ðc� 1

3
Þ2 for the second scenario.

Should such dependence of a pacemaker and stimulus

occur in biological systems (i.e., a periodic pacemaker

generates the first pulse in response to the stimulus), it could

make the interpretation of experimental data quite difficult;

this will be further discussed in the following section.
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Relation to Weber’s law

The original Weber’s law states that the change in a

stimulus’s magnitude Ds that will be just noticeable (Just

Noticeable Difference, JND) is a constant ratio of the

original stimulus s (Gibbon 1977; Rammsayer 2000).

Therefore, the Weber fraction, Ds=s; should be constant.

The fraction can also be interpreted as rK

lK
: the standard

deviation rK of the estimates of the stimulus divided by the

magnitude of the stimulus, lK (Luce 1963). While the

original Weber’s law has often been reported to hold for

various senses including perception of time (Gescheider

1997; Grondin et al. 2001; Wearden 2003), there are many

cases where it cannot adequately describe experimental

data (Wearden 2008; Rammsayer 2000; Bizo et al. 2006;

Lewis 2009).

Fig. 10 shows a typical experimental result on animals

(e.g., humans discriminating whether a tone was short or

long) where the Weber fraction is not constant: it varies for

small and large magnitudes of the stimulus s. The left

column shows the Weber fraction, Ds=s; as a function of

s, and the right column shows Ds (JND) as a function of s.

While the constant Weber fraction quite often does not

fit to experimental data as illustrated in the first row in

Fig. 10, note that when the range of the stimulus magnitude

is small enough and/or the precision of measurements is

low enough, the Weber’s law will be reported to hold. For

other cases, modified and generalized forms of the Weber’s

law (second row in Fig. 10 is an example) have been

proposed (Gescheider 1997; Augustin 2009; Killeen 1987)

that include additional parameters (degrees of freedom),

and therefore they can obviously better describe results of

experiments.

For the periodic oscillators studied in this work, the

variance rK
2 of the number of pulses grows approximately

linearly with the magnitude of the stimulus lK so the

standard deviation grows as a square root of the magnitude

of the stimulus. The bottom row in Fig. 10 shows that a

square relationship between the magnitude of the stimulus

and its standard deviation (Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

asþ b
p

) would fit this

sample dataset as well as the generalized Weber fraction.

The latter formula describes relation similar to scaled

Eq. 9.

While the difference between the last two rows in

Fig. 10 can be barely seen, they in fact illustrate two dif-

ferent laws: the scalar property where the standard devia-

tion is proportional to the mean (Gibbon 1977; Gibbon

1992), and the non-scalar property where the variance is

proportional to the mean. Without additional information,

either of the two properties could be found in data. Still, the

Fig. 9 Non-triggered and triggered generators; means lK, variances

rK
2 and their ratios are shown for a normally distributed interpulse

time (lD = 20, rD
2 = 4, c = 0.01). The top right plot presents

variances of K, which are also shown as gray areas in the top left
plot. The bottom plots show the variance-to-mean ratio and the

coefficient of variation
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two functions differ; for growing magnitudes of s, the

Weber fraction approaches a in the second row, and

approaches 0 in the last row (just as Eq. 12). This differ-

ence can be hardly discovered when experimental data are

scarce; see Fig. 6 and also the independent oscillator solid

line in Fig. 9 bottom, left and right.

The risk of misinterpretation is also present when the

precision of measurements is high, but the number of tested

stimulus magnitudes and their range is small (e.g., three

stimulus lengths). The apparently straight line that goes

through the three points may also be a flat slope of the

square root function (Fig. 7, top left). In addition, for

periodic pacemakers, the influence of the regularity of the

pacemaker on measured variance can be large enough to

disrupt monotonicity (Fig. 9, bottom).

This discussion demonstrates the need to explain the

underlying mechanisms of the clock–counter architecture;

while variants of the Weber’s law are used to describe data,

they do not provide a definitive meaning of their parame-

ters. Various hypotheses have been suggested regarding the

interpretation of parameters introduced in generalizations

of Weber’s law, yet it is still unknown how these constants

emerge from the neural structure and how they could be

measured on the neural level. To make the clock–counter

models consistent with the scalar property and the Weber’s

law, additional—not yet fully confirmed on the neural

Fig. 10 Various functions approximating experimental data. In all charts, the same dataset is shown, only regression functions differ. Stimulus

magnitude s corresponds to lK from earlier sections, and Ds corresponds to rK
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level—mechanisms had to be proposed (Wearden 2003;

Gibbon 1992; Gibbo 1999), as illustrated in Fig. 11 for a

Poissonian and a regular oscillator.

The problem with verifying the scalar property is often

the problem of scale. In some works, the Weber fraction

determined from experimental results is reported to change

(not always monotonically (Getty 1975; Bizo et al. 2006;

Rammsayer 2000)), while in others it is considered con-

stant. This alone raises concerns: if the modified Weber’s

law holds and the b coefficient is positive (second row in

Fig. 10), the Weber fraction is never constant—it decreases

with increasing s. Still, for a limited range of s and/or for a

small b, it can be argued that Ds=s is constant. Analo-

gously, a rapid drop (Getty 1975; Wearden 2008) in the

value of Ds=s for small magnitudes of s can be reported for

both functions shown in Fig. 6, and appropriate coefficients

can be sought to fit both functions to experimental data.

It is however hard to draw meaningful conclusions as long

as these coefficients are not grounded in neurobiology,

regression functions have many degrees of freedom, or

experimental results are imprecise.

Actions taken to deal with the scale problem and to

understand perception of stimuli magnitudes generally

follow two directions:

• Gathering more experimental, accurate data that cover

a wide range of magnitudes of stimuli to be able to

draw more reliable conclusions regarding the analytic

form of relations in the data. The problem here is that

for different magnitudes, different mechanisms may be

employed on a neural level, so there may be no

consistency in the logic that underlies the data

(Rammsayer 2000; Ulrich et al. 2006; Ivry 2008; Lewis

2009).

• Trying to understand perception mechanisms at the

neural level: performing low-level physiological exper-

iments supported by a synthetic approach (i.e., building

working models of these mechanisms bottom-up while

ensuring that they are consistent with the current

knowledge and they fit to experimental data) (Anderson

et al. 2004; Komosinski 2011).

In this context, the latter approach could be called a

structural or functional regression, as opposed to numerical

regression from the first group of actions. It appears to be a

promising source of knowledge that can help discover

origins of experimental data, not just describe them

analytically.

Conclusions

This article discussed properties of the clock–counter

model with periodic generators employed as the source of

regularly emitted pulses. Periodic generators have been

characterized by the squared coefficient of variation as a

property reflecting generator inaccuracy in producing

periodic pulses. These generators have been compared to

the Poisson generator; for the corresponding distributions

of generator interpulse time, the probability distributions of

the number of pulses K accumulated in time t have been

presented along with the analytical descriptions of the

measurement process.

Several interpulse distributions have been implemented

and tested in simulation: continuous exponential, normal,

uniform, and discrete geometric, uniform, and two-point.

The normal distribution can be considered a model of other

non-uniform distributions, including modified exponential

Fig. 11 Scalar property as the effect of multiplying the observed

number of pulses in each experiment by Nð1; 0:04Þ; before rK
2 is

calculated. Two interpulse distributions are shown, each with lD = 50

(black) and lD = 10 (white); left: exponential, k ¼ 1
lD
; right: normal,

rD = 2. Solid line demonstrates the coefficient of variation that

exhibits the scalar property for t large enough, dotted line is the

variance-to-mean ratio
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ones for Poisson-like spike generation process that takes

into account refractory periods in neurons.

A number of numerical experiments have been performed

to illustrate the influence of generator parameters on the

possible outcomes of the measurement. Particular attention

has been paid to the relations between measurement accu-

racy, measurement variability, and the mean number of

pulses observed. For all the considered pulse generators

(normally and uniformly distributed, as well as memoryless,

and their discrete counterparts), the variance of the number

of accumulated pulses rK
2 depends approximately linearly on

time t and, consequently, on the expected number of pul-

ses, lK. This relationship, assuming correspondence of the

minimal perceptible difference and the standard deviation

of measurements, does not follow the Weber-Fechner law.

Finally, a few issues have been examined that concern

realizations of periodic generators. The influence of the

discrete generator time has been touched upon, and the

scenarios of the generator being triggered by the stimulus

have been analyzed and compared to the independent

generator. In all these scenarios, variance of the number of

pulses emitted during stimulus presentation exhibits com-

plex, quasi-periodic behaviors. A discussion has been

presented to illustrate difficulties in determining relation-

ships between stimulus length and the mean and variance

of the number of pulses when experimental data are scarce,

models have many degrees of freedom, or their coefficients

are not grounded in neurobiology.

Periodic generators are commonly found in nature and

engineering, therefore they deserve a thorough analysis.

This article concerned imperfect periodic generators

employed as a part of a larger measurement architecture.

With increasing amounts of data becoming available from

neuroscientific experiments, these studies may not only

help understand these data, but also suggest the way bio-

logical oscillators are built and used in animals to estimate

magnitudes of surrounding phenomena.
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