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During development, enhancers play pivotal roles in regulating gene expression programs; however, their involvement in

cancer progression has not been fully characterized. We performed an integrative analysis of DNAmethylation, RNA-seq,

and small RNA-seq profiles from thousands of patients, including 25 diverse primary malignances and seven body sites of

metastatic melanoma. We found that enhancers are consistently the most differentially methylated regions (DMR) as cancer

progresses from normal to primary tumors and then to metastases, compared to other genomic features. Remarkably, iden-

tification of enhancer DMRs (eDMRs) enabled classification of primary tumors according to physiological organ systems,

and in metastasis eDMRs are the most correlated with patient outcome. To further understand the eDMR role in cancer

progression, we developed a model to predict genes and microRNAs that are regulated by enhancer and not promotor

methylation, which shows high accuracy with chromatin architecture methods and was experimentally validated.

Interestingly, among all metastatic melanoma eDMRs, the most correlated with patient survival were eDMRs that “switched”

their methylation patterns back and forth between normal, primary, and metastases and target cancer drivers, e.g., KIT. We

further demonstrated that eDMR target genes were modulated inmelanoma by the bonemetastasis microenvironment, sug-

gesting that eDMRs respond to microenvironmental cues in metastatic niches. Our findings that aberrant methylation in

cancer cells mostly affects enhancers, which contribute to tumor progression and cancer cell plasticity, will facilitate devel-

opment of epigenetic anticancer approaches.

[Supplemental material is available for this article.]

The landscape of DNA methylation undergoes global changes in
many cancers (Jones 2012) which contribute to genomic instabil-
ity (Pogribny and Beland 2009), facilitate genetic mutations (You
and Jones 2012), and alter gene expression programs (Easwaran
et al. 2014). Most studies of DNA methylation changes in cancers
have focused on promoter regions, since hypermethylation of pro-
moters is a key mechanism for gene silencing (Esteller 2007). Less
attention has been given to aberrant DNAmethylation in other re-
gions of the genome, such as enhancers (Aran and Hellman 2013;
Marzese et al. 2014; Ziller et al. 2013; Brocks et al. 2014), and to its
influence on gene expression in cancer.

During development, enhancers play pivotal roles in regulat-
ing expression programs (Hnisz et al. 2013) and are characterized
by tissue-specific chromatin marks (Heintzman et al. 2009), and
their activation corresponds with nucleosome and methylation
loss (Zhou et al. 2011; Buecker and Wysocka 2012; Taberlay et al.
2014). Recent studies have used these features to predict enhanc-
er-gene interactions (Aran and Hellman 2013, 2014; Aran et al.
2013; Andersson et al. 2014; He et al. 2014); however, these meth-
ods provide limited insight into the roles of enhancers in cancer, in
particular, the transcriptional consequences of abnormal enhanc-
er methylation.

Cancer plasticity refers to the ability of tumor cells to transi-
tion between states and evolve under selective pressure, facilitating
metastagenesis (Friedl and Alexander 2011; Tam and Weinberg
2013). Tumor heterogeneity and the microenvironment clearly
impact cancer cell plasticity (Friedl and Alexander 2011; Brabletz
2012;Meacham andMorrison 2013). However, unlike geneticmu-
tations, DNA methylation is a reversible modification (Franchini
et al. 2012); thus, we hypothesized that methylation changes
could promote cancer progression by affecting cancer cell plastic-
ity. To test this hypothesis, we extended the analysis of Aran and
Hellman (2013, 2014) andAran et al. (2013) and analyzed differen-
tial DNAmethylation patterns in 25 cancer types and seven sites of
metastatic melanoma. Our analysis suggests that enhancer meth-
ylation changes can be indicative of patient outcome and may
contribute to cancer progression through cancer cell plasticity.

Results

Enhancers exhibit highly dynamic methylation patterns

upon malignant transformation

In order to methodically examine DNA methylation changes in-
volved in malignant transformation, we analyzed 23 distinct
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cancer types (overall 25 data sets). We used the genome-wide scale
Illumina HumanMethylation450 arrays (Dedeurwaerder et al.
2011) to identify differentially methylated regions (DMRs) by an-
alyzing over 6200 DNA methylation profiles of patients’ tumors
and normal tissues (Supplemental Table S1). We identified
123,649 DMRs (minimum region-wise mean methylation differ-
ence >0.3, false discovery rate, q < 0.2). Interestingly, we found
that enhancers had more DMRs than any other genomic region;
promoters and CpG islands exhibited the least variation (Fig.
1A). This result suggests that alterations of enhancer methylation
have a significant role in cancer progression, in support of data re-
ported previously (Aran andHellman 2013, 2014; Ziller et al. 2013;
Taberlay et al. 2014). To test whether the selected threshold of 0.3
for differential methylation represented an optimal measure, we

calculated the fraction of DMRs in each genomic feature using
higher and lower thresholds (from 0.2 to 0.5); enhancers were con-
sistently the most variable regions (Supplemental Fig. S1A). As the
frequency of CpG dinucleotides varies with genomic features
(Supplemental Fig. S1B), we repeated the differential methylation
analysis usingmethylation levels of individual CpG sites in the ar-
ray (Supplemental Fig. S1C) andobserved consistent results, name-
ly that CpG methylation within enhancers is the most variable
compared to all other genomic features.

Given the parallels between embryonic development and
oncogenic transformation (Hon et al. 2013), we examined the
binding patterns of central pluripotent transcription factors
(TFs) POU5F1, SOX2, and NANOG in various DMRs. We observed
that multiple binding occurred more frequently at differentially

methylated enhancers than at promot-
ers or CpG islands (Fig. 1B). These results
support previous findings (Göke et al.
2011; Whyte et al. 2013) suggesting
that eDMRs bound by pluripotent
TFs may mediate central expression
programs. To qualitatively examine the
altered enhancers, we analyzed their
ChromHMM states (Ernst and Kellis
2012). We found that, compared to en-
hancers that were not differentially
methylated (static enhancers), eDMRs
were significantly enriched for the
ChromHMM state of “strong enhancers”
(P < 2 × 10−16) (Fig. 1C), similar to previ-
ous reports (Aran et al. 2013). These re-
sults suggest that enhancers altered in
cancer may regulate their target genes
more strongly than do unaltered enhanc-
ers. It is known that promoter and CpG
island hypermethylation are associated
with gene silencing in cancers (Bergman
and Cedar 2013), and, indeed, we found
that these regions were frequently hyper-
methylated (63% and 94%, respectively).
In comparison, enhancers were mostly
differentially hypomethylated (67%)
(Fig. 1D). Next, we used chromatinmarks
to qualitatively determine the chromatin
features of the hypermethylated and
hypomethylated enhancers. Using data
from the ENCODE Project (Rosenbloom
et al. 2013), we found that differentially
hypomethylated enhancers exhibited
significantly higher levels of chromatin
marks of active DNA (increased DNase I,
H3K4me1, H3K4me2, H3K27ac, H2A.Z,
EP300, POL2, and decreased CTCF).
Differentially hypermethylated enhanc-
ers showed the footprints of closed and
inactive DNA (Fig. 1E; Supplemental
Fig. S1D,E), consistent with previous
results (Zhou et al. 2011; Aran et al.
2013; Lam et al. 2014). Taken together,
the analysis of multiple tumor types
strongly suggests that alteration of the
enhancer methylome is a frequent fea-
ture of transformed cells and that it

Figure 1. Enhancers exhibit highly dynamic methylation patterns upon malignant transformation. (A)
Heat map shows that across 25 cancer data sets (x-axis) differential methylation occurs mostly within en-
hancer regions. Colors indicate high (pink) to low (green) relative amount of DMRs in Illumina
HumanMethylation450 arrays (see Supplemental Fig. S1C for differentially methylated CpG sites and
Fig. 3A for regions differentially methylated between primary andmetastatic cancer). (B) ChIP-seq signals
of pluripotency transcription factors (TFs) POU5F1, SOX2, and NANOG are higher within differentially
methylated enhancers (eDMRs) than within differentially methylated CpG islands or promoters; average
peaks across all cancer data sets are shown. (C ) “Strong enhancer” ChromHMM chromatin annotation
state (see Supplemental Table S2 for cell lines) is more enriched within differentially methylated enhanc-
ers (orange area) thanwithin enhancers that are not differentially methylated (gray area). (D) Direction of
methylation change between normal tissue (N) and primary cancer (P) in differentially methylated en-
hancers, CpG islands, and promoters. Coloring indicates high (blue) to low methylation levels (yellow);
heat map heights are relative to amount of the differentially methylated enhancers. (E) Hypomethylated
eDMRs exhibit footprints of open chromatin marks: increased DNase I hypersensitivity, increased POL2
and EP300 occupancy, increased H2A.Z, H3K4me1, H3K4me2, and H3K27ac marks, and decreased
CTCF binding. In contrast, hypermethylated eDMRs exhibit footprints of closed chromatin. P-values
were calculated with two sample Student’s t-tests and FDR-adjusted. See Supplemental Figure S1D,E
for chromatin marks in other cell states and Supplemental Table S2 for cell lines information. All parts
of the figure refer to DMRs determined between normal samples and primary tumors.
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generally leads to chromatin activation, likely involved in cancer
progression.

Differential methylation patterns of eDMRs clusters tumors

according to their organ system

Next, we compared the patterns ofmethylation change in enhanc-
ers between the various types of cancer. Since enhancers show tis-
sue-specific patterns of histone modifications and TF binding in
normal cells (Bulger and Groudine 2011), we expected that alter-

ation of methylation patterns would be cancer-/tissue-specific.
Indeed, most eDMRs (54%) were unique to a single cancer type
(Fig. 2A). Strikingly, principal components analysis (PCA) of
eDMRs showed a higher order clustering of cancers into groups re-
lated to the same organ system (Fig. 2B). For example, the central
nervous system cluster, which includes cancers arising from glia
and astrocytes (Fig. 2B, green circle); similarly, the reproductive
system cluster consists of breast, uterine, and prostate tumors
(Fig. 2B, pink circle). Importantly, PCAof differentiallymethylated
CpG islands, promoters, and intergenic regions showed no such

Figure 2. Variation in enhancer methylation classifies primary tumors according to their organ systems. (A) Pie chart shows that most eDMRs are unique
(77% of the eDMRs appear in only one or two cancers, excluding the same cancer type, e.g., GBM1 and GBM2). (B) Principal components analysis (PCA)
shows that differential methylation patterns of eDMRs are similar for cancers belonging to the same organ systems (circled and colored similarly). First and
second principal components (x-axis: PC1; y-axis: PC2) account for 72%of variation (see Supplemental Fig. S2A–C for PCA analysis of methylation changes
within CpG islands, promoters, and intergenic regions). (C) Schematic of method for identification of eDMR-gene and eDMR-miRNA pairs (see
Supplemental Fig. S2H for flow chart). (D) (Top) Precision of eDMR-gene pair predictions is compared to predictions from CAGE (Andersson et al.
2014), IM-PET (Teng et al. 2015), ChIA-PET, and Hi-C (Teng et al. 2015) methods (see text). (Bottom) Percent of predicted eDMR-gene pairs. Results in
both plots are divided into groups based on the distances between eDMR and transcription start site (TSS). Most predictions (>56%) lie within a distance
of <500 kb (abbreviations: 100K, 0–100,000 bp, 200K: 100,001–200,000 bp, and so forth). (E) eDMR-associated genes are distinctly enriched for genes
involved in diseases related to a particular organ system. Disease-related genes were derived from the DISEASES database (see Methods). Scores represent
−log10(FDR-corrected P-values). (F) Scatter plots (a point for each patient) show examples of tissue-specific genes linked to cancer risk and their eDMRs (the
same six cancer types shown in E). Spearman’s correlations between eDMRsmethylation and associated-gene expression are shown. (G) Landscape of two
differentially hypomethylated eDMRs in uterine (UCEC) and head and neck (HNSC) cancers, associated with a single miRNA, miR-9-1, which is up-regu-
lated in both cancers. (H) Landscape of two differentially hypomethylated eDMRs in breast (BRCA) and colon (COAD) cancers associated with twomiRNAs
of the same family, miR-200a and miR-200b; each is up-regulated in the respective tumors. In G,H, yellow arrows mark hypomethylated eDMRs, green
arrows mark up-regulated miRNAs; gray boxes mark eDMR and miRNA regions in the hg19/GRCh37 genome; distances between miRNAs and eDMRs
are indicated on arrows. All parts of the figure refer to eDMRs determined between normal samples and primary tumors.
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clustering (Supplemental Fig. S2A–C). No library preparation batch
affect was found either (Supplemental Fig. S2D,E). This evidence
provides confidence that our findings were not affected by batch
effect and strengthen our hypothesis that enhancer methylation
changes may have meaningful biological roles.

Next, in order to uncover the functional effect of altered
enhancer methylation, we first compared the genomic neighbor-
hood of eDMRs with static enhancers (those showing no dif-
ferential methylation). We found that eDMRs were flanked by
more genes and microRNAs (miRNAs) than were static enhancers
(Supplemental Fig. S2F,G). To identifywhich genes the eDMRs reg-
ulate, we developed an integrated model combining multi-omics
data for associating enhancers with their target genes (eDMR-asso-
ciated genes) (Fig. 2C; Supplemental Fig. S2H for pipeline). Since it
is known that there is an inverse correlation between DNA meth-
ylation and chromatin activity (Zhou et al. 2011), we retained
only inversely correlated eDMR-gene pairs, which represented
the majority of our data (Supplemental Fig. S2I). In order to assess
the validity of our eDMR-gene pair predictions, we compared our
results to other methods that identify enhancer-promotor associa-
tions based on physical interactions IM-PET (He et al. 2014), ChIA-
PET, Hi-C (Teng et al. 2015), and transcriptional activities of inter-
acting enhancer-promoters (cap analysis gene expression; CAGE)
(Andersson et al. 2014). Our model predicted eDMR-gene pairs
separated by 400 kb or less at a precision rate of 75% or better
(Fig. 2D), indicating that ourmodel can reliably predict interacting
enhancer gene pairs.

Similar to their enhancers (Fig. 2B), the genes predicted to be
regulated by the eDMRs also showed organ system patterns of en-
richment (Fig. 2E; Supplemental Table S3). Using our model, we
were able to identify known tissue-specific and ubiquitous onco-
genic genes and microRNAs (Fig. 2F–H), such as: ESR1 in breast
cancer (Holst et al. 2012; Aran and Hellman 2014), ECT2 in lung
cancer (Murata et al. 2014), and WNT3A in prostate cancer
(Verras et al. 2004), hsa-miR-9-1 (Ma et al. 2010) and the clustered
miRNAs hsa-miR-200a and miR-200b (Korpal et al. 2008; see
Supplemental Table S4 for full list of predicted eDMR-gene pairs).
Taken together, our model defines cancer-related eDMRs as organ-
system-specific regulators of genes and miRNAs that are central to
malignant transformation.

Accumulation of eDMR hypomethylation correlates

with likelihood of metastasis

Our analysis showed that changes in methylation patterns of en-
hancers in primary tumor tissues are influenced by their relation
to the organ system (Fig. 2B). We were curious what would occur
to DNA methylation patterns of cells that disseminate from the
primary location and colonize in metastatic sites. To evaluate
this, we focused on melanoma, a highly metastatic cancer
(Braeuer et al. 2014). We compared methylation data from meta-
static melanoma patients (seven distinct locations) to data from
patients with primary in situ melanoma (Supplemental Table
S1). Consistent with our observation of differential methylation
patterns in primary tumors (Fig. 1A), the majority of “metastatic
DMRs” occurred within enhancers (Fig. 3A), suggesting that en-
hancers play important roles, not only in malignant transforma-
tion but also in metastatic progression. Additionally, metastatic
eDMRs differentiate much better between patient outcomes than
do DMRs from any other genomic feature (Fig. 3B; Supplemental
Fig. S3A). Themajority of eDMRswere specific to a singlemetastat-
ic site (Fig. 3C; Supplemental Fig. S3B) and were mostly (74%)

hypomethylated (Fig. 3D), similar to our observations in primary
cancers (see Figs. 1D, 2A). Strikingly, Figure 3E shows that accumu-
lation of hypomethylated enhancers highly correlates with the
likelihood of forming metastases at distant organs derived from
Meyers and Balch (1998). For example, melanoma is more likely
to metastasize to lymph nodes than to the brain; correspondingly,
a greater number of enhancers are differentially hypomethylated
in brain metastases than in lymph node metastases (2.24% and
0.33%, respectively) (Fig. 3E). In contrast, we found no correlation
between the fraction of differentially hypermethylated metastatic
eDMRs and the frequency of spreading to organs (Supplemental
Fig. S3C). These results are in agreement with studies suggesting
that global hypomethylation is a common feature of diseased
states (Pogribny and Beland 2009). Since widespread DNAmethyl-
ation changes are associated with aging (Richardson 2003), we cal-
culated the correlations between patient ages and accumulation of
enhancer methylation changes. Encouragingly, we found no sig-
nificant correlation between eDMRmethylation changes in meta-
static tissues and the patient age (Supplemental Fig. S3D),
suggesting thatmetastatic progression corresponds to cancer-relat-
ed changes and not age-related changes.

In order to specifically explore whether melanoma eDMRs
could promote metastatic growth, we identified genes differen-
tially expressed between primary and metastatic melanoma and
compared the correlation of these geneswithmethylationpatterns
of differentiallymethylated enhancers and promoters (eDMRs and
pDMRs, respectively). We found that eDMRs were significantly
more correlated with differentially expressed genes than were
pDMRs (Supplemental Fig. S3E). Next, we divided the genes into
two groups: eDMR-associated genes, and all other genes not iden-
tified by our model to be associated with eDMRs (control genes)
(Fig. 3F), and examined the differential expression patterns of
these two groups. The percentage of genes that were differentially
expressed between normal and primary melanoma was similar for
both groups (60% and 53% for eDMR-associated genes and control
genes, respectively) (Fig. 3F); however, between primary and
metastatic melanoma, the eDMR-associated genes were signifi-
cantly more variable than the control genes (binomial distribu-
tion, P < 2 × 10−16; 57% and 3%, respectively) (Fig. 3F, marked by
gray areas). This observation supports our notion that a functional
interaction exists between the eDMRs and their predicted associat-
ed genes. Additionally, we note that a fraction of the control genes
were down-regulated in both primary and metastatic melanoma
(Fig. 3F, left panel, marked with dashed box). This group was en-
riched (q < 0.01, FDR corrected) with Gene Ontology (GO) terms
associated with tissue development (GO:0008544, GO:0007398)
and differentiation (GO:0030216, GO:0009913, GO:0030855),
likely a feature of tumor de-differentiation (Brabletz 2012).

Methylation plasticity of melanoma eDMRs is associated

with increased patient mortality

The transition of cancer from the in situ primary stage to the met-
astatic stage involves phenotypic plasticity (Craene and Berx
2013), which facilitates migration through tissues and adaptation
to changing microenvironments. Underlying tumor plasticity are
genetic and epigenetic regulatory layers that are reprogrammed
in the context of cancer (Friedl and Alexander 2011). Interestingly,
we found that 18% (N = 277) of melanomametastatic eDMRs (N =
1539) switched the direction of differential methylation as
melanoma progressed (denoted “switched” eDMRs) (Fig. 4A,
bottom circle). For example, regions that were hypermethylated
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between normal melanocytes and primary melanoma were
hypomethylated between primary and metastatic melanoma. We
also defined two other eDMR groups: “consistent” and “de
novo.” The “consistent” eDMRs exhibited differential methyla-
tion changes in the same direction (e.g., hypomethylated between
normal melanocytes and primary melanoma, and hypomethy-
lated between primary and metastatic melanoma) (Fig. 4A,
right circle). The “de novo” group exhibited differential methyla-
tion only between primary and metastatic melanoma samples
and not between normal melanocytes and primary tumors
(Fig. 4A, left circle). We examined whether these three groups of
eDMRs differed with respect to metastatic progression by compar-
ing their ability to correlate with survival of patients (see
Methods). To our knowledge, this is one of the first examples
(Stone et al. 2015) of a survival analysis applied to DNA methyla-
tion patterns of enhancers. We identified 30 eDMRs that were as-
sociated with patient survival rates (marked “survival” eDMRs)
(Fig. 4A,middle circle). Remarkably, these survival eDMRswere en-
riched with the switched eDMRs (P = 9.4×10−5) (Fig. 4A, bottom
circle), whereas de novo eDMRs were significantly depleted
(P = 1.6 × 10−2) (Fig. 4A, left circle). In addition, the switched
eDMRs exhibited the highest conservation scores (Fig. 4B) and
the fewest copy number variations (CNVs) in melanoma patients
(Fig. 4C). These results suggest that eDMRs, in particular the
switched eDMRs that exhibit methylation plasticity, are function-
ally important in cancer.

Given these results, we hypothesized that methylation plas-
ticity may play important roles in melanoma metastatic progres-
sion. To examine this, we performed survival analyses also on
the eDMR-associated genes, using their expression patterns across
patients. Remarkably, we found that 40%were able to significantly
differentiate between survival outcomes (χ2, q < 0.1, FDR correct-
ed); these genes include: ATP2B1 (Lee et al. 2002), FMNL2 (Zhu
et al. 2008), KIT (Tian et al. 1999), PRKCE (Sharif and Sharif
1999), and VGF (Mitra et al. 2008). Figure 4D represents such an
example in which the oncogene KIT and the eDMR (located at
Chr4:55708295–55709294, hg19/GRCh37) not only exhibit
switched patterns of methylation and expression, but both inde-
pendently distinguish between patient survival rates based on
their expression and methylation patterns, respectively (Fig. 4D,
left and right panels). The KIT promoter was not differentially
methylated, nor did themethylation pattern differentiate between
survival times (Fig. 4D, middle panel).

To experimentally test the role of enhancer methylation on
the transcriptional regulation ofKIT, we first examinedKIT expres-
sion upon treatment with 5-aza-2′-deoxycytidine (5-aza-dC), a
DNA methyltransferase inhibitor. There was a significant increase
in KIT levels in treated compared with untreated cells (Fig. 4E).
Next, we cloned the KIT enhancer upstream of a luciferase
reporteranddemonstrated that its expressionwas reduceduponen-
hancermethylation (Fig. 4F; Supplemental Fig. S4A). Finally,weex-
amined the role of KIT up-regulation on the invasive potential of

Figure 3. Accumulation of eDMR hypomethylation correlates with likelihood of metastasis and patient outcome. (A) Heat map shows that enhancers are
more differentially methylated than other genomic features (y-axis; sorted according to fraction of DMRs in each category) (see Fig. 1A). (Adrenal)
Metastases to adrenal glands, (gastro) metastases to the gastrointestinal tract, (lymph) metastases to lymph nodes, (subcut) subcutaneous metastases.
(B) Enhancers are significantly more enriched with DMRs that can differentiate between patient survival times (see Methods). Green and red bars represent
enrichment and depletion, respectively. Y-axis represents the −log10(FDR-corrected P-values) significance (binomial distribution). (C) Most melanoma
eDMRs (70%) are exclusive to onemetastatic site (see Fig. 2A). (D) Heatmap shows thatmost eDMRs are hypomethylated between primary andmetastatic
melanoma (74%). (E) Accumulation of eDMR hypomethylation is negatively correlated with the likelihood of forming melanoma metastases at each body
location (Pearson’s correlation, r =−0.71, P = 0.039, one-sided hypothesis testing). (F ) Compared to all other genes (control genes; y-axis, left panel), genes
associated with eDMRs (y-axis, right panel) are differentially expressed between primary melanoma and metastatic melanoma (57% and 3%, respectively;
marked by gray areas), whereas, differential expression between melanocytes and primary melanoma is similar for both groups (control genes, 53%, left
panel; eDMR-associated genes, 60%, right panel; x-axes). All parts of the figure refer to differential methylation between patients with primary melanoma
and patients with metastatic melanoma.
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melanomacells (Fig.4D).Remarkably,noninvasivemelanomacells
(Golan et al. 2015) acquired significant invasion ability upon KIT
overexpression (Fig. 4G; Supplemental Fig. 4B). Taken together,
our data demonstrate that enhancer methylation contributes to
cancer progression by directly regulating oncogene expression.

Next, we asked whether the dynamics of eDMR methylation
and eDMR-associated genes expression are a result of tumor het-

erogeneity, evolution of the disseminated cancer cells, or are in-
duced by the metastatic niche. To assess this, we selected two
eDMR-associated genes, CTYL1 and KIF14, which were differen-
tially expressed only between primary and metastatic melanoma
(not between normal and primary melanoma tissues). CYTL1 is a
cytokine-like protein implicated in lung cancer and neuroblasto-
ma (Kwon et al. 2012; Wen et al. 2012), and KIF14 is an oncogene

Figure 4. Methylation plasticity of melanoma eDMRs is associated with patient mortality. (A) Venn diagram of three types of eDMRs found in metastatic
melanoma: “de novo,” “consistent,” and “switched” (described in text). Heat maps display differential methylation between normal melanocytes and
primary melanoma (N→P), and between primary and metastatic melanoma (P→M). “Switched” eDMRs are enriched for “survival” eDMRs and “de
novo” eDMRs are depleted, hypergeometric distribution; (∗∗) P = 9.4 × 10−5, (∗) P = 1.6 × 10−2, respectively. Numbers represent amount of eDMRs in
each category. (B) PhastCons conservation scores of enhancers’ sequence conservation, switched eDMRs exhibit the highest sequence conservation
(see Methods) compared to all other enhancers. Two-way ANOVA analysis; (∗) P = 4.2 × 10−6, (∗∗) P = 9.9 × 10−10, (∗∗∗) P = 2.9 × 10−11; bars represent av-
erage sequence conservation, error bars represent standard deviation. (C ) Copy number variations (CNVs) are infrequent within eDMRs compared to static
enhancers. Two-way ANOVA analysis; (∗∗∗) P < 2 × 10−16. (D) (Top) Schematic representation of the eDMR-gene pair: Chr4:55708295–55709294 and KIT
gene. The eDMR (pink) is interacting with the promoter (cyan) of KIT gene (green) through chromatin looping. The distance between the eDMR and the
transcription start site (TSS) is noted in the schematic. (Bottom, left) Kaplan–Meier survival plot shows significant differences between survival times of pa-
tients based on the methylation levels of the eDMR of the gene KIT (χ2, [∗∗∗∗] P = 2.9 × 10−4). Patients were divided into two groups of higher (blue) and
lower (yellow) methylation levels compared to the median (see Methods). (Middle) Plot shows that patients with higher or lower methylation of the KIT
promoter show no significant difference in survival rates. (Right) Plot shows significant differences between survival times of patients with higher (green)
and lower (red) expression levels of KIT (χ2, [∗∗∗] P = 2.4 × 10−3). (Insets, left and right) Both eDMR methylation and KIT expression exhibit switched
patterns between normal melanocytes (N), primary melanoma (P), and metastatic melanoma (M). (Middle inset) KIT promoter does not exhibit switched
methylation patterns. (∗) q < 0.05, (∗∗) q < 0.01. (E) Inhibition of DNAmethylation increases KIT expression. WM3682melanoma cells were treated with 10
µm 5-aza-dC or DMSO (control); KIT mRNA expression was normalized to levels of GAPDH. Data are relative to levels in control-treated cells. Error bars
represent ± SEM; (∗) P < 0.05; N = 3. (F) WM3682 melanoma cells were transfected with methylated KIT-eDMR reporter plasmid, unmethylated KIT-
eDMR reporter, or reporter without eDMR (control). Firefly luciferase activity was normalized to Renilla luciferase activity. Fold-changes are relative to con-
trol. Error bars represent ± SEM; (∗) P < 0.05; N = 3. (G) (Top) KIT overexpression increases melanoma invasiveness. WM3682 melanoma cells were trans-
fected with KIT expression vector or empty vector (control); invasion ability was analyzed. Error bars represent ± SEM; (∗) P < 0.05; N = 3. (Bottom) A
representative image of invading cells.
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essential for cytokinesis (Corson et al. 2005); both are up-regulated
in melanoma bone metastases (P < 0.05) (Fig. 5A, top and bottom
panels). High expression levels of these genes is correlated with
poor patient survival rates (χ2 q < 0.1, FDR corrected) (Fig. 5A, green
stepwise curves). Enhancers of these genes were differentially
methylated, yet their promoters were not (Fig. 5A, right and mid-
dle, panels, respectively). To experimentally analyze the role of en-
hancer methylation on the transcriptional regulation of CYTL1
and KIF14, we first examined whether their expression is sensitive
to DNA methylation. CYTL1 and KIF14 expression was signifi-
cantly up-regulated upon treatment of cells with 5-aza-dC (Fig.
5B). Next, we cloned the identified enhancers of CYTL1 and
KIF14 upstream of a luciferase reporter and observed a decrease
in the reporter expression upon enhancer methylation (Fig. 5C;
Supplemental Fig. S4A). These results strengthen the validity of
our model by demonstrating that the identified eDMRs elicit a re-
sponse to changes in their methylation and directly regulate the
expression of their associated genes: KIT, CYTL1, and KIF14.

Finally, to assess changes in gene expression induced bymetastatic
melanoma cells colonization in the bone tissue, we first generated
a melanoma cell line stably expressing the GFP gene to enable
tracking of the melanoma cells. Next, we established a coculture
of melanoma cells with human primary osteoblasts (Fig. 5D;
Dillon et al. 2012) and found that levels of CYTL1 and KIF14
were significantly increased compared to their levels in melanoma
cells cultured alone (Fig. 5E). Our data support the notion that
homing into a newmicroenvironment induces expression of pro-
cancer genes, which are regulated by eDMRs in melanoma meta-
static cells. Taken together, our data suggest that methylation
changes at enhancers contribute tomelanoma phenotypic plastic-
ity and ultimately to the patient’s chance of survival.

Discussion

Here, we performed an analysis of DNAmethylation alterations in
over 6200 cancer patients from 31 cancer data sets, including

Figure 5. Melanoma coculture with osteoblasts alters pro-cancer eDMR-associated gene expression. (A) Schematic representation of the eDMR-gene
pairs: Chr4:5019792–5020791 for CYTL1 and Chr1:201198504–201199503 for KIF14. The eDMR (pink) is interacting with the promoter (cyan) of the
gene (green) through chromatin looping. Kaplan–Meier survival plots (left panels) show significant differences between patient outcomes at high and
low expression levels (green and red curves, respectively) of CYTL1 and KIF14 genes. (Insets) Bar graphs show up-regulation of CYTL1 and KIF14 in
melanoma bone metastases. Middle panels: Methylation of the promoters of these genes does not vary between primary melanoma (P) and melanoma
bone metastases (M). Right panels: Enhancers are differentially hypomethylated in melanoma bone metastases (Wilcoxon rank-sum tests, [∗] q < 0.15,
[∗∗] q < 0.05; FDR adjusted). (B) WM3682 melanoma cells were treated with 10 µm 5-aza-dC or with DMSO (control) followed by quantification of CYTL1
and KIF14mRNA levels that were normalized toGAPDH. Data are relative to levels in control-treated cells. Error bars represent ± SEM; (∗) P < 0.05;N = 3. (C)
WM3682 melanoma cells were transfected with methylated CYTL1-eDMR or KIF14-eDMR reporter plasmids, unmethylated eDMR reporter, or reporter
without eDMR (control). Firefly luciferase activity is normalized to Renilla luciferase. Fold-changes are relative to control. Error bars represent ± SEM; (∗)
P < 0.05; N = 3. (D) Experimental design scheme. (E) Levels of CYTL1 and KIF14 mRNA were determined in melanoma cells before and after coculturing
with osteoblasts. Data were normalized to levels of actin. Error bars represent ± SEM; (∗) P < 0.05; N = 3.
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23 diverse primary malignant tumors, two benign tumors, and
melanoma metastases to seven distinct organs. This extensive
analysis revealed that most methylation variation occurs at en-
hancers (Figs. 1A, 3A; Supplemental Fig. S1C). Changes inmethyl-
ation patterns could result fromcompetition betweenmethylation
and de-methylation processes or from errors in replication (Jones
2012). Our findings support the latter hypothesis, for two reasons.
First, replication-related methylation errors occur more frequently
inmethylated regions, such as enhancers, where replication errors
lead to loss of methylation; this is what we observe (Fig. 1D).
Second, expression of DNMT3B, which encodes a methylase en-
zyme, was up-regulated in many tumors, and hence, we would ex-
pect increased methylation since we observed no significant
differences in expression ofTET genes, which encode demethylase
enzymes (Supplemental Fig. S2J). However, since the majority of
changes in enhancers’ methylation involves de-methylation, we
hypothesize that loss of enhancer methylation could have oc-
curred during replication.

Enhancers play central roles in normal development and dif-
ferentiation by responding to complex environmental cues.
Cancer cells are exposed to changing environmental conditions
that require their adaptation; thismainly occurs through epigenet-
ic reprogramming (Friedl and Alexander 2011; Goding et al. 2014).
We hypothesize that, in the context of cancer, enhancer methyla-
tionmay be primed to respond to microenvironmental signals. To
test this, we mimicked the microenvironment of melanoma bone
metastases and recapitulated the perturbation of expression of
eDMR-associated genes that were altered in the bone metastases.
These results suggest that themetastatic niche can alter expression
of eDMR-associated genes.

Interestingly, we show that, in comparison to DMRs in
other genomic features (CpG islands, promoter, exons, introns,
etc.), eDMRs can differentiate best between patient outcomes
(Supplemental Fig. S4D). These results demonstrate the important
role of alteration of enhancer methylation in cancer progression.
However, we do not exclude that other factors may drive cancer
progression, nor are we suggesting a direct causality between en-
hancer methylation and cancer progression; it may well be that al-
teration of enhancer methylation is a secondary event of the
malignancy.

Nevertheless, we did observe that methylation patterns
of eDMRs may be informative of patient survival rates (Fig. 3B).
Within this group was a subset (18%) of highly conserved
eDMRs that displayed methylation plasticity (“switched”
eDMRs) (Fig. 4A–C) and provided insight into alteration of their
associated genes (Fig. 4D). This is one of the first studies (Stone
et al. 2015) to suggest that methylation patterns of enhancers
can be used to predict patient outcome. Moreover, it has been
shown that, in many diseases, including cancer, methylation
changes are accumulative as the cancer progresses (Pogribny
and Beland 2009); here, we show that methylation plasticity
may also play important roles in cancer progression (see
Supplemental Fig. S4C for model of methylation plasticity
and cancer progression). A prime example of the relationships
between metastatic progression, methylation plasticity, and pa-
tient mortality is that of the eDMR-associated oncogene, KIT
(Fig. 4D–F). Both themethylation of the eDMR and the expression
of the KIT display plasticity (Fig. 4D) and significantly distinguish
between patient survival rates. Our results suggest that enhancer
methylation patterns may be informative of patient outcomes
and that they may influence malignant progression via methyl-
ome plasticity.

Methods

TCGA and GEO data sources: DNA methylation, RNA-seq,

smRNA-seq

Publicly available data of DNA methylation, RNA-seq gene ex-
pression, and small RNA-seq miRNA expression from cancer pa-
tient tissues were obtained from The Cancer Genome Atlas
(TCGA, https://tcga-data.nci.nih.gov/tcga) and from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/gds).
See Supplemental Table S1 data set information.

Chromatin marks, transcription factors, sequence conservation,

and copy-number variation data

For analysis of chromatin marks (Fig. 1E; Supplemental Fig. 1D,E),
we downloaded RNA polymerase II (POL2), histone modifications
H2A.Z, H3K4me1, H3K4me2, and H3K27ac, histone acetyl-
transferase (EP300), CCCTC-binding factor (CTCF), DNase I hy-
persensitivity, and Chromatin State Segmentation by HMM
(ChromHMM) from the ENCODE Project. Replicate experiments
were averaged. See Supplemental Materials for URL and descrip-
tion and Supplemental Table S2 for ENCODE Project cell types.

For the transcription factor analysis (Fig. 1B), we downloaded
processed ChIP-seq data of POU5F1, SOX2, and NANOG, down-
loaded from NCBI/GEO (GSE46130). Replicate experiments were
averaged. TheTFpeakswere overlappedwith the coordinates of the
differentially methylated enhancers, promoters, and CpG islands.

For the conservation analysis of enhancer (Fig. 4B), we used
100-way PhastCons conservation data.

Copy number variations for skin cutaneous melanoma
(SKCM) were obtained from TCGA database as genomic
segments after removal of germline CNV (TCGA_SKCM_
GSNP6noCNV_gSeg).

Defining differentially methylated regions

First, we matched the CpG codes in the Illumina
HumanMethylation450 microarray to their genomic coordinates
using the microarray platform (NCBI/GEO record GPL13534;
human genome release hg19/GRCh37). Second, we annotated
the CpGs using the information in this record, identifying CpG
sites belonging to CpG islands, shores, shelves, enhancers, and
UTRs. Given that this record does not have information of CpG
sites in promoters, exons, or introns, we used the UCSC table
“knownGene” to identify these sites. Third, some CpG sites had
several annotations; thus, we divided the CpGs into unique (non-
overlapping) genomic features using the following prioritization:
(1) promoters, (2) CpG islands, (3) enhancers, (4) introns, (5) ex-
ons, (6) UTRs, (7) shores, (8) shelves, and (9) intergenic regions.
Fourth, for each separate genomic feature, we constructed intervals
using a window of 500 bp directly upstream of and downstream
from the CpG coordinate. Overlapping intervals (same genomic
feature) were joined, and extended into a larger interval. Sixty-
nine percent of the regions had a length of 1000 bp, 28% a length
>1000 bp and <2000 bp, and no region was greater in length than
7500 bp. Fifth, we used these genomic intervals to calculate region-
wise methylation levels based on the average methylation of all
CpG sites within the interval; we performed this for all normal
and all tumor samples in each cancer data set. Sixth, we used the
two-sample Wilcoxon test to identify differentially methylated re-
gions between normal and primary samples (methylation thresh-
old >0.3, q < 0.2, FDR corrected); metastatic DMRs were identified
by comparing primary and metastatic melanoma (methylation
threshold >0.2 and q < 0.2). The fractions of DMRs in each
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genomic feature presented in Figures 1A and 3A and Supplemental
Figure S1C were normalized to the amount of intervals in each
genomic feature in the Illumina HumanMethylation450 array
(Dedeurwaerder et al. 2011).

Gene and miRNA differential expression analysis

A fold-change of 1.25 was used to determine differentially ex-
pressed genes and miRNAs (q < 0.05, FDR corrected) (see
Supplemental Methods for description).

Model for prediction of gene-eDMR associations

Wedeveloped an integratedmodel to predict genes ormiRNAs reg-
ulated by eDMRs (Fig. 2C; flowchart in Supplemental Fig. S2H).
First, we calculated the differential methylation in enhancer and
promoter regions, retaining the eDMRs, and the level of methyla-
tion change in promoters, which were used in the analysis of the
genes (see third step). Second, we computed Spearman’s correla-
tions between eDMR methylation patterns and gene/miRNA ex-
pression patterns across the same (matched) patients. Highly
correlated eDMR-genes or eDMR-miRNAs pairs were retained (cor-
relation below−0.4). Third, we filtered out genes whose promoters
had a differential methylation greater than 0.2, enriching for
genes with expression change due to enhancer, rather than by pro-
moter, methylation variability (performed only for predicting
eDMR-associated genes and not associated-miRNAs, since annota-
tion for miRNA promoters is incomplete). Fourth, we selected
eDMR-gene and eDMR-miRNA pairs located on the same chromo-
some, with amaximal linear distance of 1Mbp between the center
of the enhancer and the transcription start site (for genes) or pre-
miRNA start position (for miRNAs). Fifth, we ranked eDMR-gene
predictions (see Supplemental Table S4 and subsection “Ranking
eDMR-gene pairs predictions”).

Ranking eDMR-gene pairs predictions

In order to provide confidence that the predicted eDMR-gene pairs
represent active enhancer-gene interactions, we applied an inte-
grated scoring function. Our scoring scheme combined quantita-
tive and qualitative features of the eDMR-gene pairs. First, we
ranked each eDMR-gene pair based on the following quantitative
features: (1) Spearman’s correlation between the eDMR and
gene; (2) greater enhancer differential methylation; (3) greater
gene expression fold-change; and (4) shorter eDMR-gene distanc-
es. Second, we used qualitative features which could increase rank-
ing if existing: (1) eDMRoverlapwithH3K4me1,H2A.Z, or DNase I
peaks; and (2) promoter overlap with H3K4me3 or DNase I peaks.
We summed up the scores for each eDMR-gene pair (ties were giv-
en an average ranking score) and sorted them based on their over-
all score, yielding ranked predictions (Supplemental Table S4).

Gene enrichment analysis for diseases

We used the DISEASES website (http://diseases.jensenlab.org)
(Pletscher-Frankild et al. 2015) to evaluate enrichment for diseases
in particular organ systems (Fig. 2E). Diseases were identified using
keywords: digestive (digest-, gastro-, gastric, stomach), endocrine (en-
docrine-, gland disease, gland cancer, gland neoplasm, thyroid, pancre-
as), renal (kidney, renal, nephron-, nephri-), reproductive (reproduct-,
breast, prostate, uterine, cervic-, cervix, uterus), respiratory (lung, respi-
rator); duplicate genes were removed to ensure unique values
for hypergeometric distribution significance testing and FDR
corrected.

Survival analysis

Survival time was derived from the “overall survival” column of
the clinical data files obtained for TCGA samples. First, patients
were divided into two groups (high and low) by comparing the
eDMR methylation level to the median methylation of the
eDMRs across all patients. Similarly, for gene expression survival
analysis, patients were divided into two groups by comparing
the gene expression of each patient to the median expression of
all patients. Significant differences between the two groups were
determined using the χ2 distribution (q < 0.1, FDR corrected).

Enrichment for association of DMRs with patient survival
(Fig. 3B) was determined by comparing the amount of DMRs
that can significantly differentiate between patient outcomes
with the amount of static regions that can do the same (deter-
mined separately for each genomic feature).

Multiple testing

All significance tests were corrected for false discovery rates (FDR)
using the Benjamini and Hochberg adjustment (Benjamini and
Hochberg 1995).

Computational data analysis

Data analyses were performed using R statistical language
(R Core Team 2015). We used the following packages for R in
the analysis “GenomicRanges” (version 1.16.4) (Lawrence et al.
2013), “TxDb.Hsapiens.UCSC.hg19.knownGene” (version 3.1.2)
(http://bioconductor.riken.jp/packages/3.1/data/annotation/html/
TxDb.Hsapiens.UCSC.hg19.knownGene.html), “survival” (version
2.37–7) (http://crantastic.org/packages/survival/versions/32269)
and “reshape2” (version 1.4.1) (Wickham 2007). Custom R scripts
for determining differentiallymethylated regions and for predicting
and ranking eDMR-gene pairs are provided, together with sample
data sets derived from the TCGA, available in the Supplemental
Data (see “INFO_README.txt” file in Supplemental Scripts).

Primary human osteoblasts and melanoma cells coculture

Primary human osteoblasts were isolated using a protocol de-
scribed by Dillon et al. (2012). In short, trabecular bone was
obtained from healthy donors undergoing total knee arthroplasty.
Written and informed consent was obtained from all subjects. The
protocol was approved by the institutional Ethics Committee
at Tel-Aviv Sourasky Medical Center, in accordance with the
Helsinki Declaration on the use of human subjects in research.
The trabecular bone fragments were diced into small pieces and
washed with sterile PBS. The diced bone extracts were then placed
on a tissue culture plate with Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 20% fetal bovine serum, 100 U/mL
penicillin, and 100 µg/mL streptomycin (all from Gibco, Life
Technologies) and incubated at 37°C and 5% CO2. Five days later,
themediumwas replaced; mediumwas then replaced twice a week
until the cells reached confluency. Osteoblasts were then seeded
24h prior to addition ofmelanoma cells in a ratio of 1:5melanoma
cells to osteoblasts. In control plates, only melanoma cells were
seeded.

Cell culture and FACS sorting

WM3682 melanoma cells were generously provided by Dr. Levi
A. Garraway (Department of Medical Oncology and Center for
Cancer Genome Discovery, Dana-Farber Cancer Institute,
Boston, MA). Cells were cultured in DMEM medium supplement-
ed with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicil-
lin/streptomycin/glutamine (Invitrogen). For establishment of
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stable cell lines, cells were transfected with GFP-expressing plas-
mid and selected with 1 μg/mL puromicyn (Sigma-Aldrich). For
coculture, WM3682-GFP cells were cultured with bone cells for
5 d. Cells were collected by flow cytometry using BD FACSAria
cell sorter.

RNA purification and qRT-PCR

Total RNA was purified from sorted melanoma cells using TRIzol
(Invitrogen) according to the manufacturer’s instructions, fol-
lowed by treatment with RNase-free DNase (Qiagen). RNA was
quantified based on OD260/280. For qRT-PCR analysis, RNA was
subjected to one-step qRT-PCR using a MultiScribe RT-PCR kit
(Applied Biosystems) and FastStart Universal SYBR Green Master
Mix (Roche).

Plasmids and cloning

EDMRs of the human KIT, KIF14, and CYTL1 loci (Chr4:
55708294–55709294, Chr1:201198480–201199526, Chr4:5019645–
5020678, respectively) were amplified from human genomic
DNA (see Supplemental Table S5 for primer sequences used in
cloning). The CYTL1 eDMR (1033 bp) and KIF14 eDMR (1046
bp) fragments were digested with NheI-XhoI restriction enzymes
and inserted into the pGL3-promoter vector (Promega) upstream
of a minimal promoter and firefly luciferase reporter gene (kindly
provided by Professor Eran Bacharach, Department of Cell
Research and Immunology, Faculty of Life Sciences, Tel-Aviv
University). The KIT eDMR (1000 bp) fragment was cloned into
PGL3-promoter reporter plasmid digested with SmaI-XhoI restric-
tion enzymes. The pCDNA3-KIT expression vector was kindly ob-
tained from Prof. Lars Rönnstrand (Division of Translational
Cancer Research and Lund Stem Cell Center, Lund University).

In vitro methylation, transfections, and dual luciferase assay

TheKIT,CYTL1, andKIF14 eDMR firefly luciferase reporter vectors
were in vitro methylated using the methylase SssI (New England
Biolabs), according to the manufacturer’s recommendations, fol-
lowed by purification using the Wizard SV PCR clean-up system
(Promega). Successful methylation was verified by restriction en-
zyme digestion with the methylation-sensitive (HpaII) and meth-
ylation-insensitive (MspI) enzymes (New England Biolabs). The
digestion patterns were analyzed by agarose gel electrophoresis.
WM3682 melanoma cell lines were cotransfected using jetPEI,
with a methylated eDMR-luciferase reporter plasmid, unmethy-
lated reporter, or reporter plasmid without eDMR (as control)
and with the pRL-plasmid (Promega). Luciferase activity was mea-
sured 48 h after transfection using a Dual Luciferase kit (Promega).
Firefly luciferase activity was normalized to the Renilla luciferase.

Invasion assay

WM3682 melanoma cell lines were transfected with the KIT ex-
pression vector or empty vector (as control) using jetPEI. Forty-
eight hours post-transfection, an invasion assay was performed
as previously described (Golan et al. 2015).

5-aza-deoxycytidine treatment

WM3682 melanoma cell lines were treated with 10 μM 5-aza-dC
(Sigma-Aldrich) for 48 h, following by RNA purification and
qRT-PCR as described. Baseline expression was established by
mock treatment of cells with DMSO.
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