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Abstract: In the last decades, experimental studies have been carried out to investigate the effects
of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic
process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a
scoping literature review with the aim of systematically mapping the research performed in this area
and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in
mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three
independent experiments, appropriate dosimetry analysis and temperature monitoring). We con-
ducted a systematic literature review and charted data in order to overview the main characteristics
of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but,
among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency,
exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some
qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process.
We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality
of experimental methodology still needs to be highly improved.

Keywords: scoping review; radiofrequency fields; apoptosis; in vitro; quality of studies; qualitative
analysis

1. Introduction
1.1. Rationale

In 2011, the International Agency for Research on Cancer (IARC) classified radiofre-
quency electromagnetic fields (RF-EMF, 100 kHz–300 GHz) from mobile phones as a
possible human carcinogens (2B group) based on the limited evidence from experimental
and epidemiological studies [1]. From the literature published since then, and reviewed
by international expert panels, the evidence for health effects due to RF-EMF exposure
is still inadequate, and needs more accurate investigation [2,3]. Moreover, mechanistic
insights of RF-EMF exposure have not been clarified so far for any cellular endpoint. Many
hypotheses have been suggested, but none of them has been proven so far [2–5].

Among the potential cellular mechanisms that are relevant for cancer occurrence, al-
teration of apoptotic process is of particular interest due to the pivotal role of the regulation
of apoptosis in cell homeostasis [6,7] Moreover, abnormalities in cell death regulation,
whether they feature insufficient or excessive apoptosis, can be a significant component of
other diseases such as autoimmune lymphoproliferative syndrome, AIDS, ischemia and
neurodegenerative diseases such as Parkinson’s, Alzheimer’s, Huntington’s diseases and
Amyotrophic Lateral Sclerosis [8].

Apoptosis is an important cell death program, highly conserved within multicellular
organisms and genetically controlled, which is responsible for the removal of damaged,
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dysfunctional or no longer necessary cells to promote homeostasis and survival of organ-
isms [6–8]. Two pathways are involved in apoptosis that work synergistically to assure the
removal of the defective cells. The intrinsic cell death pathway, or mitochondrial pathway,
is activated by the cell itself upon detection of cell damage via a number of intracellular
sensors. It is governed by the Bcl-2 family of proteins, which regulate commitment to
cell death through the mitochondria and the activation of caspase 9. The extrinsic cell
death pathway is activated by the interaction between a cell of the immune system and
a damaged cell. Activation of the extrinsic cell death pathway occurs following the bind-
ing on the cell surface of “death receptors” such as Tumor Necrosis Factor Receptor (Fas
TNFR1), or TNF-related apoptosis inducing ligand (TRAIL) receptors, to their correspond-
ing ligands. These death receptors recruit adaptor molecules such as Fas-associated protein
with death domain (FADD) and caspase 8. Once the caspases 8 and 9 are activated by
inactive pro-caspases, the two pathways converge with the activation of the executioner
caspases (caspases 3, 6 and 7). At this point, a cascade of events initiates that leads to DNA
fragmentation from activation of endonucleases, destruction of cytoskeleton and nuclear
proteins, crosslink of proteins, the expression of ligands for recognition by phagocytic cells,
such as the phosphatidylserine, and the formation of apoptotic bodies. The exposure of
phosphatidylserine on the external surface of the plasma membrane allows the phagocyte
recognition of the dying cells [8–10].

Different methods for the detection of apoptosis and its peculiar hallmarks (which
allow the recognition with respect to the necrosis), have been developed over time concur-
rently with the knowledge of apoptosis phenomena. They mainly rely on morphological
and biochemical analysis aimed at identifying features of apoptotic cells such as shrinkage,
membrane blebbing and chromatin condensation, DNA fragmentation, detection of cas-
pases, cleaved substrates, regulators and inhibitors, externalization of phosphatidylserine,
alteration of mitochondrial membrane potential, release of cytochrome-c, analysis of apop-
totic or anti-apoptotic regulator proteins such as Bcl-2-associated X protein (Bax), as well as
BH3-interacting domain death agonist (Bid), and BCL2 apoptosis regulator (Bcl 2) [8].

A number of in vitro and in vivo experimental studies have addressed the effects
of exposures to RF EMF, at frequencies and signals typical of telecommunications, on
the apoptotic process. These studies have been carried out under different conditions
and experimental regimens with conflicting results, which have not been systematically
reviewed. Several reviews regarding the effect of RF-EMF on mammalian cells included
apoptosis but were not specifically focused on it [11–15]. Moreover, in all the reviews cited
above, papers were not retrieved by performing a systematic literature search, and inclusion
criteria did not include cogent quality parameters. The latter have been demonstrated to
greatly affect the results of experimental studies. Indeed, quality is emerging as a critical
issue in bioelectromagnetic research in general, since the majority of studies do not comply
with quality criteria such as adequate attention to dosimetry, inclusion of sham control,
positive control, blind evaluation and temperature control [16,17].

As evidence-based critical evaluation of RF exposures and apoptosis is still lacking
with reference to health risk assessment, here we performed a scoping literature review,
with the aim of systematically mapping the research performed in this area and identifying
gaps in knowledge. We focus on in vitro studies because they can provide essential infor-
mation about the potential effects of chemicals or physical agents on specific cell properties,
and allow a more rapid, cost effective and well-controlled approach to molecular and mech-
anistic studies than conventional laboratory animal models [16]. Moreover, the preamble to
the IARC Monographs on the Identification of Carcinogenic Hazards to Humans has given
new emphasis and highlighted the importance of mechanistic studies in corroborating
evidence and providing biological plausibility to other types of studies, and the possibility
that they could provide strong evidence in case of consistent findings demonstrated across
a number of different systems and in different species [1].
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1.2. Objective

The aim of this scoping review is to survey the available evidence on the effects of RF-
EMF exposures on the apoptotic process in mammalian cells cultured in vitro by mapping
how research was conducted, by identifying key characteristics of the experiments and
any existing gaps in knowledge. A systematic literature search was performed and the
review was restricted to studies that adhere to basic quality criteria defined a priori, and
thus characterized by low risk of bias. The scientific question, formulated as a PECO
(Population, Exposure, Comparator, Outcome) statement, is outlined in Table 1.

Table 1. PECO statement.

Population In Vitro Models of Healthy or Cancerous Mammalian Cells, either
Immortalized or Freshly Collected via Drawing/Explant.

Exposure

Controlled in vitro exposure to radiofrequency radiation (100 kHz-300
GHz), based on suitable exposure metrics.

Exposure details:
Frequency bands: 100 kHz to <10 MHz; 10 MHz to ≤6 GHz; >6 to ≤300

GHz;
Metrics: induced electric field (Eind, V/m) in the 100 kHz-10 MHz range,

Specific Absorption Rate (SAR, W/kg) in the 10 MHz–6 GHz range,
incident (Sinc) or absorbed (Sab) power density (W/m2) in the 6 GHz–300

GHz range;
Signal characteristics: continuous waves (CW); pulsed (PW);
Duration: ≤ 1 h (acute); >1 h to ≤24 h (long); >24 h (chronic)

Comparator Sham-exposed (sham) control samples.

Outcome

Apoptosis assessed by considering the following endpoints: morphological
hallmarks (cell shrinkage, plasma membrane blebbing, chromatin

condensation, etc.), alteration of mitochondrial membrane potential,
cytochrome-c release, translocation of phosphatidylserine, caspases

activation, PARP-cleavage, DNA fragmentation, apoptosis signaling (Bak,
Bcl-10, Bcl-2, p-53, Bax, Bid, Bag, apoptosis-inducing factor (AIF), etc.).

2. Methods

The scoping review conforms to PRISMA-ScR (Preferred Reporting Items for System-
atic reviews and Meta-Analyses extension for Scoping Reviews) guidelines, provided as
Supplementary Material (Table S1: PRISMA-ScR-Checklist) [18,19].

2.1. Eligibility Criteria

We have restricted inclusion to peer-reviewed journal articles reporting findings from
primary studies and published in English. Meeting abstracts, conference proceedings, and
commentaries were excluded, whereas reviews have been used to check for missing articles.

We have included in vitro studies assessing the capability of RF-EMF in the frequency
range between 100 kHz and 300 GHz, to affect apoptosis process in mammalian cells
(Table 1), with no restrictions on biological model (freshly collected or immortalized cells),
cell status (healthy or cancerous), or cell lineage. Regarding the apoptosis outcome, we
have included the endpoints reported in the PECO statement (Table 1).

For studies that evaluate apoptosis in relation to both RF exposure alone, and to co-
exposure to RF fields and other agents, only findings concerning RF exposure alone have been
considered, because we want to focus on potential apoptosis effects of RF-EMF themselves.

In order to restrict the analysis to papers characterized by a low risk of bias, we have
adopted the following quality-based exclusion criteria [20].

First, we excluded studies that did not provide information to adequately characterize
exposure conditions, such as frequency range, signal type, exposure level and duration, as
detailed in the PECO statement (Table 1). We excluded studies where dosimetry analysis
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was not performed at all or was not carried out with adequate methods. For example,
estimation of SAR from measurements of the electric field in absence of the sample is not
appropriate because the sample significantly perturbs the electric field in the RF range.
On the contrary, estimation of SAR from computation of electric field in the sample or by
calorimetric measurements are acceptable [20,21].

We included studies that used sham-exposed controls, i.e., a sample placed in an
exposure system identical to that used to administer the treatment, except for the emission
of RF-EMF [20]. A further quality-based exclusion criteria was the absence of temperature
control. As a main confounding factor for RF exposure, temperature inside the samples
must be monitored to ascertain absence of heating, or to counteract possible thermal
increase. Finally, we also excluded studies that performed less than three independent
experiments or did not report the number of independent experiments.

2.2. Information Sources and Search Strategy

Our primary information sources were NCBI PubMed and Web of Science (WOS)
databases. In both cases, we did not apply restrictions in terms of time coverage, and the
most recent search was performed on 12 August 2021. The search strategies developed
for both databases are provided as Supplementary Material (Table S2: Search queries). We
also checked reference lists of review papers and authors’ personal literature databases to
retrieve studies that were missed by the web search.

2.3. Selection of Sources of Evidence

All bibliographic records have been imported into the reference management software
Endnote® X9, and the appropriate functions have been used to remove duplicates and
classify the papers by relevance and inclusion/exclusion status. Two independent reviewers
(SR and MRS) have performed a two-phase selection process: first, the papers have been
included/excluded for relevance based on the screening of title and abstract; second, the
full text of all potentially relevant papers has been retrieved and assessed for compliance
with the predefined eligibility criteria. The results of the papers selection process have been
graphically displayed in a PRISMA flow-chart, and the papers excluded at the stage of
full-text examination have been recorded in a separate table, with indication of at least one
motivation for exclusion.

2.4. Data Charting Process and Data Items

The same investigators in charge of the papers selection have also extracted the
relevant information regarding the experiments, using the forms reported as Supplementary
Material 3. More specifically, for each paper we have identified individual experiments,
characterized by different exposure conditions (in terms of frequency, signal, exposure level
or duration), or different cell models or endpoints. For each experiment, the following data
have been extracted and recorded in the form:

• Complete paper reference.
• Cell type and number of independent experiments.
• Apoptosis endpoint.
• Exposure conditions: frequency, type of signal, exposure metric, exposure duration.
• Results: statistically significant effect (based on the analysis performed by the authors

of the study) irrespective of the direction (increase or decrease); non statistically
significant effect.

• Comment: any other information useful to further assess the quality of study (e.g.,
blind analysis, presence of positive control, appropriateness of statistical analysis, etc.)

2.5. Synthesis of Results

• We performed descriptive statistics of the selected parameters in order to characterize
the experiments over the publication time by cell type (human vs. animal, primary
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cells vs. cell lines), with respect to the endpoints analyzed, and the exposure conditions.
To the latter aim, we identified several subgroups within the exposure parameters:

• Frequency subgroups: 100 kHz to <10 MHz (F1); 10 MHz to ≤6 GHz (F2); >6 to
≤300 GHz (F3);

• Exposure duration subgroups: ≤ 1 h (ED1, acute); >1 h to ≤24 h (ED2, long); >24 h
(ED3, chronic, including intermittent exposure over several days);

• Exposure level subgroups: SAR ≤ 1 W/kg or Sab < 20 W/m2 or Sinc < 10 W/m2 (EL1);
1 W/kg <SAR≤ 2 W/kg Sab = 20 W/m2 or Sinc = 10 W/m2 (EL2); SAR> 2 W/kg or
Sab>20 W/m2 or Sinc>10 W/m2 (EL3).

We also assessed the overall incidence of statistically significant or non-significant
effects in the experiments, and the relative incidence of effects with respect to the endpoints
and the exposure parameter subgroups.

3. Results
3.1. Selection of Sources of Evidence

The results of the literature search and of the screening process are summarized in the
PRISMA flow-chart in Figure 1. The literature search yielded a total of 4649 records, which
reduced to 4362 after duplicates removal in Endnote X9. The first round of screening, based
on information and terms in the title and abstract, led to the exclusion of 4241 publications,
whereas for the remaining 121 records the full text was assessed for eligibility. Among
these, 79 papers were excluded because they were not compliant with either basic or quality
criteria, whereas the remaining 42 were fully analyzed for data extraction and synthesis.
The full references of excluded papers with motivations for exclusion are reported in
Table 2.
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Table 2. Excluded papers with motivations.

ID Reference Motivation(s) for Exclusion

1 Alessio et al. 2019 [22] No dosimetry

2 Al-Serori et al. 2017 [23] Less than three independent experiments.

3 Asano et al., 2020 [24] No apoptosis endpoint

4 Asano et al., 2017 [25] No sham control. Inadequate description of the RF exposure system and dosimetry.

5 Atasoy et al., 2009 [26] No sham control

6 Avendano et al., 2012 [27] No sham control

7 Azma et al., 2018 [28] No dosimetry

8 Ballardin et al., 2011 [29] No sham control

9 Calabrò et al., 2012 [30] No dosimetry

10 Cao et al., 2009 [31] No sham control

11 Caraglia et al., 2005 [32] No sham control

12 Çiğ and Naziroğlu, 2015 [33] No sham control

13 Eghlidospour et al., 2017 [34] No dosimetry

14 Esmekaya et al., 2013 [35] Number of independent experiments not reported

15 Esmekaya et al., 2017 [36] No temperature control

16 Falzone et al., 2010 [37] No sham control

17 Glazer et al., 2010 [38] Thermal effect

18 Grasso et al., 2020 [39] No dosimetry

19 Harvey and French, 2000 [40] Less than three independent experiments

20 Hirose et al., 2006 [41] Less than three independent experiments

21 Jin et al., 2012 [42] Less than three independent experiments

22 Jin et al., 2021 [43] No sham control

23 Jooyan et al., 2019 [44] No sham control

24 Kahya et al., 2014 [45] No sham control

25 Karaca et al., 2012 [46] No sham control

26 Karkabounas et al., 2006 [47] No dosimetry

27 Kayhan et al., 2016 [48] No dosimetry

28 Keczan et al., 2016 [49] Not RF range

29 Kim et al., 2021 [50] No sham control

30 Korraah et al., 2012 [51] Not RF range

31 Koshkina et al., 2014 [52] Thermal effect

32 Lantow et al., 2006 [53] Not apoptosis

33 Lee et al., 2016 [54] Number of independent experiments not reported

34 Lee et al., 2005 [55] Number of independent experiments not reported

35 Lee et al., 2014 [56] No sham control

36 Leszczynski et al., 2002 [57] No apoptosis endpoint

37 Li et al., 2014 [58] No dosimetry

38 Li et al. 2010 [59] Only combined exposures

39 Li et al. 2011 [60] Not RF range
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Table 2. Cont.

ID Reference Motivation(s) for Exclusion

40 Li et al. 2012 [61] No dosimetry

41 Liang et al., 2013 [62] No dosimetry

42 Liu et al., 2011 [63] Inadequate description of the RF exposure system and dosimetry.

43 Liu et al., 2012 [64] No sham control

44 Liu et al., 2015 [65] No sham control

45 Lu et al., 2012 [66] No sham control.

46 Maioli et al., 2013 [67] No sham control. No dosimetry

47 Marinelli et al., 2004 [68] Absence of appropriate dosimetry methods

48 Martin et al., 2009 [69] Absence of appropriate exposure metrics and dosimetry

49 Mortazavi et al., 2015 [70] Absence of appropriate exposure metrics and dosimetry

50 Naziroglu et al., 2015 [71] No sham control

51 Narvaez et al., 2018 [72] Absence of appropriate exposure metrics and dosimetry

52 Nishioka et al., 2020 [73] Absence of appropriate exposure metrics and dosimetry

53 Oh et al., 2001 [74] Not RF range

54 Ozgur et al., 2014 [75] Number of independent experiments not reported

55 Ozsobaci et al., 2020 [76] Absence of appropriate exposure metrics and dosimetry

56 Pacini et al., 2002 [77] No dosimetry

57 Pastacı Özsobacı et al., 2018 [78] No sham control. Number of experiments not reported

58 Peinnequin et al., 2000 [79] No dosimetry

59 Port et al., 2003 [80] No sham control

60 Radeva et al., 2009 [81] Not RF range

61 Solek et al., 2017 [82] Not RF range

62 Song et al., 2011 [83] No sham control

63 Sueiro-Benavides et al., 2021
[84] No sham control

64 Tomruk et al., 2019 [85] Inadequate description of dosimetry. Sham exposures was likely, not concurrent to RF
exposure

65 Urnukhsaikhan et al., 2016 [86] Not RF range

66 Volkova et al., 2014 [87] No dosimetry

67 Wu et al., 2011 [88] No sham control

68 Wu et al., 2012 [89] No dosimetry

69 Wu et al. 2012 [90] Retracted

70 Xing et al., 2016 [91] No dosimetry

71 Yang et al., 2012 [92] No sham control

72 Yao et al. [93] Retracted

73 Zhang et al., 2013 [94] Inadequate description of the RF exposure system and dosimetry.

74 Zhao et al., 2007 [95] Inadequate description of the RF exposure system and dosimetry.

75 Zhao et al., 2017 [96] No information on dosimetry

76 Zhijian et al., 2013 [97] Less than three independent experiments

77 Zhou et al., 2008 [98] No sham control.

78 Zhu et al., 2014 [99] No sham control. No dosimetry performed.

79 Zuo et al., 2015 [100] No temperature control at 18 W/kg SAR.
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Figure 2 shows the number of included, excluded and retracted studies, and the
motivations for exclusion with relative proportions (when more than one motivation
applied, only one of them was counted): the most recurrent motivations were the absence
of sham control and the absence of dosimetry or of appropriate dosimetry methods.
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3.2. Characteristics of Sources of Evidence

Figure 3 reports the temporal trend of publication of the included and excluded studies.
The first studies were published in 2000 (2004, if we consider relevant studies that were
included based on our quality criteria), meaning that this topic has been addressed in the
literature for a relatively short time.
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Figure 3. Temporal trend of publication of studies.

The main characteristics of included studies are charted in Tables 3 and 4. We have
separated studies into two categories. First, those that did not observe statistically sig-
nificant (according to the statistical analysis performed by the authors) alterations of the
apoptotic process due to RF-EMF exposures in any of the experimental conditions consid-
ered (Table 3). Secondly, those that did report significant alterations in at least one of the
experimental conditions considered (Table 4).
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Table 3. Overview of studies that did not report statistically significant alterations of the apoptotic process following RF-EMF exposures.

ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

1 Belyaev et al., 2005 [101] Human blood lymphocytes
DNA fragmentation
Morphological
hallmarks

915 MHz (GSM)
0.037 W/kg
2 h

No effect -

2 Bourthomieu et al., 2013 [102] Primary human amniotic cells Apoptosis signaling
900 MHz (GSM)
0.25, 1, 2, 4 W/kg
24 h

No effect Non-blinded analysis

3 Capri et al., 2004a [103] Human blood mononuclear cells PE
MMP modification

1800 MHz (GSM-basic, GSM-talk, DTX)
1.4 and 2 W/kg
44 h (10 min on/20 min off cycles)

No effect -

4 Capri et al., 2004b [104] Human blood mononuclear cells PE
MMP modification

900 MHz (CW and GSM)
0.07 and 0.076 W/kg
1 h/day for 3 days

No effect Non-blinded analysis

5 Chauhan et al., 2007 [105] Human-derived immune cell
lines (HL-60, Mono-Mac-6, TK6) DNA fragmentation

1900 MHz (PM)
1 and 10 W/kg
6 h (5 min on/10 min off cycles)

No effect -

6 Chen et al., 2014 [106] Embryonic mouse neural stem
(eNSCs) cells

DNA fragmentation
Caspase activity
Apoptosis signaling

1800 MHz
4 W/kg
3 days (5 min on/10 min off cycles)

No effect -

7 Choi et al., 2020 [107]
Human adipose tissue-derived
stem (ASCs) cells, liver cancer
stem cells (Huh7)

PARP cleavage
1700 MHz (LTE)
1 and 2 W/kg
72 h

No effect Non-blinded analysis

8 De Amicis et al., 2015 [108] Human primary fibroblasts
HFFF2 PARP cleavage

120 THz (PW)
4 W/m2 (0.015–0.022 W/g)
20 min

No effect Non-blinded analysis
No positive control

9 Durdik et al., 2019 [109] Umbilical cord blood (UCB)
cells PE

900 MHz (GSM), 1950 MHz (UMTS)
4 and 40 W/kg
2 h

No effect Non-blinded analysis

10 Glaser et al., 2016 [110]
Hematopoietic stem cells (HSC);
promyelocytic leukemia cell line
(HL-60)

PE

900 MHz (GSM), 1950 MHz (UMTS), 2535
MHz (LTE)
0.5, 1, 2 and 4 W/kg
4 and 20 h (HSC)
4 and 66 h (HL-60)

No effect
Sham and RF

samples were not
run concurrently
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Table 3. Cont.

ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

11 Gulati et al., 2020 [111] Human peripheral blood
lymphocytes PE

923, 1947.47, 1977 MHz (UMTS)
0.04 W/kg
1 h and 3 h

No effect Non-blinded analysis
No positive control

12 Gurisik et al., 2006 [112]

Promyelocytic leukemia cell line
(HL-60)
Human neuroblastoma cells
(SK-N-SH)

Membrane integrity
900 MHz (GSM)
0.2 W/kg
2 h

No effect Non-blinded analysis
No positive control

13 Hook et al., 2004 [113] Lymphoblastoid Molt-4 cells PE

812.56 MHz (iDEN)
24 W/kg
836.55 MHz (TDMA)
26 W/kg;
847.74 MHz (CDMA) 835.62 MHz (FDMA)
3.2 W/kg
2, 3, 21 h

No effect Non-blinded analysis

14 Hoyto et al., 2008a [114]
Human neuroblastoma
(SH-SY5Y); Mouse fibroblasts
(L929)

Caspase activity
DNA fragmentation

872 MHz (CW and GSM)
5 W/kg
24 h

No effect Non-blinded analysis

15 Hoyto et al., 2008b [115] Murine fibroblasts (L929) Caspase activity
872 MHz (CW and GSM)
5 W/kg
1 h

No effect Non-blinded analysis

16 Joubert et al., 2008 [116] Human neuroblastoma
(SH-SY5Y) cells

Morphological
hallmarks
Caspase activity
DNA fragmentation
Apoptosis signaling

900 MHz (CW)
2 W/kg
900 MHz (GSM)
0.25 W/kg
24 h

No effect Non-blinded analysis

17 Joubert et al., 2007 [117] Primary rat cortical neurons

Morphological
hallmarks
Caspase activity
DNA fragmentation

900 MHz (GSM)
0.25 W/kg
24 h

No effect Non-blinded analysis

18 Lin et al., 2017 [118] Mouse Leydig cells PE
1950 MHz (GSM-talk)
3 W/kg
24 h

No effect Non-blinded analysis
No positive control
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ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

19 Liu et al., 2014 [119] Mouse spermatocyte-derived
(GC-2) cells PE

1800 MHz (GSM)
1, 2, 4 W/kg
24 h (5 min on/10 min off cycles)

No effect No positive control

20 Merola et al., 2006 [120] Human neuroblastoma (LAN-5)
cells

Caspase activity
PARP cleavage

900 MHz (GSM),
1 W/kg
24 to 72 h

No effect Non-blinded analysis

21 Moquet et al., 2008 [121] Murine neuroblastoma (N2a)
cells

Caspase activity
DNA fragmentation
PE

935 MHz (CW, GSM- basic, GSM-talk)
2 W/kg
24 h

No effect -

22 Palumbo et al., 2008 [122] Human lymphocytes; human
lymphoblastoid (Jurkat) cells

Caspase activity
PARP cleavage
PE

900 MHz (GSM)
1.35 W/kg
1 h

Increase in
caspase-3
activity in

proliferating
but not in

resting cells.
No effect on

PARP cleavage
and PE.

Increase in caspase-3
activity not related to

apoptosis.

23 Sanchez et al., 2007 [123] Human skin cells and
reconstructed human epidermis PE

900 MHz (GSM)
2 W/kg
48 h

No effect Non-blinded analysis

24 Sanchez et al., 2006 [124] Primary human skin cells PE
1800 MHz (GSM)
2 W/kg
48 h

No effect Non-blinded analysis

25 Simon et al., 2013 [125] Primary human melanocytes
and keratinocytes cells

Morphological
hallmarks
Caspase activity
Apoptosis signaling

900 MHz (GSM)
2 W/kg
6 h

No effect Non-blinded analysis
No positive control

26 Terro et al., 2012 [126] Primary cerebral cortical cells of
rat embryos

Morphological
hallmarks
Caspase activity

900 MHz (GSM)
0.25 W/kg 24 h No effect Non-blinded analysis
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ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

27 Wang et al., 2015 [127]
Primary murine Bone marrow
Mesenchymal stem cells
(BM-MSCs)

PE
2.856 GHz (PW)
4 W/kg
6 min

No effect Non-blinded analysis

28 Zeni et al., 2012 [128] Rat neuronal cells (PC12) PE
1950 MHz (UMTS)
10 W/kg
24 h

No effect -

29 Zhang et al., 2017 [129] Mouse spermatocyte-derived
cells (GC-1)

DNA fragmentation
Caspase activity
PE

1950 MHz (UMTS)
3 W/kg
24 h

No effect -

30 Zhou et al., 2019 [130] Rat pheochromocytoma (PC12)
cells PE

2856 MHz
4 W/kg
8 h/day for 2 days

No effect Non-blinded analysis
No positive control

31 Zielinski et al., 2020 [131]
Murine microglial cells (N9),
Human neuroblastoma cells
(SH-SY5Y)

PE
Apoptosis signaling

935 MHz (GSM)
4 W/kg
2 and 24 h (2 min on/2 min off)

No effect -

Abbreviations: CDMA: code division multiple access; CW: continuous wave; DTX: discontinuous transmission; FDMA: frequency division multiple access; GSM: global system for
mobile communication; iDEN: integrated digital-enhanced network; LTE: long-term evolution; MMP: mitochondrial membrane potential; PARP: Poly (ADP-ribose) polymerase; PE:
Phosphatidylserine externalization; PM: pulse modulated; PW: pulsed wave; TDMA: time division multiple access; UMTS: universal mobile telecommunications system.

Table 4. Overview of studies that reported statistically significant alteration of the apoptotic process following RF-EMF exposures.

ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

1 Borovkova et al., 2017 [132] C6 rat glial cells MMP modification
150 GHz
32 W/m2

0 to 5 min

Increase in apoptotic cells over time
exposure in exposed samples

Non-blinded analysis
No positive control

2 Buttiglione et al., 2007 [133] Human neuroblastoma
cell line SH-SY5Y

DNA fragmentation
Apoptosis signaling

900 MHz (GSM)
1 W/kg
5 min, 15 min, 30 min, 6 h, 24 h

Increase in apoptotic sub-G1 DNA
content at 24h exposure time, and
downregulation of Bcl-2 at 6 and 24 h
exposure times

Non-blinded analysis
No positive control
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ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

3 Canseven et al., 2015 [134] Burkitt’s lymphoma
(Raji) cells PE

1800 MHz (GSM)
0.35 W/kg
24 h

Increased apoptosis by RF No positive control

4 Hou et al., 2015 [135] Mouse embryonic
fibroblasts (NIH/3T3) PE

1800 MHz (GSM talk- mode)
2 W/kg
0.5–8 h (5 min on/30 min off
cycles)

Increased apoptosis after 1, 4 and 8 h
RF exposure; no effect after 0.5, 2 and
6 h.

Non-blinded analysis
No positive control

5 Joubert et al., 2006 [136] Primary rat cortical
neurons

Morphological
hallmarks
Caspase activity
DNA fragmentation

900 MHz (CW)
2 W/kg
24 h

Increased apoptosis (morphological
hallmarks and DNA fragmentation)
immediately after and 24 h post-RF
exposure; no effect on caspase-3
activity; increase in AIF-positive
nuclei soon after and 24 h
post-exposure.

2 ◦C increase in
RF-exposed cultures.
Thermal effects
excluded by ad hoc
experiments.

6 Li et al., 2020 [137] Mouse embryonic
fibroblasts NIH/3T3

PE
Apoptosis signaling

1800 MHz
2 W/kg
12, 24, 36, 48 h (5 min on/10 min
off)

Increased apoptosis after 48 h RF
exposure; no effect after 12, 24 and 36
h.

Non-blinded analysis
No positive control

7 Nikolova et al., 2005 [138] Mouse neural progenitor
stem cells

DNA fragmentation
MMP modification
Apoptosis signaling

1710 MHz (GSM)
1.5 W/kg
48 h (5 min on/30 min off cycles)

Upregulation of some genes. No
effect on other parameters
investigated.

No positive control

8 Sefidbakht et al., 2014 [139] Human embryonic
kidney (HEK293T) cells Caspase activity

940 MHz
0.09 W/kg
15, 30, 45, 60 and 90 min

Increase after 45 and 90 min RF
exposure; no effect after 15, 30 and 60
min exposure.

Non-blinded analysis
No positive control

9 Yoon et al., 2011 [140] Human dermal papilla
cells Apoptosis signaling

1763 MHz (CDMA)
10 W/kg
1 h/day for 7 days

Increased expression of Bcl-2 and
phosphorylation of MAPK-1.

Non-blinded analysis
No positive control
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ID Reference Cell Type Biological Endpoint Exposure Conditions Results Comment

10 Zhao et al., 2020 [141] A375 Human Melanoma
Cells

PE
Caspase activity

35.2 GHz
1.6 W/m2

15/30/60/90 min

Increase in apoptosis (PE) at all
exposure durations. Upregulation of
caspase-3 and caspase-8

Non-blinded analysis
No positive control

11 Zuo et al., 2014 [142] Differentiated rat
neuronal cells (PC12)

PE
Morphological
hallmarks
DNA fragmentation
MMP modification
Apoptosis signaling
Caspase activity
PARP cleavage

2856 MHz
100–1000 W/m2

5 min

No effect at 10 mW/cm2

Increased PE at 30, 50 and 100
mW/cm2 at 6h post RF-exposure. At
30 mW/cm2 alteration of all the
endpoints investigated.

No positive control

Abbreviations: AIF: apoptosis inducing factor; Bcl-2: B-cell lymphoma 2; CDMA: code division multiple access; CW: continuous wave; GSM: global system for mobile communication;
MAPK-1: mitogen-activated protein kinase-1; MMP: mitochondrial membrane potential; PARP: Poly (ADP-ribose) polymerase; PE: Phosphatidylserine externalization
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A total of 255 experiments were extracted from the 42 papers analyzed. Each experi-
ment was identified on the basis of either one of the exposure parameters (frequency, signal,
exposure level or duration), or of the cell type, or of the endpoint analyzed. Data extracted
from each experiment are provided as Supplementary Material (Table S3: Data extracted
from experiments).

3.3. Results and Critical Appraisal of the Source of Evidence

We surveyed the data extracted from included studies with respect to relevant pa-
rameters, namely the cell origin (human vs. animal, primary vs. cell lines), the endpoints
analyzed, the frequency, exposure level and exposure duration subgroups, the reporting of
statistically significant effects.

As shown in Figure 4, human cells were used as biological model more than animal
cells (72.5% vs. 27.5%), whereas in both cases immortalized cell lines (81.6% human
and 85.7% animal) were mainly used with respect to primary cells (18.4% human, 14.3%
animal). The percentage of endpoints analyzed were as reported in Figure 5, where the vast
majority (44.3%) of experiments assessed apoptosis by analyzing the phosphatidylserine
externalization, followed by apoptosis signaling (18.8%), caspase activity (12.6%), and DNA
fragmentation (10.6%). The remaining 13.7% accounted for the other considered apoptosis
endpoints, namely alteration of mitochondrial membrane potential (4.7%), morphological
hallmarks (3.9%), PARP cleavage (3.9%), membrane integrity (0.8%), and expression of
cytochrome-c (0.4%).
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Figure 6 shows the percentage of experiments belonging to the three subgroups (as
defined in Table 1) within the main exposure parameters (frequency, exposure level and
exposure duration). The majority of the experiments (94.5%) were performed by applying
EMF in the F2 subgroup (10 MHz to ≤6 GHz), only 5.5% of them applied EMF in the F3
(>6 to ≤300 GHz) subgroup, and none of them employed frequencies below 10 MHz (F1).
The distribution within the exposure level subgroups was definitely more uniform, with
38.4% of experiments performed at SAR < 1 W/kg or Sab < 20 W/m2 or Sinc < 10 W/m2

(EL1), 29% at 1 W/kg < SAR ≤ 2 W/kg Sab = 20 W/m2 or Sinc = 10 W/m2 (EL2), and 32.5%
SAR > 2 W/kg or Sab>20 W/m2 or Sinc>10 W/m2 (EL3). In most of the experiments (65.1%)
exposure duration was long (ED2, >1 h to ≤24 h), whereas in 21.2% and 13.7% they were
acute (ED1, ≤1 h) and chronic (ED3, >24 h), respectively.
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In the majority of experiments (84.7%), no statistically significant effects on the ana-
lyzed endpoints were found; only the 15.3% reported statistically significant effects (Fig-
ure 7a). The percentage of experiments reporting effects is presented in Figure 7b with
respect to exposure parameters. The highest incidence occurred in the F3 subgroup, with
13 out of 14 experiments (belonging to two different studies) reporting significant effects.
Regarding the exposure level and duration subgroups, the highest incidence was obtained
for above limits (EL3, 30.1%) and acute exposures (ED1, 42.6%). The incidence of significant
and non-significant effects with respect to the analyzed endpoints is shown in Figure 7c.
The highest incidence of significant effects was found in terms of MMP modifications
(6 out of 12 experiments), followed by caspases activation (7 out of 32 experiments) and the
observation of morphological hallmarks (2 out of 10 experiments). For the PE, apoptosis
signaling and DNA fragmentation endpoints, the incidence of significant effects ranged
from 10.6 to 14.3% (12 out of 113 experiments for PE; 7 out of 48 for apoptosis signaling;
3 out of 27 experiments for DNA fragmentation). Only two experiments assessed the
membrane integrity endpoint and did not find significant effects. Only one experiment
assessed expression of cytochrome-c and found a significant alteration.
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ED1/ED2/ED3; EL1/EL2/EL3 as defined in Table 1; Number above each bar refer to the absolute
number of experiments where significant effects were observed); (c) percentage of experiments
reporting statistically significant effect or no effect with respect to the endpoints analyzed (numbers
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Moreover, the incidence of statistically significant effects in experiments performed
with human or animal cells was 13.5% and 20%, respectively.

Table 3 reports an overview of the studies that did not observe significant alterations
of the apoptotic process due to RF-EMF exposures. In 17 out of 31 studies, only one
apoptosis endpoint was analyzed; in 20 out of 31 studies the analysis was not performed
in blind; and in 7 out of 31 studies positive control was not included. The experiments in
which significant alterations of apoptosis endpoints were found belonged to twelve studies,
which are overviewed in Table 4. In 5 out of 11 studies, only one apoptosis endpoint was
investigated; in 7 out of 11 studies the analysis was not performed in blind; and in 10 out of
11 studies, positive control was lacking.

4. Discussion
4.1. Summary of Evidence

One of the main concerns regarding health effects of RF-EMF is that prolonged ex-
posures to weak field levels may cause long-term effects. In spite of the high number
of studies published on this matter, the evidence accumulated so far is inconclusive and
controversial.

The majority of studies regarding biological effects of RF-EMF are based on an in vitro
study design, because this approach is rapid, cost effective, allows exposures to be per-
formed under strictly controlled electromagnetic and environmental conditions and pro-
vides insight into mechanistic interactions [1]. Among the biological outcomes that can
be of interest for the mechanistic assessment of long-term effects, apoptosis has been in-
creasingly considered over the last twenty years. The gained information has not been
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comprehensively reviewed and does not allow for a complete picture of investigation
carried out so far, of the possible effects on this critical cellular process and of the existing
gaps in knowledge.

Manna and Gosh reviewed the effects of RF-EMF exposure in cultured mammalian
cells on several biological outcomes, including apoptosis. The authors concluded that
RF-EMF exposure might affect the apoptotic process in vitro, with results depending on the
type of modulation, intermittent mode of exposure and cell model [15]. Halgamuge and
co-workers performed an extensive meta-analysis of data from in vitro studies published
between 1990 and 2015, and investigating effects of weak RF-EMF from mobile phones.
The analysis revealed a lack of uniform responses in any of the investigated outcomes,
which included but was not specifically focused on apoptosis, and also highlighted some
recurrent patterns of evidence which depended on cell and signal types [14]. Moreover,
in the abovementioned reviews, the study inclusion criteria did not take into account the
aspects of quality of experimental methods, which have been widely demonstrated to
affect the results [16,17]. In [16], co-authored by two authors of this review, apoptosis was
considered together with proliferation to detect possible statistical associations between
RF-EMF exposures and cellular response. Cellular response after exposure to RF-EMF
was significantly associated to cell lines rather than to primary cells, but not to other
experimental parameters.

In this scoping review, for the first time in our knowledge, we specifically addressed
apoptosis outcome in studies evaluating the effects of RF-EMF exposures on mammalian
cells in vitro. We conducted a systematic literature review, included studies on the basis of
quality criteria defined a priori, and provided an overall picture of what has been published
so far.

The systematic literature search yielded a total of 121 relevant papers, but only 34.5%
of them met the inclusion criteria. The majority of retrieved papers failed to comply with
quality criteria for good bioelectromagnetic experiments [16,17,143]. The main motivations
for exclusion were the absence of sham controls and the lack of dosimetry analysis, or of
appropriate methods for dosimetry analysis. Lack of compliance with these two criteria
indicates that experimental conditions were not identical across study groups, and that
there was a low confidence in exposure characterization. Quality of experimental methods
has become an issue in bioelectromagnetic research, with the majority of published papers
presenting flaws on either electromagnetic or biological requirements, or both. Basic
quality criteria for in vitro experiments on RF-EMF exposures include the presence of sham
control, dosimetry analysis conducted with standardized methods, temperature control,
blind analysis and positive control. The absence of some or all of these requirements has
been shown to be highly associated with the detection of effect [16,17]. In this review,
we considered three out of five basic requirements as inclusion criteria (sham, dosimetry
analysis, temperature control). The motivation of this choice was to include papers with
a low risk of bias, but we did not consider the absence of blind analysis and of positive
control among the exclusion criteria in order to be more inclusive towards the final analysis
of relevant papers. The latter criteria were applied for a deeper characterization of the
quality of studies. Indeed, in more than half of the included studies analysis of data was
not blinded, and in almost half of the studies positive control was not included in the study
design.

It is important mentioning that in more than half of the included studies apoptosis was
evaluated by assaying a single endpoint. Since apoptosis occurs via a complex signaling
cascade that is tightly regulated at multiple points, and since it presents many features
in common with necrosis, it is crucial to perform two or more distinct assays, based on
different principles, to confirm that cell death occurred via apoptosis [8]. As an example, the
detection of phosphatidylserine externalization requires the use of specific dyes (Annexin-V
binds to phosphatidylserine on the plasma membrane, while Propidium Iodide only enters
necrotic cells) allowing discrimination of apoptotic from necrotic cells, because an increase
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in membrane permeability is also a feature of necrotic cells. For the same reason, each test
must be associated with others based on different apoptotic features.

We have overviewed the main characteristics and outcome of the included studies.
The majority of them did not find significant alterations of the apoptotic process due to RF-
EMF exposure. Looking at the experiments extracted from the studies, when a statistically
significant effect was observed it mainly occurred at frequencies above 6 GHz, and for
acute (≤ 1h) exposure durations. However, since the number of studies reporting effects is
very small, and the considered experimental conditions are highly heterogeneous, further
investigations are needed, together with replication studies, to confirm or confute these
results. Moreover, even though the included studies met the basic quality criteria, most
of them still presented flaws in the experimental methods (lack of blind analysis and/or
positive control, assessment of single endpoints). It can be stated that, to be of value, future
studies that investigate the effect of RF-EMF in mammalian cells should aim to be of high
methodological quality and be sufficiently powered by performing an adequate number of
experiments.

4.2. Limitations

The bibliographic search was conducted only on two databases (PubMed and WOS).
Even though these two databases may contain the vast majority of studies within the field,
it is possible that potentially relevant studies might not be indexed there. Misclassification
of studies based on keywords, title or abstract might have also affected the sensitivity of the
search strategies. We conducted hand searches to minimize the number of articles missed,
but this still may not have captured all eligible articles.

5. Conclusions

This scoping review sought to systematically map the research regarding the effects of
RF-EMF on apoptosis in mammalian cells, and to identify any existing gaps in knowledge
within health risk assessment of RF-EMF exposures. This will definitely facilitate to gain
reliable information on the effects of RF exposure on the apoptotic process when in a next
step, a quantitative analysis of the papers included in this scoping review will be carried
out by mainly addressing questions on the direction of the effect (induction or suppression
of apoptosis), effect size, possible dose–response relationship, possible association of the
effect size with the quality score of the experiments, and possible major capability of
certain exposure parameter ranges to exert an effect. The major gap in knowledge from the
qualitative analysis conducted here is the lack of a systematic approach based on quality
of the experimental methodologies adopted in the studies retrieved and analyzed in this
scoping review.

Therefore, the evidence here presented is a further confirmation that, in spite of the
large amount of relevant papers available in the literature, a huge effort still needs to be
made in bioelectromagnetic research towards the improvement of experimental quality,
which is crucial to guarantee the reliability, robustness and reproducibility of results.
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