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Background: Sets of differentially expressed genes often contain driver genes that induce disease processes.
However, various methods for identifying differentially expressed genes yield quite different results. Thus, we
investigated whether this affects the identification of key players in regulatory networks derived by downstream

Results: While the overlap between the sets of significant differentially expressed genes determined by DESeq,
edgeR, voom and VST was only 26% in liver hepatocellular carcinoma and 28% in breast invasive carcinoma, the
topologies of the regulatory networks constructed using the TFmiR webserver for the different sets of differentially
expressed genes were found to be highly consistent with respect to hub-degree nodes, minimum dominating set

Conclusions: The findings suggest that key genes identified in regulatory networks derived by systematic analysis of
differentially expressed genes may be a more robust basis for understanding diseases processes than simply
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Background

RNA-Seq or whole transcriptome shotgun sequencing
quantifies the abundance of RNA in a biological sample.
Read counts refer to the number of reads mapping to gene
segments in the DNA sequence.

Despite a high correlation between gene expression pro-
files using the same set of samples, RNA-Seq is capable
of detecting low abundance transcripts and allows for the
detection of more differentially expressed (DE) genes with
higher fold-changes than microarray data [1].

A typical differential expression analysis of RNA-Seq
data starts with normalizing raw counts and disper-
sion estimation. Then a statistical test is performed to
determine which of the observed differences in read
counts between two groups are statistically significant.
The results returned by differential expression analysis
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typically in terms of p-values reject or accept a certain null
hypothesis which signifies that the mean values of the two
groups are equal or that the read counts follow the same
distribution. To obtain accurate results, an assumption
about the distribution of the underlying data is required.
A t-test which is widely used to process microarray data
assumes that the data has a normal distribution. This
assumption does not hold for RNA-Seq data with discrete
values. Several data distributions have been suggested to
model RNA-Seq values. Among them, Poisson distribu-
tion and Negative Binomial (NB) distribution are used
most often. The Poisson distribution does not account
for over-dispersion in the data and assumes that mean
and variance are equal which leads to high false discovery
rates. Therefore, the NB distribution that considers both
mean and dispersion parameters is typically preferred to
model RNA-Seq data. Although, several methods such as
DESeq [2] and edgeR [3] assume that RNA-Seq data can
be modelled by the NB distribution, each of them uses
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a different approach to estimate the model parameters,
mean and dispersion. This leads to different results for
DE genes. The problem gets more severe when the meth-
ods make different assumptions about the underlying
data distribution. Soneson and Delorenzi [4] conducted a
comprehensive comparison between the results of eleven
differential expression analysis methods which take RNA-
Seq read counts as input on both simulated and real data.
There appears to be no general consensus among the DE
genes found by the different methods [4]. This may have
clear implications on any downstream analysis.

In this work, we show that topological features are
highly consistent despite the large number of exclusive DE
genes identified by different methods. Here, we selected
the four methods DESeq, edgeR, voom and VST from the
above-mentioned methods which all take read counts as
input and return p-values. We applied these methods to
liver hepatocellular carcinoma (LIHC) and breast inva-
sive carcinoma (BRCA) datasets including matched tumor
and normal samples from The Cancer Genome Atlas [5,
6] and determined the significant DE genes. After illus-
trating the relatively small overlap among their results, we
showed that key players are highly consistent among dif-
ferent methods even when differing sets of DE genes are
provided as input. For this, we used the TFmiR webserver
[7] to construct disease-specific TF-miRNA co-regulatory
networks for the sets of identified DE genes. Then we
identified two sets of genes that serve as key players of
the DE genes in slightly different topological ways, namely
a minimum dominating set (MDS) and a minimum con-
nected dominating set (MCDS), see [8].

Results

Inference of dE genes

The processed matching tumor-normal samples for LIHC
and BRCA consisted of 100 and 226 samples with 20501
genes, respectively. The data were given as input to the
R packages DESeq, edgeR, voom and VST. Based on the
adjusted p-value threshold of 0.05, we determined sets
of DE genes. The number of significant DE genes for
the LIHC dataset with DESeq, edgeR, voom and VST
were 3872, 11399, 10610 and 10238, respectively and for
the BRCA dataset 5231, 14722, 15559 and 13918, respec-
tively. Venn diagrams in Fig. 1 show the number of genes
which are common between these methods. The overlap
between all methods is only 26% and 28%, respectively.
This largely stems from the fact that DESeq identifies
far fewer DE genes than the other 3 methods. Additional
file 1:Table S1 lists the pairwise percentage overlap (per-
centage overlap or overlap coefficient between two sets X
and Y is defined as overlap(X,Y) = %) between
the identified DE genes derived by the aforementioned
methods with the number of exclusive ones among them
for the LIHC dataset. The pairwise overlap coefficient
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between the results of two DE methods is quite high,
ranging from 82% to 89% between edgeR and voom/VST
results to 100% between edgeR and DESeq. Nonethe-
less, the results always differ by a considerable number
of exclusive DE genes (1135 - 9489) that are only identi-
fied by one method but not the other one. Similar results
were obtained for the BRCA dataset, see Additional file 1:
Table S2.

Reconstructed networks

In the case of the LIHC dataset, analyzed by the DESeq
method, 163 nodes and 199 edges make up the hepa-
tocellular carcinoma disease-specific network. The hubs,
MDS and MCDS of the network are visualized in
Fig. 2.

In the case of the breast neoplasms, the network derived
from BRCA dataset and the same method consists of 227
nodes and 302 edges. The TFmiR webserver also was used
to construct disease-specific networks for the set of DE
genes derived from edgeR, voom and VST input data.
Additional file 1: Tables S3 and S7 show the number of
nodes, edges, hubs, MDS and MCDS for the LIHC and
BRCA datasets for the four methods, respectively.

Topology consistency

We performed pairwise comparisons between the topo-
logical features of these networks, see Tables 1 and 2. The
results demonstrate the percentage overlap of hubs, MDS
and MCDS between the aforementioned analysis meth-
ods. As shown in the tables, DESeq has a comparable
overlap with edgeR, voom and VST in both the stud-
ies, whereas the topological features of edgeR overlapped
better with voom than VST.

Additional file 1: Tables S4, S5, S6 show the list of con-
sistent genes and miRNAs that are common among all the
methods for hepatocellular carcinoma and in Additional
file 1: Tables S8, S9, S10 for breast neoplasms. The tables
show a high number of consistent genes and miRNAs
among the topological features of the methods. 13 out of
17 hubs selected by DESeq were identified by the other
methods from the LIHC dataset and 20 out of 23 from
the BRCA dataset. The common MDS and MCDS make
up almost 70% to 75% of the selected MDS and MCDS by
the DESeq method. The number of consistent topological
features increases when we disregard the DESeq method,
as it has the lowest number of DE genes, the smallest net-
work size and subsequently the smallest set of hubs, MDS
and MCDS among all the methods, see Additional file 1:
Table S11. The absolute number of consistent topologi-
cal features increases, but the fraction of consistent nodes
remains near 70%. To investigate the consistency obser-
vation among topological features especially dominating
sets, two Venn diagrams are visualized to describe the
number of common network nodes and edges between
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package VennDiagram [9]

A

Fig. 1 Overlap of the DE genes of DESeq with edgeR, voom and VST. a Venn diagram describing the number of overlapped DE genes between the
results of DESeq with edgeR, voom and VST for the LIHC dataset. b same for the BRCA dataset. The Venn diagrams were visualized using the R

DESeq

voom

voom

the results of DESeq with edgeR, voom and VST for the
LIHC and BRCA datasets, see Fig. 3 and Fig. 4. The figures
illustrate a large number of overlapped network nodes
and edges among their networks. 133 out of 163 and 195
out of 227 network nodes derived by DESeq method for
LIHC and BRCA datasets were common among all the

networks. Similarly, 162 out of 199 and 253 out of 302
edges were common among their network edges.

Robustness of the results
To check the robustness and significance of the results,
100 random networks were constructed with 11000 and
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Fig. 2 Topology consistency in the disease-specific networks for the
LIHC dataset. a Top hub-degree genes and miRNAs colored pink. b
MDS nodes colored green. € MCDS nodes colored blue. The black
ones are the consistent genes and miRNAs between DESeq, edgeR,
voom and VST including 13 out of 17 hubs, 28 out of 37 MDS and 24
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Table 1 Pairwise comparison (percentage overlap) of hubs, MDS
and MCDS for the LIHC dataset

Methods edgeR voom VST

DESeq 82,84,77 88,81,74 82,81,71
edgeR - 80,82,78 70,7568
voom - - 87,92,95

Pairwise comparison of hubs(left), MDS(middle) and MCDS(right numbers) for the
networks constructed from the set of DE genes detected by DESeq, edgeR, voom
and VST methods in the LIHC dataset

14000 randomly selected genes as pseudo sets of DE
genes, respectively. Related networks were constructed
with TFmiR. Detection of hubs, MDS and MCDS were
performed as explained before. The results of DESeq were
compared with the other tools, edgeR, voom and VST.
We used the widely used tool, DESeq [2] as the base
line of comparison because it appears to be a very con-
servative method to detect the set of DE genes [4, 10].
Moreover, we realized from the previous experiments that
DESeq contains the highest number of consistent topo-
logical features among all the methods. Barplots in Fig. 5a
and b visualize the overlap percentage between DESeq
and other methods, and boxplots in panels (A) and (B)
show the percentage overlap of hubs, MDS and MCDS
of DESeq with random networks for hepatocellular carci-
noma and breast neoplasms, respectively. If one provides
more than half of all human genes as input and gener-
ates a regulatory disease-specific network, one can expect
that a considerable fraction of the real key genes is recov-
ered by chance. In the two studied cases, between 20 and
almost 60% overlap with the DESeq key genes. However,
the results indicate that a random selection of nodes does
not reach the same level of topological overlap compared
to the topological overlap of DESeq with edgeR, voom
and VST. Since none of the 100 random networks reached
the values for the real networks, the significance is below
p = 0.0L.

Discussion
We have previously presented the webserver TFmiR [7]
that uses lists of de-regulated mRNAs and/or miRNAs as

Table 2 Pairwise comparison (percentage overlap) of hubs, MDS
and MCDS for the BRCA dataset

Methods edgeR voom VST

DESeq 96,83,81 91,80,79 96,83,80
edgeR - 86,83,83 70,72,75
voom - - 83,85,88

Pairwise comparison of hubs(left), MDS(middle) and MCDS(right numbers) for the
networks constructed from the set of DE genes detected by DESeq, edgeR, voom
and VST methods for the BRCA dataset
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LIHC dataset. b same for the BRCA dataset

Fig. 3 a Venn diagram for the number of overlapped network nodes between the results of DESeq and those from edgeR, voom and VST for the

voom

voom

input and complements these with experimentally vali-
dated and/or predicted regulatory interactions between
TF-gene, TF-miRNA, miRNA-gene, and miRNA-
miRNAs. These interactions are taken from well-known
databases. The webserver thus generates differential
co-regulatory subnetworks that may be further filtered
to known disease conditions. One assumption made

with TFmiR is that we assume that the regulatory links
retrieved from the mentioned data sources are active
in the particular cell types and conditions underlying
the provided input sets of genes. Another assumption
we make is that we consider the members of MDS
and MCDS sets and hub genes as key players. In [8],
we illustrated the plausibility of this concept on the



Nazarieh et al. BMC Bioinformatics (2019) 20:550

Page 6 of 10

voom

DESeq

voom

Fig. 4 a Venn diagram for the number of overlapped network edges between the results of DESeq and those from edgeR, voom and VST for the

LIHC dataset. b same for the BRCA dataset

examples of GRNs from E.coli, and S.cerevisiae, for mouse
pluripotency and for human breast cancer. We have also
presented algorithms to determine a MDS or a MCDS
of key transcription factors and miRNAs that control all
other (target) nodes of an input network [8] and we utilize
these concepts to determine key regulators for a given
network.

An important issue is whether different input sets
of de-regulated mRNAs and/or miRNAs would lead
to largely different results in downstream analyses. It
is well-known as mentioned in [4] that there is lit-
tle overlap between the results for de-regulated genes
obtained by different tools that are all widely used. Since
TFmiR is one such downstream analysis method, this
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Fig. 5 Robustness of the topological results. Barplots in panels (a) and (b) illustrate the percentage overlap of hubs, MDS and MCDS in the DESeq
network with the other three (edgeR (blue), voom (red) and VST (green)) networks for the LIHC (a) and BRCA (b) datasets, respectively. Boxplots in
panels (@) and (b) show the overlap of the three mentioned topological features of DESeq with 100 disease-specific networks derived of 11000 and
14000 randomly genes that were selected genes from the LIHC and BRCA datasets, respectively

would then also have important implications for our
own work.

Here, we report an interesting and also re-assuring
discovery, namely that key regulator sets consist-
ing of hub genes/miRNAs as well as the members
of MDS and MCDS are robust toward the set of
input de-regulated genes/miRNAs. This is very good

news for any scientist working on related types of
downstream analyses.

Finally, we checked the biological relevance of the
obtained results. For this, we considered the overlap
of key genes obtained by downstream TFmiR analysis
based on the input DE genes identified by the four anal-
ysis methods. Precisely, we considered the hub genes
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and microRNAs that are also members of the MDS
and MCDS sets. For the LIHC dataset analysis, these
are (LIHC.Hub.MDS.MCDS = hsa-let-7b, JUN, E2F1,FOS
,MYC, ESR1, STAT3, NFE2L2). For the BRCA dataset,
these are (BRCA.Hub.MDS.MCDS = JUN, hsa-mir-21,
E2F1, TFAP2A, ESR1, STAT5A, ESR2, ETS2, hsa-mir-21-
5p). All of these key genes and microRNAs have been
described in the literature in the context of liver cancer
[11-18] and breast cancer [19-27].

Conclusion

In this work, we showed that disease-specific co-
regulatory networks constructed with the TFmiR web-
server from different sets of DE genes identified by differ-
ent analysis methods contain largely overlapping sets of
hubs, MDS and MCDS. Although the number of exclu-
sive DE genes identified by each analysis method was
considerable in liver cancer and in breast cancer, we
found that topologies of the derived co-regulatory net-
works were highly consistent with respect to hub-degree
nodes and MDS and MCDS (70-90%). This suggests that
key genes identified in regulatory networks derived from
DE genes are a robust basis for understanding diseases
processes.

Methods

Processed RNA-Seq data was obtained from [28] for
matched tumor and normal samples of LIHC and BRCA
datasets. We exploited the R packages of DESeq, edgeR,
VST and voom methods [10, 29] to identify the respective
sets of DE genes. edgeR and DESeq methods assume that
the dispersion is a linear function of the mean based on
a factor o, which is the same throughout the experiment
and needs to be estimated from the data. edgeR estimates
the common dispersion by considering the expression
data of all genes of both groups across the samples. It cal-
culates gene-wise dispersion using conditional maximum
likelihood, conditioning on the total counts for that gene.
Gene-wise dispersions are shrunk towards a common dis-
persion using an empirical Bayes procedure. Finally, the
differential expression is assessed for each gene using an
exact test similar to Fisher’s exact test, but adapted for data
that have overdispersion [3, 30]. DESeq applies size factors
to normalize the data (the median of the ratios of observed
counts) to render samples comparable when the samples
have been sequenced to different depths [2]. The p-value
of a pair of observed count sums (kj4, k;g) is then the sum
of all probabilities less or equal to p(kia, ki), given that
the overall sum is k;s [2]. The Variance Stabilizing Trans-
formation (VST) takes the variance-mean dependence
w(q) computed by DESeq and applies a transformation
function to remove the dependency. The monotonous
mapping function produces data whose variance is inde-
pendent from the mean [2]. VST uses the limma package
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for performing the statistical tests and inferring the set of
DE genes. voom (variance modelling at the observation
level) attempts to estimate the mean-variance relation-
ship robustly and without any parameter from data at
the level of individual observations. It transforms count
data to log-cpm (counts per million) values for the pur-
pose of normalization [29]. To estimate the mean-variance
trend at the level of individual observations, it computes
a residual standard deviation for each gene. After fitting
a robust trend to the residual standard deviations, the
standard deviation for an individual observation is pre-
dicted by interpolating the standard deviation trend based
on its predicted count size. Finally, the inverse square of
the predicted standard deviation for each observation and
log-cpm values are given to limma’s standard differenti-
ation pipeline as input to obtain the set of statistically
significant DE genes [29].

Network construction with tFmiR

A TF-miRNA differential co-regulatory network was con-
structed using the TFmiR webserver for each set of DE
genes [7]. TFmiR analyzes four different types of regu-
latory interactions, TF — gene, TF — miRNA, miRNA
— miRNA, and miRNA — gene. As evidence for these
interactions, TFmiR uses information from the follow-
ing established repositories: TransFac, OregAnno, and
MsigDB (for TF — gene links), TransmiR (for TF —
miRNA links), mirTarBase, TarBase and miRecords (for
miRNA — genes links), and PmmR (for miRNA —
miRNA links). In the present case when only DE genes
are provided as input, TFmiR identifies the set of missing
miRNAs whose target genes as well as regulator TFs are
significantly enriched within the input deregulated genes
using the hypergeometric distribution function followed
by the Benjamini—-Hochberg adjustment with a cutoff
value of 0.001 [7]. In this work, we focused on disease-
specific networks and thus applied the filter for known
disease-associated genes based on experimental evidence
in TFmiR for hepatocellular carcinoma and breast neo-
plasms.

Topology inference

For the constructed disease-specific networks involv-
ing TFs, microRNAs, and target genes, we selected the
top 10% highest centrality nodes as hub-degree nodes.
An MDS was calculated based on the ILP formulation
described in [8], where a MDS in a regulatory net-
work is the minimum number of regulatory genes and
miRNAs that control the whole network. An MCDS
was computed based on the heuristic approach men-
tioned in [8], where MCDS in a co-regulatory network
is a set of genes and miRNAs that are connected and
control the largest connected component (LCC) of the
network.
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